
Lab 1

Numerical Methods for
Initial Value Problems;
Harmonic Oscillators

Lab Objective: Implement several basic numerical methods for initial value

problems (IVPs), and use them to study harmonic oscillators.

Methods for Initial Value Problems

Consider the initial value problem

y′ = f(x, y), a ≤ x ≤ b,
y(a) = y0,

(1.1)

where f is a continuous function. A solution of (1.1) is a continuously differentiable

function y(x) that satisfies the equation y′ = f(x, y) on the interval [a, b] and for

which y(a) = y0. In this lab we will focus on numerical methods for approximating

y(x), and sidestep the important mathematical problem of verifying that (1.1) has

a unique solution.

For many IVPs it is impossible to find a closed-form, analytic expression for the

solution. When there is a closed-form expression for the solution, it may not be

very useful. In both cases, numerical methods must be relied on to understand the

solutions of (1.1).

As an example, consider the initial value problem

y′(x) = sin y(x),

y(0) = y0.
(1.2)

The solution y(x) is defined implicitly by

x = ln

∣∣∣∣cos y0 + cot y0
csc y + cot y

∣∣∣∣ .
This analytic expression does not provide much intuition, so we turn to a combi-

nation of qualitative and numerical methods. Since sin(nπ) = 0, this differential

equation has constant solutions yn(x) = nπ, n ∈ N. We can also use an IVP solver

to numerically approximate solutions for several other initial values. After plotting

these solutions (see Figure 1.1), it becomes obvious how solutions of (1.2) behave

in general.
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Figure 1.1: Several solutions of (1.2), using Numpy’s IVP solver dopri5.

Numerical Methods

Numerical methods for solving initial value problems require us to approximate the

solution on a set of grid points a = x0 < x1 < . . . < xn = b in our interval. For

simplicity we will assume that each of the n subintervals [xi−1, xi] has equal length

h = (b− a)/n. h is called the step size. We then look for values y0, y1, . . . , yn that

approximate the solution at the grid points. For each i, Taylor’s theorem says that

y(xi+1) = y(xi) + hy′(xi) +
h2

2
y′′(ξi) for some ξi ∈ [xi, xi+1].

The quantity h2

2 y
′′(ξi) is negligible for small h, and thus

y(xi+1) ≈ y(xi) + hy′(xi),

≈ y(xi) + hf(xi, y(xi)).

This approximation leads to a method called Euler’s method: Letting y0 = y(a),

yi+1 is given by yi+1 = yi + hf(xi, yi) for i = 0, 1, . . . , n − 1. Euler’s method is a

first order method, with error O(h1).

A similar application of Taylor’s theorem shows that

y(xi) = y(xi+1)− hy′(xi+1) +
h2

2
y′′(ξi) for some ξi ∈ [xi, xi+1];
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thus for small h

y(xi+1) ≈ y(xi) + hf(xi+1, y(xi+1)).

This approximation leads to another first order method called the backwards Euler

method: Letting y0 = y(a), for i = 0, . . . , n− 1 we solve yi = yi+1 − hf(xi+1, yi+1)

for yi+1.

Note that for both the Euler and backwards Euler methods, only yi, f, and other

points in the interval [xi, xi+1] are needed to find yi+1. Because of this, they are

called one-step methods.

Euler’s method is an explicit method. The backwards Euler method is an implicit

method since an equation must be solved at each step to find yi+1. Explicit and

implicit methods each have advantages and disadvantages. While implicit methods

require an equation to be solved at each time step, they often have better stability

properties than explicit methods.
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Figure 1.2: The solution of (1.3), alongside several approximations using Euler’s

method.

Problem 1. The solution of

y′ = y − 2x+ 4, 0 ≤ x ≤ 2,

y(0) = 0,
(1.3)
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is given by y(x) = −2 + 2x + 2ex. Use Euler’s method to numerically ap-

proximate the solution with step sizes h = 0.4, 0.2, and 0.1. Check that your

results match Figure 1.2.

So how do we come up with numerical methods with higher order accuracy?

Using Taylor’s theorem (as we did for Euler’s method) to create higher-order one-

step methods would lead to numerically approximating derivatives of f(t, y) - not

very desirable.

Let us look for a second order method of the form yi+1 = yi + af(xi + b, yi + c).

By expanding af(x+ b, y+ c) with Taylor’s theorem and matching constants in the

equation

f(x, y) +
h

2
f ′(x, y) = f(x, y) +

h

2

∂f

∂x
(x, y) +

h

2

∂f

∂y
(x, y) · f(x, y),

we find that a = h, b = h/2, and c = h/2. This method is called the Midpoint

method. IVP solvers with this general form are called Runge-Kutta methods.

