
Lab 9

Introduction to Bokeh

Lab Objective: In this lab, we will introduce the Bokeh python package. We

will use Bokeh to produce interactive, dependency-free data visualizations that can

be viewed in any web browser.

Achtung!

This lab uses Bokeh version 0.12.0. It was released in the summer 2016. Bokeh
is still under development, so the syntax is subject to change. However, the
development is far enough along that the general framework has been solidified.

Bokeh is a visualization package focused on making plots that can be viewed and
shared in web browsers. We have already addressed data visualization practices in
previous labs. In this lab, we will not exhaustively address how to generate all the
plots you have made using matplotlib. Rather, we will highlight some of the key
di↵erences in Bokeh. For all other questions not addressed in this lab, we direct the
reader to the online Bokeh documentation, http://bokeh.pydata.org/en/0.11.
1/.

Interactive Visualizations with Bokeh

One of the major selling points for the Bokeh Python package is the ability to
generate interactive plots that can be viewed a web browser. The Bokeh Python
package is being developed along with a Javascript library called BokehJS. The
Bokeh Python package is simply a wrapper for this library. The BokehJS library
handles all the visualizations in the web browser.

Throughout this lab, all the exercises will piece together to form one final web-
based visualization. To see the final result, go to THE_FINAL_PROJECT_HOSTED_ON_

ACME/data_or_something.

Even though there are many options for adding interactions to your plots, (see
http://bokeh.pydata.org/en/latest/docs/user_guide/interaction.html) we
will only focus on pan, zoom, hover, and the slider widget.

95

http://bokeh.pydata.org/en/0.11.1/
http://bokeh.pydata.org/en/0.11.1/
THE_FINAL_PROJECT_HOSTED_ON_ACME/data_or_something
THE_FINAL_PROJECT_HOSTED_ON_ACME/data_or_something
http://bokeh.pydata.org/en/latest/docs/user_guide/interaction.html

96 Lab 9. Introduction to Bokeh

Cleaning the Data

For this project, we will be using the FARS (Fatality Analysis Reporting System)
dataset. This is an incredibly rich data set of all fatal car accidents in the United
States in a given year. We will be examining the data provided from 2010-2014.
The data for these years are spread across several files.

The Accidents File

The columns found in the accidents table contains most of the data we will be
analyzing. For the analysis we will be doing, we will be interested in the following
columns:

• ST CASE : The unique case ID. This will be used primarily for merging
information from the other tables.

• STATE : State in which the accident occurred. There is a table at the end of
this lab containing the relationship between IDs and states.

• LATITUDE : The latitude of the location where the accident occurred. Values
of 77.7777, 88.8888, 99.9999 will be considered null.

• LONGITUD : The longitude of the location where the accident occurred.
Values of 777.7777, 888.8888, 999.9999 will be considered null. NOTE: Yes,
it is spelled “LONGITUD” without the ‘E‘ on the end.

• HOUR : Hour of the day when the accident occurred.

• DAY : The day of the month when the accidents happened.

• MONTH : The month the accident happened.

• YEAR : The year the accident happened.

• DRUNK DR : Number of drunk drivers involved in the accident.

• FATALS : The number of fatalities in the accident.

The Vehicle File

The vehicle table is extremely rich. There is an entry for every vehicle involved in a
fatal car accident. Many additional analyses could be performed on the data here,
but we are interested in the following columns:

• ST CASE : The unique case ID. This will be used primarily for merging
information from the other tables.

• VEH NO : The unique vehicle ID identifying each car involved in a given
accident. This will also be used in merging information from the other tables.

• SPEEDREL : Whether or not speed was a factor in the car accident. In
the tables from 2010, 2011, and 2012, the value 0 means No, and the value
1 means Yes. In the tables from 2013 and 2014, they begin classifying how
speed was a factor. The value 0 still means No, and for our purposes, values
from 2-5 mean Yes. Values of 8 or 9 mean Unknown.

97

The Person File

The person table is also extremely rich. Each entry contains information for all
persons involved in the accident. For our analyses, we are interested in the following
columns:

• ST CASE : The unique case ID. This will be used primarily for merging
information from the other tables.

• VEH NO : The unique vehicle ID identifying each car involved in a given
accident. This will also be used in merging information from the other tables.

