
Lab 2

Weight Change and
Predator-Prey Models

Lab Objective: We use IVP methods to study two dynamical systems. The first

system is a weight change model based on thermodynamics and kinematics. The

second model looks at the relationship between a predator and its prey.

A weight change model

The main idea behind weight change is simple. If a person’s energy intake is more

than their energy expended, then they gain weight. If their intake is less, then they

lose weight. Let the energy balance EB be the difference between energy intake EI

and energy expenditure EE, so that

EB = EI − EE. (2.1)

When the energy intake is greater than the energy expended, the balance is positive

and weight is gained. Similarly, the balance is negative and weight is lost if the

energy intake is less than the energy expended.

Body weight at time t is the sum of the weight of fat and lean tissue; that is,

BW (t) = F (t) + L(t). These quantities can be described by the compartmental

model

ρF
dF (t)

dt
= (1− p(t))EB(t),

ρL
dL(t)

dt
= p(t)EB(t),

(2.2)

where p(t) and 1−p(t) represent the proportion of the energy balance (EB(t)) that

results in a change in the quantity of lean or fatty tissue, respectively. Constants

ρL and ρF represent the energy density of lean and fatty tissue (about 1800 and

9400 kcal/kg).

Next we need to find expressions for p(t) and EB(t) in terms of L and F (the de-

pendent variables), PAL and EI (possibly varying parameters), and other constant

parameters.
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The proportion p(t) will vary with F and L; from Forbes’ Law 1 we have that

dF

dL
=

F

10.4
. (2.3)

Hence,

F

10.4
=
dF

dL
=
dF/dt

dL/dt
=

(1− p(t))EB(t)

ρF
p(t)EB(t)

ρL

=
ρL
ρF

1− p(t)
p(t)

.

Solving for p(t) gives Forbes’ equation

p(t) =
C

C + F (t)
where C = 10.4

ρL
ρF
. (2.4)

We will use two expressions for energy expenditure (EE). First, we have the

formula

EE = PAL×RMR, (2.5)

where PAL is your physical activity level and RMR your resting metabolic rate.

Your resting metabolic rate can be determined by using the Mifflin equation. This

equation is an estimate based on a population study and is widely used in the

literature. It takes into account your gender, age (A) in years, and height (H) in

meters:

RMR =

{
9.99W + 625H + 5A+ 5 if male

9.99W + 625H + 5A− 161 if female.
(2.6)

Your physical activity level can be determined by using the table below.

1.40–1.69 People who are sedentary and do not exercise regularly, spend

most of their time sitting, standing, with little body displacement

1.70–1.99 People who are active, with frequent body displacement throughout

the day or who exercise frequently

2.00–2.40 People who engage regularly in strenuous work or exercise for

several hours each day

Table 2.1: This is a rough guide for physical activity level (PAL).

The second expression for energy expenditure comes from decomposing more

precisely the different ways that energy is expended:

EE = δBW︸ ︷︷ ︸
physical

activity

+βtefEI︸ ︷︷ ︸
thermic

effect of

eating

+βatEI + γFF + γLL+ ηF
dF

dt
+ ηL

dL

dt
+K︸ ︷︷ ︸

resting metabolic rate (RMR)

, (2.7)

1Lean body mass-body fat interrelationships in humans, Forbes, G.B.; Nutrition reviews, pgs
225-231, 1987.
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where γF = 22 kcal/kg/d, γL = 3.2 kcal/kg/d, ηF = 180 kcal/kg, and ηL = 230

kcal/kg 2 3. Further, we let βtef = 0.10 and βat = 0.14 denote the coefficients for the

thermic effect of feeding and adaptive thermogenesis, respectively. The parameter δ

is the coefficient representing the amount of energy expended from physical activity

per kilogram of body mass. Notice that γL is significantly larger than γF . This

means that lean tissue metabolizes energy much faster than fatty tissue. As a result,

there are instances where one may want to increase their lean body mass through

resistance training so that they are better able to support a higher caloric intake

without significant weight gain. Finally, we remark that the constant K can be

tuned to an individual’s body type directly through RMR and fat measurement,

and is assumed to remain constant over time.

Thus, since the input EI is assumed to be known, we can use (2.7) and (2.4) to

write (2.2) in terms of F and L, thus allowing us to close the system of ordinary

differential equations (ODEs).

