
Lab 1

Pandas IV: Time Series

Lab Objective: Learn how to manipulate and prepare time series in pandas in

preparation for analysis

Introduction: What is time series data?

Time series data is ubiquitous in the real world. Time series data is any form of

data that comes attached to a timestamp (i.e. Sept 28, 2016 20:32:24) or a period

of time (i.e. Q3 2012). Some examples of time series data include:

• stock market data

• ocean tide levels

• number of sales over a period of time

• website traffic

• concentrations of a certain compound in a solution over time

• audio signals

• seismograph data

• and more...

Notice that a common feature of all these types of data is that the values can

be tied to a specific time or period of time.

In this lab, we will not go into depth on the analysis of such data. Rather, we

will discuss some of the tools provided in pandas for cleaning and preparing time

series data for further analysis.

Initializing Time Series in pandas

To take advantage of all the time series tools available to us in pandas, we need to

make a few adjustments to our normal DataFrame.

1

2 Lab 1. Pandas IV: Time Series

The datetime Module and Initializing a DatetimeIndex

For pandas to know to treat a DataFrame or Series object as time series data, the

index must be a DatetimeIndex. pandas utilizes the datetime.datetime object from

the datetime module to standardize the format in which dates or timestamps are

represented.

>>> from datetime import datetime

>>> datetime(2016, 9, 28) # 9/28/2016

datetime.datetime(2016,9,28,0,0)

>>> datetime(2016, 9, 28, 21, 12, 48) # 9/28/2016 9:12:48 PM

datetime.datetime(2016, 9, 28, 21, 12, 48)

Unsurprisingly, the format for dates varies greatly from dataset to dataset. The

datetime module comes with a string parser (datetime.strptime()) flexible enough to

translate nearly any format into a datetime.datetime object. This method accepts

the string representation of the date, and a string representing the format of the

string. See Table ?? for all the options.

%Y 4-digit year

%y 2-digit year

%m 2-digit month

%d 2-digit day

%H Hour (24-hour)

%I Hour (12-hour)

%M 2-digit minute

%S 2-digit second

Table 1.1: Formats recognized by datetime.strptime()

Here are some examples of using datetime.strptime() to parse the same date from

different formats.

>>> datetime.strptime("2016-9-28", "%Y-%m-%d")

datetime.datetime(2016, 9, 2, 0, 0)

>>> datetime.strptime("9/28/16", "%m/%d/%y")

datetime.datetime(2016, 9, 2, 0, 0)

>>> datetime.strptime("2016-9-28 9:12:48", "%Y-%m-%d %I:%M:%S")

datetime.datetime(2016, 9, 28, 9, 12, 48)

If the dates are in an easily parsible format, pandas has a method pd.to_datetime

() that can turn a whole pandas Series into datetime.datetime objects. In the case of

the index, the index is automatically converted to a DatetimeIndex. This index type

is what distinguishes a regular Series or DataFrame from a time series.

>>> dates = ["2010-1-1", "2010-2-1", "2010-3-1", "2011-1-1",

... "2012-1-1", "2012-1-2", "2012-1-3"]

>>> values = np.random.randn(7,2)

3

>>> df = pd.DataFrame(values, index=dates)

>>> df

0 1

2010-1-1 0.566694 1.093125

2010-2-1 -0.219856 0.852917

2010-3-1 1.511347 -1.324036

2011-1-1 0.300766 0.934895

2012-1-1 0.212141 0.859555

2012-1-2 1.483123 -0.520873

2012-1-3 1.436843 0.596143

>>> df.index = pd.to_datetime(df.index)

Note

In earlier versions of pandas, there was a dedicated TimeSeries data type.

This has since been depricated, however the functionality remains. Therefore,

if you happen to read any materials that reference the TimeSeries data type,

know that the cooresponding functionality is likely still in place as long as you

have a DatetimeIndex associated with your Series or DataFrame.

Problem 1. The provided dataset, “DJIA.csv” is the daily closing value of

the Dow Jones Industrial Average for every day over the past 10 years. Read

this dataset into a Series with a DatetimeIndex. Replace any missing values

with np.nan. Lastly, cast all the values in the Series to floats. We will use

this dataset for many problems in this lab.