• PER TYP : The role of this person in the accident. Though the labels in this
column vary greatly, we will only be interested in entries equal to 1, signifying
the driver.

• DRINKING : Whether or not alcohol was involved for this person. The value
0 means No, 1 means Yes, and 8,9 mean Unknown.

The first task is to prepare the DataFrames will we use in our analyses, the
accidents DataFrame and the drivers DataFrame. In the provided file fars_data.zip,
you will find pickle files for accidents, vehicles, and persons corresponding to each
fatal accident. These files are divided by year, but we want to combine the data
from all these years. These pickle files can be loaded using pd.read_pickle().

Problem 1. For the accidents DataFrame, we will need the columns:

ST_CASE, STATE, LATITUDE, LONGITUD, FATALS, HOUR, DAY, MONTH,

YEAR, DRUNK_DR, SPEEDING.

The SPEEDING column is derived from the SPEEDREL column of the
vehicles file. The SPEEDREL column describes which vehicles specifically
were speeding. We want the SPEEDING column of this table to be 0 if no
cars were speeding and 1 if any of the cars involved were speeding. Also,
remove all rows containing latitudes or longitudes that we are considering
null due to the criteria described above.

The resulting DataFrame should be 149698 rows x 7 columns. As another
indicator that you have done everything correctly, you should have a total
of 44223 speed related accidents described in the SPEEDING column.

Lastly, the STATE column is all based on IDs. The id_to_state.pickle

file contains a pickle file with a Python dictionary mapping IDs to states.
Replace all the integer IDs in this column with the corresponding state ab-
breviation according to the mapping contained in this dictionary. To load
this pickle file, execute the following code:

import pickle

with open("id_to_state.pickle") as file:

id_to_state = pickle.load(file)

So in the end your DataFrame should look like this:

98 Lab 9. Introduction to Bokeh

ST CASE STATE LATITUDE LONGITUD HOUR DAY
10001 AL 32.641064 -85.354692 4 15
10002 AL 31.430447 -86.956694 6 11
10003 AL 30.691631 -88.085778 15 14
10004 AL 33.868700 -86.291164 1 21
10005 AL 33.309742 -86.787222 6 4

MONTH YEAR DRUNK DR SPEEDING FATALS
1 2010 1 0 1
1 2010 0 0 1
1 2010 0 1 1
1 2010 0 0 1
1 2010 0 0 1

Note

HINT: Though tedious, it will be easiest to do this whole process cor-
rectly if you do all the needed cleaning for each individual year, then
concatenate all the years together into your final DataFrames. This
is due to the fact that the IDs in the ST CASE column are not year
specific.

Problem 2. The map we will be using does not does not recognize latitude
and longitude coordinates, but rather coordinates in meters. The FARS
data set represents the location of the accidents in terms of latitude and
longitude, so we will need to convert the coordinate system. This is done
with the following code:

from_proj = Proj(init="epsg:4326")

to_proj = Proj(init="epsg:3857")

def convert(longitudes, latitudes):

"""Converts latlon coordinates to meters.

Inputs:

longitudes (array-like) : array of longitudes

latitudes (array-like) : array of latitudes

Example:

x,y = convert(accidents.LONGITUD, accidents.LATITUDE)

"""

x_vals = []

y_vals = []

for lon, lat in zip(longitudes, latitudes):

x, y = transform(from_proj, to_proj, lon, lat)

x_vals.append(x)

99

y_vals.append(y)

return x_vals, y_vals

accidents["x"], accidents["y"] = convert(accidents.LONGITUD, accidents. -
LATITUDE)

Problem 3. For the drivers DataFrame, we will need the columns:

ST_CASE, VEH_NO, PER_TYP, AGE, DRINKING, SPEEDREL, YEAR.

To obtain the information needed for this DataFrame, you will need merge
the vehicles file and person file. You will want to merge on ST CASE and
VEH NO.

The resulting DataFrame should be 341436 rows x 7 columns. It is eas-
iest to add the YEAR column manually. Additionally, we will only be in-
terested in the entries where PER TYP is 1. This brings the final shape
of the DataFrame to 223490 rows x 6 columns (since we can now eliminate
PER TYP).

Your DataFrame should look like this:
ST CASE VEH NO AGE DRINKING SPEEDREL YEAR
10001 1 51 9 0 2010
10002 1 44 0 0 2010
10003 1 27 9 1 2010
10003 2 45 0 0 2010
10003 3 28 0 0 2010

Now with the necessary data cleaned, we can dive into the Bokeh package itself.