Specifically, we have

RMR(t) =
EE

PAL
= K + γFF (t) + γLL(t) + ηF

dF

dt
+ ηL

dL

dt
+ βatEI

1

PAL
(EE − EI + EI) = K + γFF (t) + γLL(t)

+

(
ηF
ρF

(1− p(t)) +
ηL
ρL
p(t)

)
EB(t) + βatEI.(

1

PAL
− βat

)
EI = K + γFF (t) + γLL(t)

+

(
ηF
ρF

(1− p(t)) +
ηL
ρL
p(t) +

1

PAL

)
EB(t).

Solving for EB(t) in the last equation yields

EB(t) =

(
1

PAL
− βat

)
EI −K − γFF (t)− γLL(t)

ηF
ρF

(1− p(t)) +
ηL
ρL
p(t) +

1

PAL

. (2.8)

In equilibrium (EB = 0), this gives us

K =

(
1

PAL
− βat

)
EI − γFF − γLL. (2.9)

Thus, for a subject who has maintained the same weight for a while, one can

determine K by using (2.9), if they know their average caloric intake and amount

of fat (assume L = BW − F ). The function weight_odesystem in the following code

implements (2.2).

from math import log

# Fixed Constants:

2Modeling weight-loss maintenance to help prevent body weight regain; Hall, K.D. and Jordan,
P.N.; The American journal of clinical nutrition, pg 1495, 2008

3Quantification of the effect of energy imbalance on bodyweight ; Hall, K.D. et al.; The Lancet,
pgs 826-837, 2011
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rho_F = 9400.

rho_L = 1800.

gamma_F = 3.2

gamma_L = 22.

eta_F = 180.

eta_L = 230.

C = 10.4 # Forbes constant

beta_AT = 0.14 # Adaptive Thermogenesis

beta_TEF = 0.1 # Thermic Effect of Feeding

K = 0

def forbes(F):

C1 = C * rho_L / rho_F

return C1 / (C1 + F)

def energy_balance(F, L, EI, PAL):

p = forbes(F)

a1 = (1. / PAL - beta_AT) * EI - K - gamma_F * F - gamma_L * L

a2 = (1 - p) * eta_F / rho_F + p * eta_L / rho_L + 1. / PAL

return a1 / a2

def weight_odesystem(t, y, EI, PAL):

F, L = y[0], y[1]

p, EB = forbes(F), energy_balance(F, L, EI, PAL)

return np.array([(1 - p) * EB / rho_F , p * EB / rho_L])

def fat_mass(BW, age, H, sex):

BMI = BW / H**2.

if sex == 'male':

return BW * (-103.91 + 37.31 * log(BMI) + 0.14 * age) / 100

else:

return BW * (-102.01 + 39.96 * log(BMI) + 0.14 * age) / 100

Problem 1. Consider the initial value problem

ρF
dF (t)

dt
= (1− p(t))EB(t),

ρL
dL(t)

dt
= p(t)EB(t),

F (0) = F0,

L(0) = L0.

(2.10)

The ode is given above by the function weight_odesystem. To solve this IVP

for a specific individual we need initial conditions F0 and L0. The function

fat_mass given earlier calculates F0 based on an individual’s body weight (kg),

age, height (meters), and gender. L0 is then given by L0 = BW − F0.

Suppose a 38 year old female, standing 5’8” and weighing 160 lbs, re-

duces her intake from 2143 to 2025 calories/day, and increases her physical

activity from little to no exercise (PAL=1.4) to exercising to 2-3 days per

week (PAL=1.5). Using RK4, find and graph the solution curve for this

single-stage weightloss intervention over a period of 5 years.
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Figure 2.1: The solution of the weight change model for problem 1.

Note the provided code requires quantities in metric units (kilograms,

meters, days) while our graph is converted to units of pounds and days.

Problem 2. Modify the preceding problem to handle a two stage weightloss

intervention: Suppose for the first 16 weeks intake is reduced from 2143 to

1600 calories/day and physical activity is increased from little to no exercise

(PAL=1.4) to an hour of exercise 5 days per week (PAL=1.7). The following

16 weeks intake is increased from 1600 to 2025 calories/day, and exercise is

limited to only 2-3 days per week (PAL=1.5).

Find and graph the solution curve over a period of 32 weeks.
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Two Predator-Prey Models

The Lotka-Volterra model

The Lotka-Volterra predator-prey model is a well-known system of ODEs given by

du

dt
= au− buv,

dv

dt
= −cv + duv.

u and v represent the prey and predator populations, respectively. Here a represents

the rate of growth of the prey, and bu the amount of prey being eaten. Similarly,

c represents the rate of natural predator death, and du the growth of the predator

population due to the quantity of prey eaten.

