
Lab 1

7. The Finite Difference
Method

A finite difference for a function f(x) is an expression of the form f(x+s)−f(x+t).

Finite differences can give a good approximation of derivatives.

Suppose we have a function u(x), defined on an interval [a, b]. Let a = x−1, x0, x1, . . . xn−1 =

b be a grid of n+ 1 evenly spaced points, with xi = a+ (i+ 1)h, h = (b− a)/n.

You are used to seeing the derivative u′(x) which can be written as

u′(x) = lim
h→∞

u(x+ h)− u(x)

h
= lim

h→∞

u(x+ h)− u(x− h)

2h
.

Since we are interested in the derivative at certain fixed points xi, we can con-

sider the approximation of u′(x) using finite differences. We first write the Taylor

polynomial expansion of u(x+ h) and u(x− h) centered at x. This gives

u(x+ h) = u(x) + u′(x)h+
1

2
u′′(x)h2 +

1

6
u′′′(x)h3 +O(h4) (1.1)

u(x− h) = u(x)− u′(x)h+
1

2
u′′(x)h2 − 1

6
u′′′(x)h3 +O(h4) (1.2)

Subtracting (1.2) from (1.1) and rearranging gives

u′(x) =
u(x+ h)− u(x− h)

2h
+O(h2).

From the Taylor expansion, this term has error E(h) = O(h2). In terms of our grid

points {xi}, we can rewrite u′(x) as u′(xi) and

u′(xi) =
u(xi + h)− u(xi − h)

2h
=
u(xi+1)− u(xi−1)

2h
.

We won’t worry about the derivative at the endpoints, u′(x−1) and u′(xn−1). This

allows us to write the set of points {u′(xi)} as the solution to a system of equations

1

2 Lab 1. The Finite Difference Method

1

2h


−1 0 1

−1 0 1
. . .

. . .

−1 0 1

−1 0 1


(n−1)×(n+1)

·


u(x−1)

u(x0)
...

u(xn−2)

u(xn−1)


(n+1)×1

=


u′(x0)

u′(x1)
...

u′(xn−3)

u′(xn−2)


(n−1)×1

. (1.3)

This can be rewritten with an (N − 1)× (N − 1) tridiagonal matrix on the left.

1

2h


0 1

−1 0 1
. . .

−1 0 1

−1 0


(n−1)×(n−1)

·


u(x0)

u(x1)
...

u(xn−3)

u(xn−2)


(n−1)×1

+


−u(x−1)/(2h)

0
...

0

u(xn−1)/(2h)


(n−1)×1

=


u′(x0)

u′(x1)
...

u′(xn−3)

u′(xn−2)


(n−1)×1

.

(1.4)

Next we will consider the matrix representation for u′′(x). If we let

u′(x) =
u(x+ h

2)− u(x− h
2)

h

then

u′′(x) =
u′(x+ h

2)− u′(x− h
2)

h
=

u((x+h
2)+

h
2)−u((x+

h
2)−

h
2)

h − u((x−h
2)+

h
2)−u((x−

h
2)−

h
2)

h

h

=
u(x+ h)− 2u(x) + u(x− h)

h2
,

with error E(h) = O(h3). Youcan achieve the same result by again consider the

Taylor polynomial expansion and adding (1.1) and (1.2) and rearranging. Thus

u′′(xi) =
u(xi + h)− 2u(xi) + u(xi − h)

h2
=
u(xi+1)− 2u(xi) + u(xi−1)

h2
, i = 0, . . . , n−2.

Again ignoring the second derivative at the endpoints, this can be written in matrix

form as

1

h2


1 −2 1

1 −2 1
. . .

. . .

1 −2 1

1 −2 1


(n−1)×(n+1)

·


u(x−1)

u(x0)
...

u(xn−2)

u(xn−1)


(n+1)×1

=


u′′(x0)

u′′(x1)
...

u′′(xn−3)

u′′(xn−2)


(n−1)×1

. (1.5)

3

This can also be written as an (N − 1)× (N − 1) tridiagonal matrix on the left.

1

h2


−2 1

1 −2 1
. . .

1 −2 1

1 −2


(n−1)×(n−1)

·


u(x0)

u(x1)
...

u(xn−3)

u(xn−2)


(n−1)×1

+


u(x−1)/h2

0
...

0

u(xn−1)/h2


(n−1)×1

=


u′′(x0)

u′′(x1)
...

u′′(xn−3)

u′′(xn−2)


(n−1)×1

(1.6)

Problem 1. Let u(x) = sin((x+ π)2 − 1). Use (1.3) - (1.6) to approximate
1
2u
′′ − u′ at the grid points where a = 0, b = 1, and n = 10.

Suppose that instead of knowing the function u(x), we know that 1
2u
′′ − u = f ,

where the function f(x) is given. How do we solve for u at the grid points?

