
Lab 6

Hysteresis

Recall that any ordinary differential equation can be written as a first order system

of ODEs,

ẋ = F (x), ẋ :=
d

dt
x(t). (6.1)

Many interesting applications and physical phenomena can be modeled using ODEs.

Given a mathematical model of the form (6.1), it is important to understand ge-

ometrically how its solutions behave. This information can then be conveyed in

a phase portrait, a graph describing solutions of (6.1) with differential initial con-

ditions. The first step in constructing a phase portrait is to find the equilibrium

solutions of the equation, i.e., the zeros of F (x), and to determine their stability.

It is often the case that the mathematical model we study depends on some

parameter or set of parameters λ. Thus the ODE becomes

ẋ = F (x, λ). (6.2)

The parameter λ can then be tuned to better fit the physical application. As λ

varies, the equilibrium solutions and other geometric features of (6.2) may suddenly

change. A value of λ where the phase portrait changes is called a bifurcation point ;

the study of how these changes occur is called bifurcation theory. The parameter

values and corresponding equilibrium solutions are often graphed together in a

bifurcation diagram.

As an example, consider the scalar differential equation

ẋ = x2 + λ. (6.3)

For λ > 0 equation (6.3) has no equilibrium solutions. At λ = 0 the equilibrium

point x = 0 appears, and for λ < 0 it splits into two equilibrium points. For

this system, a bifurcation occurs at λ = 0. This is an example of a saddle-node

bifurcation. The bifurcation diagram is shown in Figure 6.1

Suppose that F (x0, λ0) = 0. We use a method called natural embedding to

find zeros (x, λ) of F for nearby values of λ. Specifically, we step forward in λ by

letting λ1 = λ0 +4λ, and use Newton’s method to find the value x1 that satisfies
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Figure 6.1: Bifurcation diagram for the equation ẋ = λ+ x2.

F (x1, λ1) = 0. This method works well except when λ is near a bifurcation point

λ∗.

The following code implements the natural embedding algorithm, and then uses

that algorithm to find the curves in the bifurcation diagram for (6.3). Notice that

this algorithm needs a good initial guess for x0 to get started.

import numpy as np

import matplotlib.pyplot as plt

from scipy.optimize import newton

def EmbeddingAlg(param_list, guess, F):

X = []

for param in param_list:

try:

# Solve for x_value making F(x_value, param) = 0.

x_value = newton(F, guess, fprime=None, args=(param,), tol=1E-7, ←↩
maxiter=50)

# Record the solution and update guess for the next iteration.

X.append(x_value)

guess = x_value

except RuntimeError:

# If Newton's method fails, return a truncated list of parameters

# with the corresponding x values.
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Figure 6.2: Phase Portrait for the equation ẋ = −2 + x2.

return param_list[:len(X)], X

# Return the list of parameters and the corresponding x values.

return param_list, X

def F(x, lmbda):

return x**2 + lmbda

# Top curve shown in the bifurcation diagram

C1, X1 = EmbeddingAlg(np.linspace(-5, 0, 200), np.sqrt(5), F)

# The bottom curve

C2, X2 = EmbeddingAlg(np.linspace(-5, 0, 200), -np.sqrt(5), F)

Problem 1. Use the natural embedding algorithm to create a bifurcation

diagram for the differential equation

ẋ = λx− x3.

This type of bifurcation is called a pitchfork bifurcation (you should see a

pitchfork in your diagram).

Hints: Essentially this amounts to running the same code as the example,

but with different parameters and function calls so that you are tracing
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through the right curves for this problem. To make this first problem work,

you will want to have your ‘linspace’ run from high to low instead of from

low to high. There will be three different lines in this image.

Problem 2. Create bifurcation diagrams for the differential equation

ẋ = η + λx− x3,

where η = −1,−.2, .2 and 1. Notice that when η = 0 you can see the pitchfork

bifurcation of the previous problem. There should be four different lines in

this image. There will be one line for each value of η.

The following ODE exhibits an interesting bifurcation phenomenon called hys-

teresis:

x′ = λ+ x− x3.

This system has a bifurcation diagram containing what is known as a hysteresis loop,

shown in Figure 6.3. In the hysteresis loop, when the parameter λ moves beyond

the bifurcation point the equilibrium solution makes a sudden jump to the other

stable branch. When this occurs the system cannot reach its previous equilibrium

by simply rewinding the parameter slightly. The next section discusses a model

with a hysteresis loop.

Budworm Population Dynamics

Here we study a mathematical model describing the population dynamics of an

insect called the spruce budworm. In eastern Canada, an outbreak in the budworm

population can destroy most of the trees in a forest of balsam fir trees in about 4

years. The mathematical model is given by

Ṅ = RN

(
1− N

K

)
− p(N). (6.4)

This model was studied by Ludwig et al (1978), and is described well in Strogatz’s

text Nonlinear Dynamics and Chaos. Here N(t) represents the budworm population

at time t, R is the growth rate of the budworm population and K represents the

carrying capacity of the environment. We could interpret K to represent the amount

of food available to the budworms. p(N) represents the death rate of budworms due

to predators (birds); we assume specifically that p(N) has the form P (N) = BN2

A2+N2 .

Before studying the equilibrium points of (6.4) it is important to reduce the

number of parameters in the system by nondimensionalizing. Thus, we make the

coordinate change x = N/A, τ = Bt/A, r = RA/B, and k = K/A, obtaining finally

the system

dx

dτ
= rx(1− x/k)− x2

1 + x2
. (6.5)



55

Figure 6.3: Bifurcation diagram for the ODE x′ = λ+ x− x3.

Note that x = 0 is always an equilibrium solution. To find other equilibrium

solutions we study the equation r(1 − x/k) − x/(1 + x2) = 0. Fix r = .56, and

consider Figure (6.4) (k = 8 in the figure).

Problem 3 (Budworm Population). Reproduce the bifurcation diagram

for the differential equation

dx

dτ
= rx(1− x/k)− x2

1 + x2
,

where r = 0.56.

Hint: Find a value for k that you know is in the middle of the plot

(i.e. where there are three possible solutions), then use the code above to

expand along each contour till you obtain the desired curve. Now find the

proper initial guesses that give you the right bifurcation curve. The final

plot will look like the one in Figure 6.5, but you will probably have to run

the embedding algorithm 6 times to get every part of the plot.
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Figure 6.4: Graphical demonstration of nonzero equilibrium solutions for the bud-

worm population (here r = .56, k = 8); equilibrium solutions occur where the

curves cross. As k increases, the line y = r(1 − x/k) gets more shallow and the

number of solutions goes from one to three and then back to one.
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Figure 6.5: Bifurcation diagram for the budworm population model. The parameter

r is fixed at 0.56. The lower stable branch is known as the refuge level of the

bundworm population, while the upper stable branch is known as the outbreak

level. Once the budworm population reaches an outbreak level, the available food

(foliage of the balsam fir trees) in the system must be reduced drastically to jump

back down to refuge level. Thus many of the balsam fir trees die before the budworm

population returns to refuge level.