Basic Plotting

The general framework of Bokeh is built on Figures, Glyphs, and Charts. Figures
are analogous to Figure objects in matplotlib. Glyphs consist of any lines, circles,
squares, or patches that we may want to add to the Figure. Charts are visualizations
such as bar charts, histograms, box plots, etc.

There are a few di↵erent ways to view your Bokeh plots, but we will address
only two of them. These are output_file() and output_notebook(). If you choose to
use output_file, your Bokeh plot will be saved to an HTML file that can be viewed
in a web browser. This function accepts a string with the name of the desired
filename. If you use output_notebook(), your Bokeh plots will appear in your Jupyter
Notebook.

100 Lab 9. Introduction to Bokeh

Note

There may be times that your plots may not be behaving as expected. If you
are sure there is not a problem with your code, try restarting the Bokeh server.
Assuming you are working in a Jupyter Notebook, this is done by first restart-
ing the kernel, then reloading the webpage that hosts your Jupyter Notebook.
Additionally, there is a currently a memory leak when using output_notebook().
After showing your plot several times in the Jupyter NOtebook, your note-
book may crash because of losing memory. Again, the solution is restarting
the kernel and refreshing the webpage.

As has been mentioned already, this lab is not meant to be exhaustive, but
rather is meant to expose you to the basics. For our project, we will be using Circle
glyphs, Square glyphs, Patch glyphs, and Bar charts. Here are some very basic
examples of how to use each of these.

Marker Glyphs (Circles and Squares)

We use Circle glpyhs when we want to plot a collection of circles (such as in a
scatter plot.) The following code example demonstrates the basic syntax of how
this is done.

from bokeh.plotting import figure, output_file, show

output_file("my_plot.html")

fig = figure(plot_width=500, plot_height=500)

fig.circle(x=[1,2,3,3,4,5], y=[3,1,2,4,5,4])

show(fig)

The appearance of marker glyphs is high customizable. There are more than 20
keyword arguments that allow you to tweak the appearance of your markers. Here
are some of the arguments that are most commonly used.

• size : size of marker measured in pixels on screen. So these will appear the
same size despite the level of zoom.

• radius : size of marker measured by radius. These markers will scale with the
level of zoom.

• fill color : string of the hex value or the name of the color. Valid color names
are all colors that have names in HTML.

• fill alpha : value between 0 and 1 indicating alpha value. 0 indicates invisible,
1 indicates opaque.

• line color : string of the hex value or the name of the color of the border.
Valid color names are all colors that have names in HTML.

101

(a) Default circles

(b) Customized circles

(c) Customized Squares

• line alpha : value between 0 and 1 indicating alpha value of the border. 0
indicates invisible, 1 indicates opaque.

• line width : thickness of the border.

Additionally, you can pass lists of items to these keyword arguments. The
attributes you specific in these list will be consistent across the indices of these
lists.

fig = figure(plot_width=500, plot_height=500)

cir = fig.circle(x=[1,2,3,3,4,5], y=[3,1,2,4,5,4], size=[15,25,10,20,10,15],

fill_color=["red", "yellow", "red", "blue", "blue", "limegreen"],

fill_alpha=[.8,.5,.9,.6,.9,.7], line_color="black", line_width=3)

show(fig)

The syntax for squares is identical. In addition to the keyword arguments listed
above, the angle keyword argument is also useful for squares.

fig = figure(plot_width=500, plot_height=500)

sq = fig.square(x=[1,2,3,3,4,5], y=[3,1,2,4,5,4], size=[15,25,10,20,10,15],

fill_color=["red", "yellow", "red", "blue", "blue", "limegreen"],

fill_alpha=[.8,.5,.9,.6,.9,.7], line_color="black", line_width=3,

angle=np.pi/4)

show(fig)

Patch Glyphs

Patch glyphs are polygon shapes defined by a series of points locating the corners
of the object. These shapes can be very complex. For our project, each state is a
Patch glyph. The syntax for creating Patch glyphs is very similar to the syntax for
creating markers. Most of the keyword arguments are the same as well.

first iteration of the Sierpinski triangle.