There are many Runge-Kutta methods with varying orders of accuracy. Methods

of order four or higher are most commonly used. A fourth order Runge-Kutta

method iterates as follows:

K1 = f(xi, yi),

K2 = f(xi +
h

2
, yi +

h

2
K1),

K3 = f(xi +
h

2
, yi +

h

2
K2),

K4 = f(xi+1, yi + hK3),

yi+1 = yi +
h

6
(K1 + 2K2 + 2K3 +K4).

Notice that these methods are doing a type of quadrature where we are sampling

the function at different points and then performing computation using the samples

and some inherent weights. For example, consider a differential equation

y′ = f(t).

Since the function f has no y dependence, this is a simple integration problem,

and these IVP methods become well known quadrature methods. In this case,

Euler’s method corresponds to the left hand sum, and backward Euler’s method

corresponds to the right hand sum. The modified Euler and midpoint methods are

second order IVP methods that correspond to the trapezoidal and midpoint rules

for integration, respectively. RK4 corresponds to Simpson’s rule for integration.

Advantages of Higher-Order Methods

Higher-order methods are usually much more efficient. One way to measure this

efficiency is to determine how many times the right hand side of the initial value
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problem must be evaluated to provide a desired accuracy. As an example, consider

the initial value problem

y′ = y cos(x), x ∈ [0, 8],

y(0) = 1.
(1.4)

Figure 1.3 illustrates the comparative efficiency of the Euler, Midpoint, and RK4

methods. The figure also demonstrates another point: since the lower order methods

require more floating point operations, floating point error limits the highest possible

accuracy that can be achieved with lower order methods.
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Figure 1.3: Here we graph the relative error in computing the solution of (1.4) at

x = 8, versus the number of times the right side of (1.4) must be evaluated.

Let t∗ be an approximation of some value t. The relative error of the approxi-

mation is
|t∗ − t|
|t|

.

Note that the relative error is simply the absolute error |t∗ − t| normalized by the

size of t. A method with order p has error of the form

E(h) = Chp.

This means that the graph of log(E) versus log(h) has slope p. The relative error

of a numerical method can be approximated and graphed to verify that pth order
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convergence is occurring. For example, consider the IVP

y′ = y − 2x+ 4, 0 ≤ x ≤ 2,

y(0) = 0.
(1.5)

The following code solves the initial value problem on several grids using the Euler

method, approximates the relative error in computing y(2) and creates a plot (see

Figure 1.4).

import matplotlib.pyplot as plt

a, b, ya = 0., 2., 0.

def ode_f(x,y):

return np.array([y -2*x + 4.])

best_grid = 320 # number of subintervals in most refined grid

# Requires an implementation of the euler method

best_val = euler(ode_f,ya,a,b,best_grid)[-1]

smaller_grids = [10,20,40,80] # number of subintervals in smaller grids

h = [2./N for N in smaller_grids]

Euler_sol = [euler(ode_f,ya,a,b,N)[-1] for N in smaller_grids]

Euler_error = [abs(( val - best_val)/best_val ) for val in Euler_sol]

plt.loglog(h, Euler_error, '-b', label="Euler method" , linewidth=2.)

plt.show()

Problem 2. Consider the IVP (1.5). Use the Midpoint method and the

fourth order Runge-Kutta method (RK4) to approximate the value of the

solution at x = 2, with a step size of h = 0.2, 0.1, 0.05, 0.025, and 0.0125.

Create a log-log plot of the relative error of each approximation using the

loglog function in matplotlib (see Figure 1.4).

Harmonic Oscillators and Resonance

Harmonic oscillators show up often in classical mechanics. A few examples in-

clude the pendulum (with small displacement), spring-mass systems, and the flow

of electric current through various types of circuits. A harmonic oscillator can be

described by an initial value problem of the form

my′′ + γy′ + ky = f(t),

y(0) = y0, y′(0) = y′0.

We will describe the construction of this mathematical model in the context of a

spring-mass system.

Suppose an object with mass m is placed at the end of a horizontal spring. The

natural position of the object is called the equilibrium position for the system. If
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Figure 1.4: The solution of y′ − y = −2x + 4, y(0) = 0, is y(x) = −2 + 2x + 2ex.

This loglog plot shows the relative error in numerically approximating y(2), using

step sizes h = 0.2, 0.1, 0.05, 0.025, and 0.0125. The slope of each line demonstrates

the first, second, and fourth order convergence of the Euler, Midpoint, and RK4

methods, respectively.

the object is displaced from its equilibrium position and given an initial velocity, it

will act like a harmonic oscillator. The principal property of a harmonic oscillator

y(t) is that once y leaves its equilibrium value y = 0, it experiences a restoring force

Fr = −ky. This force pushes y back towards its equilibrium. Hooke’s law says that

this holds true for a spring-mass system if the displacement y is small.

Often there is an additional damping force Fd, often due to some type of friction.

This force is usually proportional to the y′ (the velocity), is always in the opposite

direction of y′, and represents energy leaving the system. (You can think of it as

drag.) Thus we have Fd = −γy′, where γ ≥ 0 is constant. We may also need to

consider an additional external force f(t), or a driving force, that is interacting with

our spring-mass system.

