
Lab 1

Parallel Computing with

ipyparallel

Lab Objective: Most computers today have multiple processors or multiple pro-

cessor cores which allow various processes to run simultaneously. To perform enor-

mous computations, ”supercomputers” or computer clusters that combine many pro-

cessors and a great deal of memory are commonly used. In this lab, we will explore

the basic principles of designing code that fully utilizes available resources for parallel

computing using the iPyParallel python package.

Why Parallel Computing?

When a single processor takes too long to perform a computationally intensive task,

there are two simple solutions: build a faster processor or use multiple processors

to work on the same task. Unfortunately, as processors have become smaller, it

has become increasingly di�cult to dissipate the heat they produce. This problem

is called the ”heat wall” and has presented a currently insurmountable barrier.

Therefore, the second solution has taken precedence and seen incredible growth in

the past two decades. Though there are many di↵erent architectures for parallel

computing, essentially, a ’supercomputer’ is made up of many normal computers

which share or use their own memory.

In the majority of circumstances, these processors communicate with each other

and coordinate their tasks with a message passing system. The details of this

message passing system, MPI, will be the topic of the next lab.

In this lab, we will become familiar with some of the basic ideas behind parallel

computing.

Serial Execution vs. Parallel Execution

Up to this point, all the programs you have written are executed one line at a

time, or in serial. The following exercise will help visualize the serial process of a

program.

3

4 Lab 1. Parallel Computing with ipyparallel

Problem 1. If you are working on a Linux computer, open a terminal and

execute the htop command. (If htop is not on your system, install it using

your default package manager). When opening this program, your terminal

should see an interface similar to Figure 1.1. The numbered bars at the top

represent each of the cores of your processor and the workload on each of

these cores.

Now, run the following python code with your terminal running htop still

visible. The sole purpose of the following code is to create a computationally

intensive function that runs for about 15 seconds.

import numpy as np

for i in xrange(10000):

np.random.random(100000)

You should have seen one of the cores get maxed out at 100%. It is

also possible that you saw the load-carrying core switch midway through the

execution of the file. This is evidence one indicator that our script is being

executed in serial – one line at a time, one core at a time.

Figure 1.1: An example of htop with a computationally intense python script run-

ning.

As you saw in the exercise above, only one of the cores was carrying the load at

a time (if it was more than one, your computer has default code to try distributing

some of the process). This means that we are only using a fraction of the computer’s

resources. When working on a personal computer, this would often be to your

5

benefit because dividing jobs among multiple cores is part of what makes smooth

multitasking possible. However, in the event you wish to devote all the computer’s

resources to executing a certain program, we can employ the help of the ipyparallel

module. In theory, you can make your code run N times faster when executing in

parallel where N is the number of cores you have access to.

The ipyparallel Module

We will begin our discussion on parallel computing by learning about the ipyparallel

module. Since Python is a relatively slow scripting language, and since the main

purpose of parallel computing is to speed up run time, most parallel computing

in application is done in a language other than Python. Though this may not be

the fastest parallel computing framework available, it is still fairly easy to take

advantage of all the cores available to speed up run time and to test parallel code

logic. This is done by specifying what happens on each core, which is core principle

of parallel computing.

Installation and Initialization of ipyparallel

If you have not already installed ipyparallel, you may do so using the conda package

manager.

$ conda update conda

$ conda update anaconda

$ conda install ipyparallel

With ipyparallel installed, we can now initialize an IPython cluster that is com-

prised of iPyParallel engines. By default, an engine will be started on each of your

machines processor cores and a controller will be started to communicate with each

of the engines. The controller can be accessed through the Client object, which has

two classes, DirectView, and LoadBalancedView. We will discuss these classes in further

detail later.

We won’t go too much into the architecture of the IPython cluster, but if you

are interested in learning more, visit https://ipyparallel.readthedocs.io/en/

latest/intro.html#architecture-overview.

Now to initialize an IPython cluster, run the following code:

$ ipcluster start

If you would like to specify the number of engines to initialize, run the following:

Start a cluster with 8 engines.

$ ipcluster start --n 8

If you choose to explicitly specify the number of engines, it is not optimal to ini-

tialize more engines than you have processors. Doing so would require multitasking

on each processor instead of having each processor dedicated to one task.

If you are more accustomed to using Jupyter Notebooks, you may have noticed

the “Clusters” tab. You can start an IPython cluster in this tab after enabling the

ipcluster notebook extension.

https://ipyparallel.readthedocs.io/en/latest/intro.html#architecture-overview
https://ipyparallel.readthedocs.io/en/latest/intro.html#architecture-overview

6 Lab 1. Parallel Computing with ipyparallel

$ ipcluster nbextension enable

Problem 2. Initialize an IPython cluster with an engine for each processor.

As you did in the previous problem, open htop. Run the following code and

examine what happens in htop.

from ipyparallel import Client

client = Client()

dview = client[:]

dview.execute("""

import numpy as np

for i in xrange(10000):

np.random.random(100000)

""")

The output of htop should appear similar to Figure 1.2. Notice that all

of the processors are being utilized to run the script.

