
Lab 1

Lorenz Equations

Chaos: When the present

determines the future, but the

approximate present does not

approximately determine the future.

Edward Lorenz

Lab Objective: Investigate the behavior of a system that exhibits chaotic

behavior. Demonstrate methods for visualizing the evolution of a system.

Chaos is everywhere. It can crop up in unexpected places and in remarkably

simple systems, and a great deal of work has been done to describe the behavior of

chaotic systems. One primary characteristic of chaos is that small changes in initial

conditions result in large changes over time in the solution curves.

The Lorenz System

One of the earlier examples of chaotic behavior was discovered by Edward Lorenz.

In 1963, while working to study atmospheric dynamics he derived the simple system

of equations

∂x

∂t
= σ (y − x)

∂y

∂t
= ρx− y − xz

∂z

∂t
= xy − βz

where σ, ρ, and β are all constants. After deriving these equations, he plotted

the solutions and observed some unexpected behavior. For appropriately chosen

values of σ, ρ, and β, the solutions did not tend toward any steady fixed points,

nor did the system permit any stable cycles. The solutions did not tend off toward

infinity either. With further work, he began the study of what was called a strange

attractor. This system, though relatively simple, exhibits chaotic behavior.
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Achtung!

We will be making interactive 3D plots using matplotlib. Please refer back to

the Introduction to Matplotlib lab for tips and tricks to graphing 3D. Below is

some sample code to help you out.

from matplotlib import rcParams, pyplot as plt

from mpl_toolkits.mplot3d import Axes3D

rcParams['figure.figsize'] = (16,10) #Affects output size of graphs.

plt.switch_backend('qt4agg') #Create graph in separate window.

#Enable interactive plot.

#Talk to Joey if you run into problems here.

'''

Code up your X, Y, Z values

'''

fig = plt.figure()

ax = fig.gca(projection='3d')

ax.plot( X, Y, Z ) #Make sure X, Y, Z are same length.

#Connect points (X[i], Y[i], Z[i]) for i in len(X)

ax.set_xlabel('X')

ax.set_ylabel('Y')

ax.set_zlabel('Z')

ax.set_xlim3d([min(X), max(X)]) #Bounds the axes nicely

ax.set_ylim3d([min(Y), max(Y)])

ax.set_zlim3d([min(Z), max(Z)])

plt.show()

Problem 1. Solve and graph the Lorenz equation by completing the code.

Initialize the initial conditions with random values between −15 and 15. For

this exercise, let σ = 10, ρ = 28, β = 8
3 . Compare to Figure 1.1

import numpy as np

from scipy.integrate import odeint

def lorenz_ode(inputs, T):

'''

Code up the sytem of equations given

'''

return Xprime, Yprime, Zprime

def solve_lorenx(init_cond, time=10):

T = np.linspace(0, time, time*100) #initialize time interval for ode

'''

Use odeint in conjuction with lorenz_ode and the time interval T

To get the X, Y, and Z values for this system.

You will need to transpose the output of odeint to graph it correctly.

'''

return X, Y, Z

sigma = 'value'
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Figure 1.1: Approximate solution to the Lorenz equation with random initial con-

ditions

rho = 'value'

beta = 'value'

init_cond = [x0, y0, z0]

X, Y, Z = solve_lorenz(init_cond, 50)

'''

Code to graph

'''

Basin of Attraction

Notice in the first problem that the solution tended to a ’nice’ region. This region

is a basin of attraction, and the set of numerical values towards which a system will

converge to is an attractor. Consider what happens when we change up the initial

conditions.

Problem 2. Change your code to plot n different solution using different
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Figure 1.2: Multiple solutions to the Lorenz equation with random initial conditions

random initial conditions. Produce a plot with n = 3 different solutions.

Compare to Figure 1.2

Chaos

Chaos in dynamical systems connotes a high sensitivity to initial conditions. Small

differences in initial conditions can yield widely diverging outcomes for these sys-

tems. Despite having equations that completely determine the future behavior of

systems, there is no way to determine where a system will be time t down the

road without running through the full interval. In other words, these systems are

unpredictable.

Problem 3. Change the code above so that it initializes one set of initial

conditions and creates a second set of initial conditions by adding the array

np.random.randn(3)*(1E-10). This will represent a small perturbation in the

initial conditions. Make sure the time variable is large enough to notice a

difference in the two solutions. Plot both solutions together. Refer to Figure

1.3
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Figure 1.3: Two solutions to the Lorenz equation with perturbed initial conditions

You may be wondering if your code was even correct. You could distinctly see

the two curves because there was some separation of color, but who is to say that

the two solutions moved away from each other only slightly as time went on. Our

next task will be to animate this beast.

Intro to Animation

Lets get you a degree in Computer Animation. Then you can talk to my uncle,

Brent Adams, who happens to be the head of the BYU Animation Program and

get a sweet job.

Achtung!

You will be provided with some code that helps with animation. Please feel

free to play around and try to animate different things. Again, refer to the

Introduction to Matplotlib lab for additional help.