By using Newton’s law we obtain

ma = F = Fr + Fd + f(t),

my′′ = −ky − γy′ + f(t).
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Simple harmonic oscillators

A simple harmonic oscillator is a harmonic oscillator that is not damped (γ = 0),

and is free (f = 0) rather than forced (f 6= 0). A simple harmonic oscillator can

described by the IVP

my′′ + ky = 0,

y(0) = y0, y′(0) = y′0.

The solution of this IVP is y = c1 cos(ω0t) + c2 sin(ω0t) where ω0 =
√
k/m is the

natural frequency of the oscillator and c1 and c2 are determined by applying the

initial conditions. This in turn can be written in the form

y = A sin(ω0t+ δ).

To solve this IVP using the fourth order Runge Kutta method (RK4), we need

to write this system in the form

z′(t) = f(t, z(t))

We can do this by letting z1 = y, z2 = y′. Then we have

z′ =

[
z1
z2

]′
=

[
z2
−k
m z1

]
= f(z).

Problem 3. Use the RK4 method to solve for the simple harmonic oscillator

satisfying

my′′ + ky = 0, 0 ≤ t ≤ 20,

y(0) = 2, y′(0) = −1,
(1.6)

for m = 1 and k = 1. Note that in your implementation of RK4, the

constants K1,K2,K3, and K4 become vectors with n entries, where n is the

number of equations in the first-order system.

Plot your numerical approximation of y(t). Compare this with its nu-

merical approximation when m = 3 and k = 1. Consider: Why does the

difference in solutions make sense physically?

Damped free harmonic oscillators

We now consider damped free harmonic oscillators. These systems are described

by the differential equation

my′′(t) + γy′(t) + ky(t) = 0.

For fixed values of m and k, it is interesting to study the effect of the damping

coefficient γ.
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Figure 1.5: Solutions of (1.6) for several values of m.

The roots of the characteristic equation are

r1, r2 =
−γ ±

√
γ2 − 4km

2m
.

Note that the real parts of r1 and r2 are always negative, and so any solution y(t)

will decay over time due to a dissipation of the system energy. There are several

cases to consider for the general solution of this equation:

1. If γ2 > 4km, then the general solution is y(t) = c1e
r1t + c2e

r2t. Here the

system is said to be overdamped. Notice from the general solution that there

is no oscillation in this case.

2. If γ2 = 4km, then the general solution is y(t) = c1e
γt/2m + c2te

γt/2m. Here

the system is said to be critically damped.

3. If γ2 < 4km, then the general solution is

y(t) = e−γt/2m [c1 cos(µt) + c2 sin(µt)] ,

= Re−γt/2m sin(µt+ δ),

where R and δ are fixed, and µ =
√

4km− γ2/2m. This system does oscillate.
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Problem 4. Use the RK4 method to solve for the damped free harmonic

oscillator satisfying

y′′ + γy′ + y = 0, 0 ≤ t ≤ 20,

y(0) = 1, y′(0) = −1.

For γ = 1/2, and γ = 1, simultaneously plot your numerical approximations

of y. Find y(20) accurate to four significant digits, by checking that the

relative error is less than 5× 10−5. How many subintervals do you need?

Forced harmonic oscillators without damping

Let’s look at the systems described by the differential equation

my′′(t) + ky(t) = F (t). (1.7)

In many instances the external force F (t) is periodic, so let us assume that F (t) =

F0 cos(ωt). If ω0 =
√
k/m 6= ω, then the general solution of 1.7 is given by

y(t) = c1 cos(ω0t) + c2 sin(ω0t) +
F0

m(ω2
0 − ω2)

cos(ωt).

If ω0 = ω, then the general solution is

y(t) = c1 cos(ω0t) + c2 sin(ω0t) +
F0

2mω0
t sin(ω0t).

In the case that ω0 = ω, the solution contains a term that grows arbitrarily large

as t→∞. If we included damping then the solution would be bounded, but would

still be large for small γ and ω close to ω0.

Consider a physical spring-mass system. Equation 1.7 holds only for small os-

cillations (this is where Hooke’s law is applicable). For larger oscillations, this

equation will not hold. However, the fact that the equation predicts large oscilla-

tions suggests the spring-mass system could fall apart as a result of the external

force. Mechanical resonance has been known to cause failure of bridges, buildings,

and airplanes.

Problem 5. Use the RK4 method to solve for the damped and forced har-

monic oscillator satisfying

2y′′ + γy′ + 2y = 2 cos(ωt), 0 ≤ t ≤ 40,

y(0) = 2, y′(0) = −1.
(1.8)

For the following values of γ and ω, plot your numerical approximations

of y and find y(40) accurate to four significant digits: (γ, ω) = (0.5, 1.5),
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(0.1, 1.1), and (0, 1).
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Figure 1.6: Solutions of (1.8) for several values of ω and γ.
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