Figure 1.2: An example of htop with a computationally intense python script running

in parallel.

This result ensures that our IPython cluster is successfully executing on all

engines. We can now dive into the details of what syntax we can use to utilize the

cluster.

7

Syntax for ipyparallel

The basic framework for ipyparallel revolves around a DirectView or a LoadBalancedView

. A DirectView is the object through which we can communicate with each of the

engines individually and gives us control over which variables are pushed to each

engine and what functions are performed. A LoadBalancedView takes the commands

that are being executed and does its best to distribute the load evenly across all

engines.

For the purposes of learning how each engine works, we will focus on the

DirectView in this lab. To initialize a DirectView, run the following code:

>>> from ipyparallel import Client

>>> client = Client()

Verify the dview has been generated correctly.

If you had four processors, the output would be as follows.

>>> client.ids

[0, 1, 2, 3]

Initialize DirectView

>>> dview = client[:]

Variables on Di↵erent Engines

When using multiple processors, you can imagine each engine running its own

iPython terminal with its own namespace. This implies that any variable we want

to use must be initialized on each engine. There are a few di↵erent ways to do this.

To share the variable 'a' across all engines

>>> a = 10

>>> b = 5

>>> dview["a"] = a

>>> dview["b"] = b

Or alternatively,

>>> dview.push({'a':a, 'b':b})

To ensure the variables are on engine 0

>>> client[0]['a']
10

>>> client[0]['b']
5

The code you just ran is the easiest way to get individual values on each of the

engines. We will discuss a couple of other methods further on. We will now move

on to simple computations in parallel.

The apply() and apply sync() Methods

To execute functions on each of the engines, we can use the apply() or the apply_sync

() methods which are di↵erentiated by the presence of blocking. If a function is

8 Lab 1. Parallel Computing with ipyparallel

executed with blocking, you will be unable to send any other commands to the

engine until the function has finished. If a function is run without blocking, you

can still execute additional commands on that engine while the function is still

computing its result. Though seemingly unimportant, blocking is an important

principle if your computing processors or nodes are communicating one with another

during a parallel process. The apply() methods executes without blocking and the

apply_sync() method executes with blocking. The following code box describes how

this is done:

>>> def add():

... return a+b

Runs add() without blocking (in background)

>>> result = dview.apply(add)

Checks to see if the output is ready

>>> result.ready()

True

Retrieves output

>>> result.get()

[15, 15, 15, 15]

Runs add() with blocking

>>> dview.apply_sync(add)

[15, 15, 15, 15]

You can also pass variables into your function as part of call to apply_sync().

Consider the following example:

>>> def add(x, y):

... return x+y

>>> dview.apply_sync(add, 3, 6)

[9, 9, 9, 9]

To this point, the examples of what you can do with parallel computing may

not seem too interesting since each engine is producing the same result. There

are, however, circumstances in which the engines return di↵erent results. In these

situations, parallel computing can drastically speed up the result.

A function that draws four samples from a standard normal distribution

>>> def draw():

... import numpy as np

... a = np.random.randn(4)

... return a

Runs draw() on all engines simultaneously and returns the results

>>> dview.apply_sync(draw)

[array([-0.7277754 , -0.39273127, 0.05636817, -0.26855806]),

array([0.46569263, 0.63911368, -0.02812979, 1.63223456]),

array([0.92278649, -1.42868485, 0.32370856, -0.2386319]),

array([-0.93787564, 1.16286507, -0.0388443 , -1.10649599])]

9

Note

In the code above, notice that NumPy is imported within the function. Since

each engine has its own namespace, we must ensure that the desired modules

are imported in each engine. There is more than one way to do this.

For example, the following command imports NumPy to all engines simul-

taneously.

>>> dview.execute("import numpy as np")

Problem 3. Using apply_sync(), draw n samples from a standard normal

distribution where n is default to 1,000,000. Print the mean, max, and min

for draws on each individual engine. For example if you have four engines

running, your output should look like:

means = [0.0031776784, -0.0058112042, 0.0012574772, -0.0059655951]

maxs = [4.0388107, 4.3664958, 4.2060184, 4.3391623]

mins = [-4.1508589, -4.3848019, -4.1313324, -4.2826519]

In theory, using parallel computing for this problem should be approximately N

times faster where N is the number of engines you are using. In practice, however,

the scaling is not quite linear. This is due in part to the controller running on one of

the engines, your computers standard processes still running, and the overhead of

communication from the controller with the engines. We test this in the following

problem.

Problem 4. Using the function you wrote and passed into apply_sync() in

the previous problem, compare the time it takes to run the function with

parallel computing to the time it takes to run the function serially. That is,

time how long it takes to run the function on all of your machine’s engines

simultaneously using apply_sync, and how long it takes to run the function in

a for loop n times, where n is the number of engines on your machine. Print

the results for 1,000,000, 5,000,000, 10,000,000, and 15,000,000 samples. You

should notice an increase in e�ciency as the problem size increases.

