
Lab 1

MongoDB

Lab Objective: In this lab we introduce MongoDB, a non-relational database

management system that is well suited to handling expanding datasets and dynamic

storage. MongoDB communication is formatted almost entirely as JSON strings,

and includes many of the same properties. We will use some of the more common

MongoDB commands to investigate the architecture of a Mongo database and to

explore similarities and differences between different documents.

NoSQL Databases

Relational databases, such as SQL, were the most popular databases of the last

decade. These databases rely on the data having relational attributes, meaning

that each item in the database has the same attributes. We can visualize these

databases as tables. As time passed and needs changed, relational databases became

too structured for sets of data which involved unique attributes or were rapidly

changing and expanding. In databases of this kind, each item may not have the

same attributes. For example, in a database of wildlife, a salamander and an apple

both have attributes of size and color, but an apple does not need a gender attribute

and a salamander does not need a ripeness attribute. Relational databases store

items with the same attributes, but if we want to store a salamander and an apple in

the same database, we need a different type of database. Non-relational databases

are built to allow for these types of databases and have opened the door to massively

scalable databases that can store data in many forms and physical locations.

With these new databases, a new family of database managers arose to properly

interface with them. Instead of designing a new relational database to meet every

need, non-relational database managers were created that can adapt the different

items for specific scenarios. MongoDB is such a manager. Several other managers,

such as Cassandra, Redis, and Neo4j serve similar purposes. In this lab, we will

focus on MongoDB.

1

2 Lab 1. MongoDB

MongoDB

MongoDB is a document database. It is best suited for storing data that does not

have a fixed schema. Each MongoDB database is made up of collections of one or

more documents. These documents are a special type of JSON object called BSON

(Binary JSON). For the most part, BSON objects, JSON objects, and Python

dictionaries can be used in much the same matter. However, there are a few subtle

differences, such as with special characters. Trying to use a Python dictionary that

contains the ‘$’ character will often throw errors if it is used as though it were a

BSON object.

MongoDB, being a database server manager, needs to have a location for the

target database where it can store its data. Thus, we will need to run a database on

a dedicated terminal window. If you do not have the MongoDB service running on

your machine with a target database, please refer to the additional material section

of this lab and follow the instructions to run an isolated test database server on

your machine.

MongoDB has both a command line interface and Python bindings. This lab

will use the official supported Python bindings, Pymongo. To install, you may use

a package manager such as pip or download the binaries from the Pymongo web-

site. More information for installation may be found at http://api.mongodb.com/

python/current/installation.html.

After installation, Pymongo can be imported as with other standard libraries as

follows:

from pymongo import MongoClient

'''
Create an instance of a client connected to a database running

at the default host ip and port.

'''
mc = MongoClient()

The following example illustrates a good use for MongoDB: Suppose you are

running a general store. You have all sorts of inventory: food, clothing, tools, toys,

etc. There are some attributes that every item has: name, price, and producer.

Then there are attributes held by only some items: color, weight, gluten-freedom.

A SQL database would have to be full of mostly-blank rows, which is extremely

inefficient. More importantly, as you add new inventory, you will run across new

attributes. With SQL, you would have to restructure and rebuild the whole database

each time this happens. For MongoDB, this isn’t a problem because it doesn’t use

the same relation tables. Instead, each item is a JSON-like object (similar to a

Python dictionary), and thus can contain whatever attributes are relevant to the

specific item, without including any meaningless attributes.

Creating and Removing Collections and Documents

A MongoDB database stores collections, and a collection stores documents. Each

database can have several collections, each with its own documents. To visualize

this, imagine we have a set of paper documents. We put the documents into folders

(collections), and the folders into a filing cabinet (the database). When we need to

http://api.mongodb.com/python/current/installation.html
http://api.mongodb.com/python/current/installation.html

3

add another collection, we simply create a reference to it and put it in the database.

The new collection will not actually be created until we add documents to it, just

as we would not file away a folder into the filing cabinet with all the rest until we

have a document to be put into the folder. You can create a database and collection

as follows:

Create a new database

db = mc.db1

Create a new collection

col = db.collection1

Documents in MongoDB are represented as JSON-like objects, and so do not

adhere to a set schema. Each document can have its own fields.

col.insert({'name': 'Jack', 'age': 23})

col.insert({'name': 'Jack', 'age': 22, 'student': True, 'classes': ['Math', '←↩
Geography', 'English']})

x = col.insert({'name': 'Jill', 'age': 24, 'student': False})

We can check to see if the insert was successful by calling x.is_valid(x).