fig = figure(plot_width=500, plot_height=500)

pats = fig.patches(xs=[[1, 3, 2], [3, 5, 4], [2, 4, 3]],

ys=[[1, 1, 3], [1, 1, 3], [3, 3, 5]],

102 Lab 9. Introduction to Bokeh

Figure 9.2: Collection of patch glyphs

fill_color="yellow", line_color="orange",

line_alpha=.5, line_width=7)

show(fig)

ColumnDataSource Object

In the plotting examples we have addressed up to this point, we have expressed the
x and y values explicitly. As mentioned throughout this lab, one of the key features
of Bokeh is to be to interact with your plots. However, if you have a large dataset,
the performance of the interactions can be severely hampered.

Bokeh has a solution for this problem. It comes in the form of the ColumnDataSource

object. We load our data into this object, connect our glyph to this object, then
if necessary, Bokeh will automatically downsample the data to maintain acceptable
performance. Once a glyph is linked to this source, you can also change the values in
the source to update the positions and attributes of your glyph. This is an essential
component to many of the key features of Bokeh.

ColumnDataSource objects accept a dictionary or a pandas DataFrame as the
source of data. We reference the di↵erent data in this source by the associated key
(in the case of a dictionary) or column name (in the case of a DataFrame).

Replicate the circle marker plot using a DataFrame and ColumnDataSource.

from bokeh.models import ColumnDataSource

fig = figure(plot_width=500, plot_height=500)

df = pd.DataFrame({"x_vals":[1,2,3,3,4,5],

"y_vals":[3,1,2,4,5,4],

"size":[15,25,10,20,10,15],

"fill_color":["red", "yellow", "red", "blue", "blue", " -
limegreen"],

"fill_alpha":[.8,.5,.9,.6,.9,.7]})

cir_source = ColumnDataSource(df)

cir = fig.circle(x="x_vals", y="y_vals", source=cir_source,

size="size", fill_color="fill_color",

103

fill_alpha="fill_alpha", line_color="black", line_width=3)

show(fig)

Replicate the patches plot using a dictionary and ColumnDataSource.

fig = figure(plot_width=500, plot+height=500)

pat_data = dict("x_vals":[[1, 3, 2], [3, 5, 4], [2, 4, 3]],

"y_vals":[[1, 1, 3], [1, 1, 3], [3, 3, 5]])

pat_source = ColumnDataSource(data=pat_data)

pats = fig.patches(xs="x_vals", ys="y_vals",

fill_color="yellow", line_color="orange",

line_alpha=.5, line_width=7)

show(fig)

Problem 4. We will start by adding a map to a Bokeh Figure. Here is the
code you will need. This code will serve as the building block for the rest of
this lab.

from bokeh.plotting import Figure

from bokeh.models import WMTSTileSource

fig = Figure(plot_width=1100, plot_height=650,

x_range=(-13000000, -7000000), y_range=(2750000, 6250000),

tools=["wheel_zoom", "pan"], active_scroll="wheel_zoom")

fig.axis.visible = False

STAMEN_TONER_BACKGROUND = WMTSTileSource(

url='http://tile.stamen.com/toner-background/{Z}/{X}/{Y}.png',
attribution=(

'Map tiles by Stamen Design, '
'under CC BY -

3.0.'
'Data by OpenStreetMap, '
'under ODbL'

)

)

fig.add_tile(STAMEN_TONER_BACKGROUND)

Problem 5. Using Patch glyphs, draw all the borders for all the states. The
border information you need is found in the pickle file borders.pickle. This
pickle file contains a nested Python dictionary where the key is the two letter
abbreviation for a given state and the value is a dictionary containing a list
of latitudes and a list of longitudes.

104 Lab 9. Introduction to Bokeh

We need a list of lists of x-values and y-values to pass to the fig.patches

() function. You will need to convert these coordinates the same way you
converted the coordinates in Problem 2

To get a list of lists of latitudes and longitudes, you may use the following
code:

state_xs = [us_states[code]["lons"] for code in us_states]

state_ys = [us_states[code]["lats"] for code in us_states]

Draw the state borders using the coordinates defined in state_xs and
state_ys and using a ColumnDataSource object.