Handling Data Without Marked Timestamps

There will be times you will need to analyze time series data that does not come

marked with an index. For example, you may have the a list of bank account

balances at the beginning of every month for the last 5 years. You may have heart

rate readings every 10 minutes for the past week. pandas provides efficient tools for

generating indices for these kinds of siutations.

The pd.date range() Method

The pd.date_range() method is analogous to np.arange(). The parameters we will use

most are described in Table ??.

Exactly two of the parameters start, end, and periods must be defined to generate

a range of dates. The freqs parameter accepts a variety of string representations.

The accepted strings are referred to as offset aliases in the documentation. See

Table ?? for a sampling of some of the options. For a complete list of the op-

tions, see http://pandas.pydata.org/pandas-docs/stable/timeseries.html#

offset-aliases.

http://pandas.pydata.org/pandas-docs/stable/timeseries.html#offset-aliases
http://pandas.pydata.org/pandas-docs/stable/timeseries.html#offset-aliases

4 Lab 1. Pandas IV: Time Series

start start of date range

end end of date range

periods the number of dates to include in the date range

freq the amount of time between dates (similar to “step”)

normalize trim the time of the date to midnight

Table 1.2: Parameters for datetime.strptime()

D calendar daily (default)

B business daily

H hourly

T minutely

S secondly

MS first day of the month

BMS first weekday of the month

W-MON every Monday

WOM-3FRI every 3rd Friday of the month

Table 1.3: Parameters for datetime.strptime()

>>> pd.date_range(start='9/28/2016 16:00', periods=5)

DatetimeIndex(['2016-09-28 16:00:00', '2016-09-29 16:00:00',
'2016-09-30 16:00:00', '2016-10-01 16:00:00',
'2016-10-02 16:00:00'],

dtype='datetime64[ns]', freq='D')

>>> pd.date_range(start='1/1/2016', end='1/1/2017', freq="2BMS")

DatetimeIndex(['2016-01-01', '2016-03-01', '2016-05-02', '2016-07-01',
'2016-09-01', '2016-11-01'],

dtype='datetime64[ns]', freq='2BMS')

>>> pd.date_range(start='9/28/2016 16:00',
end='9/29/2016 16:30', freq="10T")

DatetimeIndex(['2016-09-28 16:00:00', '2016-09-28 16:10:00',
'2016-09-28 16:20:00', '2016-09-28 16:30:00'],

dtype='datetime64[ns]', freq='10T')

The freq parameter also supports more flexible string representations.

>>> pd.date_range(start='9/28/2016 16:30', periods=5, freq="2h30min")

DatetimeIndex(['2016-09-28 16:30:00', '2016-09-28 19:00:00',
'2016-09-28 21:30:00', '2016-09-29 00:00:00',
'2016-09-29 02:30:00'],

dtype='datetime64[ns]', freq='150T')

5

Problem 2. The “paychecks.csv” dataset has values of an hourly employee’s

last 93 paychecks. He started working March 13, 2008. This company hands

out paychecks on the first and third Fridays of the month. However, “pay-

checks.csv” is not indexed explicitly as such. To be able to manipulate it as

a time series in pandas, we will need to add a DatetimeIndex to it. Read in

the data and use pd.date_range() to generate the DatetimeIndex.

Hint: to combine two DatetimeIndex objects, you can use the .union()

method of DatetimeIndex objects.

Plotting Time Series

The process for plotting a time series is identical to plotting any other Series or

DataFrame. For more information and examples, refer back to Lab ??.

Problem 3. Plot the DJIA dataset that you read in as part of Problem ??.

Label your axes and title the plot.

Dealing with Periods Instead of Timestamps

It is often important to distinguish whether a given figure corresponds to a single

point in time or to a whole month, quater, year, decade, etc. A Period object is

better suited for the summary over a period of time rather than the timestamp of

a specific event.

Some example of time series that would merit the use of periods would include,

• The number of steps a given person walks in a day.

• The box office results per week for a summer blockbuster.

• The population changes of a given city per year.

• etc.

The Period Object

The principle parameters of the Period are "value" and "freq". The "value" paramter

indicates the label for a given Period. This label is tied to the end of the defined

Period. The "freq" indicates the length of the Period and also (in some cases) indi-

cates the offset of the Period. The "freq" parameter accepts the majority, but not

all, of frequencies listed in Table ??.

These nuances are best clarified through examples.

6 Lab 1. Pandas IV: Time Series

The default value for `freq' is "M" meaning month.