Problem 1. Create a MongoDB database called mydb and a collection in mydb

called rest. The file restaurants.json contains thousands of JSON objects,

each describing a single restaurant. Load these into rest. The json.loads

method should be helpful in doing this.

Querying for Documents

MongoDB uses a query by example paradigm for querying. This means that when

you query, you provide an example that the database uses to match with other

documents.

Querying methods return a Cursor object which iterates through the result set.

r = col.find({'name': 'Jack'})

This query will return all documents in the collection that have the value ‘Jack’

in the ‘name’ field. You can also use the count method to return the number of

documents that match your desired criteria.

Find how many 'students' are in the database

col.find({'student':True}).count()

We can update documents in a collection using update. Note that a simple update

acts like a replace.

col.update({'name': 'Jack','student': True})

4 Lab 1. MongoDB

Operator Description

$lt, $gt <, >

$lte ≤, ≥
$in, $nin Match any value in, not in an array, respectively

$or Logical OR

$and Logical AND

$not Logical negation

$nor Logical NOR (condition fails for all clauses)

$exists Match documents with specific field

$type Match documents with values of a specific type

$all Match arrays that contain all queried elements

Table 1.1: MongoDB query operators

Problem 2. The file mylans_bistro.json contains a json object describing one

additional restaurant. Insert it into the collection. Note that this entry con-

tains an additional key value not present in any other. A SQL database would

have to be entirely rebuilt to support this insertion, but with MongoDB this

is not an issue.

After this insert, use a query to list every restaurant that closes at eigh-

teen o’clock (Mylan’s Bistro should be one of these).

Query Operators

There are several special operators that we can use to define conditions in a query.

These query operators are used as keys and the queries are values.

f = list(col.find({'age': {'$lt': 24}, 'classes': {'$in': ['Art', 'English']}}))

Problem 3. Query your new collection to answer the following questions:

• How many of the restaurants are in Manhattan?

• How many restaurants have gotten a grade other than an “A” on a

health inspection?

• Which are the ten northernmost restaurants?

• Which restaurants have “grill” (case-insensitive) in their names?

Understand that MongoDB is not a relational database, therefore there is no

concept of a join. This also means that we cannot define database relationships

between documents. We can associate two documents by including a field that con-

tains the unique ObjectID of the other document. When we request one document,

5

we see it has an ObjectID, and then we run a second query to get the other docu-

ment. Any “relational” things must be handled by the developer. This means that

a document needs to contain all the information needed to find or retrieve it again.

Problem 4. Use update operators to perform the following tasks:

• Whenever a restaurant has “grill” in its name, replace “grill” with

“Magical Fire Table”.

• Increase all of the restaurant IDs by 1000.

• Delete the entries of every restaurant that has ever gotten a “C” health

inspection grade.

Additional Material

Installation of MongoDB

MongoDB runs as an isolated program with a path directed to its database storage.

To run a practice MongoDB server on your machine, complete the following steps:

Create Database Directory

To begin, navigate to an appropriate directory on your machine and create a folder

called data. Within that folder, create another folder called db. Make sure that you

have read, write, and execute permissions for both folders.

Retrieve Shell Files

To run a server on your machine, you will need the proper executable files from Mon-

goDB. The following instructions are individualized by operating system. For all of

them, download your binary files from https://www.mongodb.com/download-center?

jmp=nav#community.

1. For Linux/Mac:

Extract the necessary files from the downloaded package. In the terminal,

navigate into the bin directory of the extracted folder. You may then start a

Mongo server by running in a terminal: mongod --dbpath /pathtoyourdatafolder.

2. For Windows:

Go into your Downloads folder and run the Mongo .msi file. Follow the in-

stallation instructions. You may install the program at any location on your

machine, but do not forget where you have installed it. You may then start a

Mongo server by running in command prompt: C:\locationofmongoprogram\mongod.exe

–dbpath C:\pathtodatafolder\data\db.

https://www.mongodb.com/download-center?jmp=nav#community
https://www.mongodb.com/download-center?jmp=nav#community

6 Lab 1. MongoDB

MongoDB servers are set by default to run at address:port 127.0.0.1:27107 on

your machine.

You can also run Mongo commands through a mongo terminal shell. More in-

formation on this can be found at https://docs.mongodb.com/getting-started/

shell/introduction/.

https://docs.mongodb.com/getting-started/shell/introduction/
https://docs.mongodb.com/getting-started/shell/introduction/

	MongoDB