Problem 6. Your accidents DataFrame should contain the converted longi-
tudes and latitudes for all the fatal accidents. In the same figure from Prob-
lem 5, plot a circle for each fatal car accidents. For this problem, you should
use your accidents DataFrame in conjuction with a ColumnDataSource. For
an added level of detail, color the markers depending on the type of accident:
drunk, speeding, other. The best way to do this would be to have 3 di↵erent
ColumnDataSource objects.

Speeding up Interactions with WebGL

As you pan around your figure from Problem 6, it may take a few seconds to load
after each movement. This may not be that surprising considering you have just
added approximately 150,000 circles to your figure. The performence can be im-
proved using WebGL. WebGL stands for Web Graphics Library. It takes advantage
of a compmuter’s GPU when plotting a large number of points.

Problem 7. To take advantage of WebGL, add webgl=True as a keyword
argument to your figure. You should notice a significant improvement in the
response time while panning and zooming.

Note

There are times that adding WebGL support to your figure will cause
it to behave strangely. WebGL support is still a fairly new feature
of Bokeh. Remember that Bokeh is still in development, so hopefully
things like this will be refined in time.

105

Figure 9.3: Example of state hover tooltip.

Adding Tooltips

It would be useful to display a bit more information on our map. We will accomplish
this with tooltips. When we hover over each state, we will display a few pieces of key
data that may be interesting to the viewer. To be able to show more information,
we will need to prepare a few more pieces of data.

Problem 8. In Problem 5, you created two lists of lists, state_xs and state_ys

. When hovering over a Patch glyph, Bokeh keeps track which index corre-
sponds with that Patch. For our tooltips, we will need a few more lists. We
have to take extra special care that the indices of all these lists are consistent.

Using list comprehension again, create a list of state abbreviations, a list
of the total number of accidents by state, a list of the percentage of speed-
related accidents by state, and a list of the percentage of drunk driving
accidents by state.

There is more than one correct way to do this, but whatever method you
choose to use, take extra care to make sure that the indices correspond to
the same state across all these lists.

HoverTool and Tooltips

Adding tooltips to Patch glyphs is fairly straightforward. The process is best ex-
plained by first presenting an example.

import numpy as np

from bokeh.plotting import figure, output_notebook, show

from bokeh.models import HoverTool, ColumnDataSource

x_vals = [[0,1,0], [0,1,1], [1,2,1], [1,2,2]]

y_vals = [[0,0,1], [1,1,0], [0,0,1], [1,1,0]]

x_coords = [0,0,1,1,2,2]

y_coords = [0,1,0,1,0,1]

106 Lab 9. Introduction to Bokeh

fig = figure(plot_width=500, plot_height=300)

col = ["Blue", "Red", "Yellow", "Green"]

patch_source = ColumnDataSource(

data=dict(

col=col,

x_vals=x_vals,

y_vals=y_vals

)

)

circle_source = ColumnDataSource(

data=dict(

x_coords=x_coords,

y_coords=y_coords

)

)

triangles = fig.patches("x_vals", "y_vals", color="col", source=patch_source,

line_color='black', line_width=3, fill_alpha=.5, line_alpha=0

hover_color="col", hover_alpha=.8, hover_line_color='black')
circles = fig.circle("x_coords", "y_coords", fill_color='black', source= -

circle_source,

fill_alpha=.5, hover_color="black", hover_alpha=1, line_alpha=0, size -
=18)

fig.add_tools(HoverTool(renderers=[triangles], tooltips=[("Color", " @col")]))

fig.add_tools(HoverTool(renderers=[circles], tooltips=[("Point", " (@x_coords, -
@y_coords)")]))

show(fig)

Now let’s piece apart this example. Notice first that we have a ColumnDataSource

object for the patch coordinates and another ColumnDataSource for the circles. In
general, it is a good idea to separate ColumnDataSource objects like this, but more
specifically, we need to do this because we want to have two di↵erent hover behav-
iors.

Next, notice that there are some keyword arguments included in these glyphs
we have not discussed yet. The keyword arguments hover_color, hover_alpha, and
hover_line_color. When hovering over one of these glpyhs, these arguments overwrite
fill_color, fill_alpha, and line_color, respectivley.

Finally, when creating the HoverTool object, you will most commonly use the
renderers and tooltips keyword arguments. The renderers argument accepts a list of
glyphs. At times, there is unpredicted behavior if you include more than one glpyh
in this list. The tooltips arguments functions just like the tooltips argument we
discussed in the section on bar charts.