We will call on matplotlib.animate to assist in animation. Import the following:

from matplotlib.animation import FuncAnimation

Follow these steps for setting up an animation.
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� Calculate all data needed for the animation (not necessary in some cases, but

it simplifies things).

� Define a figure explicitly with plt.figure() and set its window boundaries.

� Draw empty objects that can be altered dynamically.

� Define a function to update the drawing objects.

� make a call to FuncAnimation() which will start the animation.

FuncAnimation() accepts the figure to be animated, the function that updates the

figure, the number of frames to show before repeating, and how fast to run the

animation (lower number = faster).

Check out the sample code for animating two 2D objects simultaneously.

from matplotlib.animation import FuncAnimation

def sine_cos_animation():

#Calculate the data to be animated

x = np.linspace(0, 2*np.pi, 200)[:-1]

y1, y2 = np.sin(x), np.cos(x)

#Create a figure and set the window boundaries

fig = plt.figure()

plt.xlim(0, 2*np.pi)

plt.ylim(-1.2, 1.2)

#Initiate empty lines of the correct dimension

sin_drawing, = plt.plot([], [])

cos_drawing, = plt.plot([], []) #note the comma after the variable name

#Define a function that updates each line

def update(index):

sin_drawing.set_data(x[:index], y1[:index])

cos_drawing.set_data(x[:index], y2[:index])

return sin_drawing, cos_drawing,

a = FuncAnimation(fig, update, frames=len(x), interval=10)

plt.show()

Achtung!

The above animation code works great for 2D animations, but set_data() is

only good for 2D. When you want to animate in 3D, you will need the extra

set_3d_properties() call in your update(index) function.

Animate the Beast

You now know how to plot the Lorenz equation, how to plot multiple equations,

and even how to animate (yay you, you’re a star) simple plots. It’s time to put all

your know-how to good use.
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Problem 4. Animate the solutions of the Lorenz equation for an initial set

of conditions and the perturbed conditions on the same plot. To make the

animation go faster, decrease the interval value in the FuncAnimation() call.

It will take several seconds before the curves split, so be patient.

If our system is very chaotic, then even small round off errors in your computer

can lead to drastically different solutions.

Problem 5. Now set one initial condition. Use odeint to solve the system,

but use the arguments atol=1E-14, rtol=1E-12, and then again with atol=1E-15,

rtol=1E-13. Animate both solutions on the same plot.

Lyapunov Exponents

The Lyapunov exponent of a dynamical system is one measure of how chaotic a

system is. While there are more conditions for a system to be considered chaotic,

one of the primary indicators of a chaotic system is extreme sensitivity to initial

conditions. Strictly speaking, this is saying that a chaotic system is poorly condi-

tioned. Usually, in dynamical systems, the sensitivity to changes in initial conditions

depends exponentially on the time the system is allowed to evolve. If δ(t) repre-

sents the difference between two solution curves, when δ(t) is small, the following

approximation holds.

‖δ(t)‖ ∼ ‖δ(0)‖eλt

where λ is a constant called the Lyapunov exponent. For the Lorenz system, ex-

perimentally it can be verified that λ ≈ .9.

Suppose we want tol find the Lyapunov exponent for the Lorenz System. Start

by importing linalg and linregress modules from scipy.

from scipy import linalg as la

from scipy.stats import linregress

To get a good estimate of the Lyapunov exponent, we want to make sure our

initial solution already lies on the attractor. To do this, choose some random initial

conditions, run your solve_lorenz function, then pick out the final coordinates. Let

these coordinates be the starting point for our next system.

Next perturb the conditions slightly. Find the solution curve using these two

sets of initial coordinates and then calculate the norm between the solution at each

point. Plot the norm using plt.semilogy(time, norm).

Finally we want to calculate the exponential line fitted to the data. Because we

are using the semilog plot, we can find this line as follows:

� take the log of the norms.

� use linregress() to compute the linear regression of the log of the norms.
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Figure 1.4: A semilog plot of the separation between two solutions to the Lorenz

equations together with a fitted line that gives a rough estimate of the Lyapunov

exponent of the system.

� take the exp of the linear regression to turn back into an exponential regression.

� plot the exponential regression using plt.semilogy() (your solution will be a

line)

Problem 6. Write a Python function that finds an initial point on the

strange attractor, runs the simulation to a given time t, and produces a

semilog plot of the norm of the difference between the two solution curves.

Also have it plot an exponential line fitted to match the curve (this will be

linear on the semilog plot). Have it return a rough estimate of the Lyapunov

exponent. The output should be something like Figure 1.4.

Note: In order to get a good estimate of the Lyapunov exponent, your

initial guess should already lie on the strange attractor. You can get a value

on the attractor by running the system for a while to find a good initial

guess.

Hint: To find the fitting line, take the logarithm of the norms of the

differences, compute a linear fit, then take the exponential function of the
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resulting line. The Lyapunov exponent will be approximately equal to the

slope found by the linear regression.
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