>>> p1 = pd.Period("2016-10")

>>> p1.start_time

Timestamp('2016-10-01 00:00:00')

>>> p1.end_time

Timestamp('2016-10-31 23:59:59.999999999')

A `freq' value of 'A-DEC' indicates a annual period

with the end of the period occuring in December.

>>> p2 = pd.Period("2016-10-03", freq="A-DEC")

>>> p2.start_time

Timestamp('2007-01-01 00:00:00')

>>> p2.end_time

Timestamp('2007-12-31 23:59:59.999999999')

Notice that the Period object that is created is the

week of the year when the given date occurs. Also

note that "W-SAT" indicates we wish to treat

Saturday as the last day of the week (and therefore

Sunday as the first day of the week.)

>>> p3 = pd.Period("2016-10-03", freq="W-SAT")

>>> p3

Period('2016-10-02/2016-10-08', 'W-SAT')

The pd.period range() Method

Like the pd.date_range() method, the pd.period_range() method is useful for generat-

ing a PeriodIndex for unindexed data. The syntax is essentially identical to that of

pd.date_range(). When using pd.period_range(), remember that the "freq" parameter

marks the end of the period.

a 'freq' value of 'Q-DEC' means that Q4 ends in December.

>>> pd.period_range("2008", "2010-12", freq="Q-DEC")

PeriodIndex(['2009Q1', '2009Q2', '2009Q3', '2009Q4', '2010Q1', '2010Q2',
'2010Q3', '2010Q4'], dtype='int64', freq='Q-DEC')

Other Useful Functionality and Methods

After creating a PeriodIndex, you have the option to redefine the "freq" parameter

using the asfreq() method.

>>> p = pd.period_range("2010-03", "2011", freq="3M")

PeriodIndex(['2010-03', '2010-06', '2010-09', '2010-12'],
dtype='int64', freq='3M')

Change frequency to be "Q-DEC" instead of "3M"

>>> p = p.asfreq("Q-DEC")

>>> p

PeriodIndex(['2010Q2', '2010Q3', '2010Q4', '2011Q1'],
dtype='int64', freq='Q-DEC')

7

Say you have created a PeriodIndex, but the bounds are not exactly where you

expected they would be. You can actually shift PeriodIndex obejcts by adding or

subtracting an integer, n. The resulting PeriodIndex will be shifted by n × freq.

Shift index by 1

>>> p -= 1

>>> p

PeriodIndex(['2010Q1', '2010Q2', '2010Q3', '2010Q4'],
dtype='int64', freq='Q-DEC')

If for any reason you need to switch from periods to timestamps, pandas provides

a very simple method to do so.

Convert to timestamp (last day of each quarter)

>>> p = p.to_timestamp(how='end')
>>> p

DatetimeIndex(['2010-03-31', '2010-06-30', '2010-09-30', '2010-12-31'],
dtype='datetime64[ns]', freq='Q-DEC')

Similarly, you can switch from timestamps to periods.

>>> p.to_period("Q-DEC")

PeriodIndex(['2010Q1', '2010Q2', '2010Q3', '2010Q4'],
dtype='int64', freq='Q-DEC')

Problem 4. The “finances.csv” dataset has a list of simulated quarterly

earnings and expense totals from a fictional company. Load these values

into a DataFrame with a PeriodIndex with a quarterly frequency. Assume

the fiscal year starts at the beginning of September and that the dataset goes

back to September 1978.

Operations on Time Series

There are certain operations only available to Series and DataFrames that have a

DatetimeIndex. A sampling of this functionality is described throughout the remain-

der of this lab.

Slicing

Slicing is much more flexible in pandas for time series. We can slice by year, by

month, or even use traditional slicing syntax to select a range of dates.

Select all rows in a given year

>>> df["2010"]

0 1

2010-01-01 0.566694 1.093125

2010-02-01 -0.219856 0.852917

2010-03-01 1.511347 -1.324036

8 Lab 1. Pandas IV: Time Series

Select all rows in a given month of a given year

>>> df["2012-01"]

0 1

2012-01-01 0.212141 0.859555

2012-01-02 1.483123 -0.520873

2012-01-03 1.436843 0.596143

Select a range of dates using traditional slicing syntax

>>> df["2010-1-2":"2011-12-31"]

0 1

2010-02-01 -0.219856 0.852917

2010-03-01 1.511347 -1.324036

2011-01-01 0.300766 0.934895

Resampling a Time Series

Imagine you have a dataset that does not have datapoints at a fixed frequency. For

example, a dataset of website traffic would take on this form. Because the datapoints

occur at irregular intervals, it may be more difficult to procure any meaningful

insight. In situations like these, resampling your data is worth considering.