Problem 9. On your plot of the United States, we can provide much more
information to this plot using tooltips. Using the lists you prepared in Prob-
lem 8, add tooltips for the Patch objects in this plot. Also adjust the ap-
pearence of the Patch objects under the mouse so it is clear which state is
being selected.

107

Your tooltips should look similar to Figure 9.3.

Adding More Complicated Interactions Using Widgets

Note

At the beginning of this lab, we mentioned that Bokeh is still in development
so some explanations will need to be updated. There is some material in this
section that is still under active development. In theory, the code presented
here will still work, but it is quite possible that there will be a better way to
do these tasks in the future.

One of the mottos the Bokeh developers have is, We write the Javascript so you

don’t have to. If you happen to have experience with Javascript, you can do some
pretty amazing things with Bokeh interactions. In this section, we address some of
the interactions that are possible without using Javascript.

Select

The Select widget is ideal for changing attributes of the figure where you want to
allow only a few di↵erent options. The code for creating Select widgets is very
straightforward.

from bokeh.io import output_file, show

from bokeh.models.widgets import Select

output_file("select.html")

select = Select(title="Option:", value="one",

options=["one", "two", "three", "four"])

show(select)

For our project, we want to be able to give the user the ability to gain information
from the first map without needing to hover over each individual state. Since we
are interested in drunk driving accidents and speeding accidents, it makes sense to
give the user the option to color the states according to the percentage of these
types of accidents.

To be able to accomplish this, we will need to have some way of knowing if the
value in the Select widget has changed, and if it has, what we should do with the
new value.

Most Bokeh widgets have a on_change method. This method is called whenever
a certain parameter (usually "value") is changed. Here is a simple example.

import pandas as pd

import numpy as np

from bokeh.io import curdoc

from bokeh.plotting import Figure

108 Lab 9. Introduction to Bokeh

from bokeh.models import ColumnDataSource, Select

from bokeh.layouts import column

COUNT = 10

df = pd.DataFrame({"x":np.random.rand(COUNT),

"y":np.random.rand(COUNT),

"color":"white"})

source = ColumnDataSource(df)

fig = Figure()

fig.circle(source=source, x="x", y="y", fill_color="color",

line_color="black", size=40)

select = Select(title="Option:", value="white",

options=["white", "red", "blue", "yellow"])

def update_color(attrname, old, new):

source.data["color"] = [select.value]*COUNT

select.on_change('value', update_color)

curdoc().add_root(column(fig, select))

There are a few things to point out with this example. Note that we have a
function called update_color. This function is called whenever the "value" of the
Select widget is changed. The function arguments attrname, old, new are used by
Bokeh, but you don’t need to worry about them at all in this lab. Because we have
our Circle glyph tied to a ColumnDataSource, any change to this source will a↵ect the
Circle glpyh.

Second, note that we have not specified an output_file. Instead, we use curdoc(),
which stands for “current document”. We add the layouts we want to the current
document through the add_root() method. In our case, we stack all the elements of
our document using the column() function. You can learn more about possible layouts
here: http://bokeh.pydata.org/en/latest/docs/user_guide/layout.html

Using the on_change function requires a Bokeh Server to be running. You can
view the code above by executing

$ bokeh serve <FILENAME>.py

in your terminal, then going to localhost:5006/<FILENAME> in your web browser.

Problem 10. In this problem, we will add a Select widget to our map. This
Select widget will specify the color map we wish to use for the states.

In your Select widget, have options for "None", "Drunk %", and "Speeding %".
To assign the states the appropriate color, you may use the following code,
or you may adjust the functionality as you like.

change this first line if you want a different colormap

from bokeh.palettes import Reds9

COLORS.reverse()

no_colors = ['#FFFFFF']*len(state_names)

http://bokeh.pydata.org/en/latest/docs/user_guide/layout.html

109

Figure 9.4: Example of coloring states based on percentage of drunk driving fatali-
ties.

drunk_colors = [COLORS[i] for i in pd.qcut(state_percent_dr, len(COLORS)). -
codes]

speeding_colors = [COLORS[i] for i in pd.qcut(state_percent_sp, len(COLORS -
)).codes]

This code assumes you have lists named state_names, state_percent_dr, and
state_percent_sp from Problem 8.

Changing the values of the select box should result in something similar
to Figure 9.4.