Problem 5. Now let’s do a problem that is a bit more computationally

intensive. Define the random variable X to be the maximum out of N

draws from the standard normal distribution. For example, one draw from

X when N = 10 would be the maximum out of 10 draws from the normal

10 Lab 1. Parallel Computing with ipyparallel

distribution. Write a function that accepts an integer N , takes 500,000 draws

from this distribution (X), and plots the draws in a histogram. The resulting

histogram will approximate the p.d.f. of X.

Write your function in such a way that each engine will carry an equal

load. Also write your function in such a way that it is flexible to the number

of engines that are running. HINT: Remember that you can get a list of all

available engines using clients.ids.

The scatter() and gather() Methods

There are many situations where we would want to spread a dataset across all the

available engines. This way, we can have a function work on each of these portions

of the dataset. In its simplest form, this is the basis of the MapReduce program

which will address in more detail in a future lab.

We will first introduce an example of scatter() and explain the proper usage in

more detail throughout the example.

Initialize the dataset to scatter

>>> a = np.arange(10)

Scatter the data. The pieces of the data will be

named "a_partition" on each of the engines.

>>> dview.scatter("a_partition", a)

Verify that the data has been successfully scattered.

Notice that the data has been scattered as

equally as possible.

>>> client[0]["a_partition"]

array([0, 1, 2])

>>> client[1]["a_partition"]

array([3, 4, 5])

>>> client[2]["a_partition"]

array([6, 7])

>>> client[3]["a_partition"]

array([8, 9])

Now that the a_partition variable has been initialized on each engine, we can

now execute functions that depend on this variable. Consider the following simple

example using the execute() method.

Pass a string with the Python code that we wish to run

on each engine. This code will simply sum the entries

in "a_partition"

>>> dview.execute("""

... b = a_partition.sum()

... """)

11

Note

If you are using a Jupyter Notebook, there is a built in magic function that

is analagous to dview.execute(). If you put the %%px magic at the beginning of

a cell of code, that cell of code will be executed on each engine. This tool is

very useful for designing and debugging parallel algorithms.

We have now computed the sum of each of these pieces of the data and stored

the result in the variable b. To gain access to these results, we use the gather()

method.

Gather all the 'b' values into a list.

>>> b_list = dview.gather("b", block=True)

[3, 12, 13, 17]

>>> sum(b_list)

45

To summarize, this example has taken a piece of data, scattered it to all available

engines, performed a computation on each of these pieces of data, then gathered

the results back to the controller.

Applications

Parallel computing, when used correctly, is one of the best ways to speed up the run

time of an algorithm. As a result, it is very commonly used today and has many

applications, such as the following:

• Graphic rendering

• Facial recognition with large databases

• Numerical integration

• Calculating Discrete Fourier Transforms

• Simulation of various natural processes (weather, genetics, etc.)

• Natural language processing

In fact, there are many problems that are only possible to solve through parallel

computing because solving them serially would take too long. In these types of

problems, even the parallel solution could take years. Some brute-force algorithms,

like those used to crack well designed encryptions, are examples of this type of

problem.

The problems mentioned above are well suited to parallel computing because

they can be manipulated in a way such that running them on multiple processors

results in a significant run time improvement. Manipulating an algorithm to be run

with parallel computing is called parallelizing the algorithm. When an problem only

requires very minor manipulations to parallelize, it is often called embarrassingly

12 Lab 1. Parallel Computing with ipyparallel

parallel. Typically, an algorithm is embarrassingly parallel when there is little to

no dependency between results. Algorithms that do not meet this criteria can still

technically be parallelized, but there is not a significant enough improvement in

run time to make this worthwhile. For example, calculating the Fibonacci sequence

using the usual formula, F(n) = F(n � 1) + F(n � 2), is poorly suited to parallel

computing because each element of the sequence is dependent on the previous two

elements.

x1 x2 x3 x4 x5

y

x

y = f(x)

h

Figure 1.3: A depiction of the trapezoidal rule with uniform partitioning.

Problem 6. Consider the problem of numerical integration using the trape-

zoidal rule, depicted in Figure ??. Recall the following formula for estimating

an integral using the trapezoidal rule,

Z b

a
f(x)dx ⇡ h

2

NX

k=1

(f(xk+1) + f(xk)),

where xk is the kth point, and h is the distance between any two points (note

they are evenly spaced).

Note that estimation of the area of each interval is independent of all

other intervals. As a result, this problem is considered to be embarrassingly

parallel.

Write a function called parallel_trapezoidal_rule() that accepts a function

handle to integrate, bounds of integration, and the number of points to use for

13

the approximation. Utilize what you have learned about parallel computing

to parallelize the trapezoidal rule in order to estimate the integral of f .

That is, evenly divide the points among all available processors and run the

trapezoidal rule on each portion simultaneously. The sum of the results of all

the processors will be the estimation of the integral over the entire interval

of integration. Return this sum.

	Preface
	I Labs
	Parallel Computing with ipyparallel