Let us look at the dynamics of this system. First we note that there are exactly

two equilibria (fixed points): either (u, v) = (0, 0) corresponding to the extinction

of both species, or (u, v) = ( cd ,
a
b ). Furthermore, from the ODEs we can see that if

v = 0 (there is an absence of any predators) then the population of prey will grow

exponentially.

To get a better idea of the dynamics of this system we will graph its phase

portrait. We begin by nondimensionalizing the system to reduce the number of

parameters: Let U = d
cu, V = b

av, t̄ = at, and α = d
a . Substituting into the original

ODEs we obtain the nondimensional system of equations

dU

dt̄
= U(1− V ),

dV

dt̄
= αV (U − 1).

(2.11)

In the following code we plot the phase portrait of (2.11) along with a example

trajectory, see Figures 2.2 and 2.3. To plot the direction field for the equations we

use numpy’s meshgrid function and matplotlib’s quiver function.

from scipy.integrate import odeint

a, b = 0., 13. # (Nondimensional) Time interval for one '←↩
period'

alpha = 1. / 3 # Nondimensional parameter

dim = 2 # dimension of the system

y0 = np.array([1 / 2., 1 / 3.]) # initial conditions

# Note: swapping order of arguments to match the calling convention

# used in the built in IVP solver.

def Lotka_Volterra(y, x):

return np.array([y[0] * (1. - y[1]), alpha * y[1] * (y[0] - 1.)])

subintervals = 200

# Using the built in ode solver

Y = odeint(Lotka_Volterra, y0, np.linspace(a, b, subintervals))

# Plot the direction field

Y1, Y2 = np.meshgrid(np.arange(0, 4.5, .2), np.arange(0, 4.5, .2), sparse=True, ←↩
copy=False)

U, V = Lotka_Volterra((Y1, Y2), 0)
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Figure 2.2: The solution of the nondimensionalized Lotka-Volterra predator-prey

equations with parameter α = 1/3. This solution has initial conditions (U, V ) =

(3/4, 3/4).

Q = plt.quiver(Y1[::3, ::3], Y2[::3, ::3], U[::3, ::3], V[::3, ::3], pivot='mid←↩
', color='b', units='dots',width=3.)

# Plot the 2 Equilibrium points

plt.plot(1, 1, 'ok', markersize=8)

plt.plot(0, 0, 'ok', markersize=8)

# Plot the solution in phase space

plt.plot(Y[:,0], Y[:,1], '-k', linewidth=2.0)

plt.plot(Y[::10,0], Y[::10,1], '*b')

plt.axis([-.5, 4.5, -.5, 4.5])

plt.title("Phase Portrait of the Lotka-Volterra Predator-Prey Model")

plt.xlabel('Prey',fontsize=15)

plt.ylabel('Predators',fontsize=15)

plt.show()

Problem 3. Compute the solutions (U, V ) of (2.11) for initial conditions

(1/2, 3/4), (1/16, 3/4), and (1/40, 3/4). Add these solutions to the phase

portrait of the Lotka-Volterra model. Can you see any limitations of this

model?
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Phase Portrait of the Lotka-Volterra Predator-Prey Model

Figure 2.3: The phase portrait for the nondimensionalized Lotka-Volterra predator-

prey equations with parameters α = 1/3. The portrait includes the direction field,

the two equilibrium points, and the graph of the solution with initial conditions

(U, V ) = (3/4, 3/4).

The Logistic model

We have already noticed that in the absence of predators, the Lotka-Volterra equa-

tions predict that the prey population will grow exponentially. The logistic predator-

prey equations change this dynamic by adding a term to give the prey population

a carrying capacity K:

du

dt
= au

(
1− u

K

)
− buv,

dv

dt
= −cv + duv.

Let U = u
K , V = b

av, t̄ = at, α = dK
a , and β = c

dK . Then the nondimensional

logistic equations are

dU

dt̄
= U(1− U − V ),

dV

dt̄
= αV (U − β).

(2.12)
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Problem 4. Compute the solutions (U, V ) of (2.12) for initial conditions

(1/3, 1/3) and (1/2, 1/5). Do this for parameter values α, β = 1, .3 and also

for values α, β = 1, 1.1. Create a phase portrait for the logistic equations

using both sets of parameter values. Remember to plot the direction field,

all equilibrium points, and the orbits of the solutions.