The two main forms of resampling are downsampling (aggregating data into

fewer intervals) and upsampling (adding more intervals). We will only address

downsampling in detail.

Downsampling

When downsampling data, we aggregate our time series data into fewer intervals.

Let’s futher consider the website traffic examples given above.

Say we have a data set of website traffic indexed by timestamp. Each entry

in the dataset contains the IP address of the user, the time the user entered the

website, and the time the user left the website.

If we were interested in having information regarding the average visit duration

for any given day, we could downsample the data to a daily timescale. To aggregate

the data, we would take the average across all the datapoints for the day.

Instead, if we were interested in the number of visits to the website per hour,

we could downsample to a weekly timescale. To aggregate the data in this case, we

would count up the number of visits in a hour.

The task of downsampling is handled using the resample() method. The parame-

ters we will use are rule, how, closed, and label. For explanations of these parameters,

see Table ??.

rule the offset string (see Table ??)

how the data aggregation method (i.e. “sum” or “mean”)

closed the boundary of the interval that is closed/inclusive (default “right”)

label the boundary of the interval that is assigned to the label (default “right”)

Table 1.4: Parameters for DataFrame.resample()

9

Problem 5. Using the “website traffic.csv” dataset, solve the problem de-

scribed above. Namely, downsample the dataset to show daily average visit

duration. In a different DataFrame, also downsample the dataset to show

total number of visits per hour. Your resulting time series should use a

PeriodIndex.

Basic Time Series Analysis

As mentioned in the beginning of this lab, the focus of this lab is not meant to be on

Time Series Analysis. However, we would like to address a few very basic methods

that are built into pandas.

Shifting

DataFrame and Series objects have a shift() method that allows you to move data

up or down relative to the index. When dealing with time series data, we can also

shift the DatetimeIndex relative to a time offset. See the following example code

for clarification:

>>> df = pd.DataFrame(dict(VALUE=np.random.rand(5)),

index=pd.date_range("2016-10-7", periods=5, freq='D'))
>>> df

VALUE

2016-10-07 0.127895

2016-10-08 0.811226

2016-10-09 0.656711

2016-10-10 0.351431

2016-10-11 0.608767

>>> df.shift(1)

VALUE

2016-10-07 NaN

2016-10-08 0.127895

2016-10-09 0.811226

2016-10-10 0.656711

2016-10-11 0.351431

>>> df.shift(-2)

VALUE

2016-10-07 0.656711

2016-10-08 0.351431

2016-10-09 0.608767

2016-10-10 NaN

2016-10-11 NaN

>>> df.shift(14, freq="D")

VALUE

2016-10-21 0.127895

2016-10-22 0.811226

2016-10-23 0.656711

2016-10-24 0.351431

2016-10-25 0.608767

10 Lab 1. Pandas IV: Time Series

Shifting data has a particularly useful application. We can easily gather statistics

about changes from one timestamp or period to the next.

find the changes from one period/timestamp to the next

>>> df - df.shift(1)

VALUE

2016-10-07 NaN

2016-10-08 0.683331

2016-10-09 -0.154516

2016-10-10 -0.305279

2016-10-11 0.257336

Problem 6. From the Dow Jones Industrial Average dataset referenced in

Problem 1, use shifting to find the following information:

• The single day with the largest gain

• The single day with the largest loss

• The month with the largest gain

• The month with the largest loss

Hint: Downsample or use groupby() to answer the questions regarding months.

Rolling Functions and Exponentially-Weighted Moving Functions

In many situations, your data will be noisy. You will often be more interested in

general trends. We can accomplish this through rolling functions and exponentally-

weighted moving (EWM) functions.

Problem 7. Generate a time series plot with the following information from

the DJIA dataset:

• The original data points.

• Rolling average with window 30.

• Rolling average with window 365.

• Exponential average with span 30.

• Exponential average with span 365.

Include a legend, axis labels, and title. Your plot should look like Figure ??.

11

Figure 1.1: Rolling average and EWMA with windows 30 and 365.

	The Finite Difference Method