Finite Difference Methods

Numerical methods for differential equations seek to approximate the exact solution

u(x) at some finite collection of points in the domain of the problem. Instead

of analytically solving the original differential equation, defined over an infinite-

dimensional function space, they use a simpler finite system of algebraic equations

to approximate the original problem.

Consider the following differential equation:

εu′′(x)− u(x)′ = f(x), x ∈ (0, 1),

u(0) = α, u(1) = β.
(1.7)

Equation (1.7) can be written Du = f, where D = ε d2

dx2− d
dx is a differential operator

defined on the infinite-dimensional space of functions that are twice continuously

differentiable on [0, 1] and satisfy u(0) = α, u(1) = β.

We look for an approximate solution {Ui}N−1i=−1, where

Ui = u(xi)

on an evenly spaced grid of N subintervals, a = x−1, x0, . . . , xN−1 = b with h =

xi+1−xi for each i. Our finite difference method will replace the differential operator

D = ε d2

dx2 − d
dx , defined on an infinite-dimensional space of functions, with difference

operators defined on a finite vector space (the space of grid functions {Ui}N−1i=−1).

To do this, we replace derivative terms in the differential equation with appropriate

difference expressions.

Recalling that

d2

dx2
u(xi) =

u(xi+1)− 2u(xi) + u(xi−1)

h2
+O(h2),

d

dx
u(xi) =

u(xi+1)− u(xi−1)

2h
+O(h2).

4 Lab 1. The Finite Difference Method

we define the finite difference operator Dh by

DhUi = ε
1

h2
(Ui+1 − 2Ui + Ui−1)− 1

2h
(Ui+1 − Ui−1) . (1.8)

Thus we discretize equation (1.7) using the equations

ε

h2
(Ui+1 − 2Ui + Ui−1)− 1

2h
(Ui+1 − Ui−1) = f(xi), i = 0, . . . , N − 2,

along with boundary conditions U−1 = α, UN−1 = β.

This gives N + 1 equations and N + 1 unknowns, and can be written in matrix

form as

1

h2


h2 0 0 . . . 0

(ε+ h/2) −2ε (ε− h/2) . . . 0
...

. . .
...

0 . . . (ε+ h/2) −2ε (ε− h/2)

0 . . . 0 h2


(N+1)×(N+1)

·


U−1
U0

...

UN−2
UN−1


(N+1)×1

=


U−1
f(x0)

...

f(xN−2)

UN−1


(N+1)×1

.

We can further modify the system to obtain an (N−1)×(N−1) tridiagonal matrix

on the left:

1

h2


−2ε (ε− h/2) 0 . . . 0

(ε+ h/2) −2ε (ε− h/2) . . . 0
...

. . .
...

0 . . . (ε+ h/2) −2ε (ε− h/2)

0 . . . (ε+ h/2) −2ε


(N−1)×(N−1)

·


U0

U1

...

UN−3
UN−2


(N−1)×1

=


f(x0)− U−1(ε+ h/2)/h2

f(x1)
...

f(xN−3)

f(xN−2)− Un−1(ε− h/2)/h2


(N−1)×1

.

(1.9)

Problem 2. Use equation (1.9) to solve the singularly perturbed BVP (1.7)

with ε = 1/10, f(x) = −1, α = 1, and β = 3. This BVP is called singularly

perturbed because of the location of the parameter ε. For ε = 0 the ODE

has a drastically different character - it then becomes first order, and can no

longer support two boundary conditions.

A heuristic test for convergence

The finite differences used above are second order approximations of the first and

second derivatives of a function. It seems reasonable to expect that the numeri-

5

0.0 0.2 0.4 0.6 0.8 1.0

x

1.0

1.5

2.0

2.5

3.0

y

Figure 1.1: The solution to Problem 2. The solution gets steeper near x = 1 as ε

gets small.

cal solution would converge at a rate of about O(h2). How can we check that a

numerical approximation is reasonable?

Suppose a finite difference method is O(hp) accurate. This means that the error

E(h) ≈ Chp for some constant C as h→ 0 (in other words, for h > 0 small enough).

So compute the approximation yk for each stepsize hk, h1 > h2 > . . . > hm.

ym should be the most accurate approximation, and will be thought of as the true

solution. Then the error of the approximation for stepsize hk, k < m, is

E(hk) = max(|yk − ym|) ≈ Chpk,
log(E(hk)) = log(C) + p log(hk).

Thus on a log-log plot of E(h) vs. h, these values should be on a straight line

with slope p when h is small enough to start getting convergence. We should note

that demonstrating second-order convergence does NOT imply that the numerical

approximation is converging to the correct solution.

Problem 3. Return to problem 2. How many subintervals are needed to

obtain 4 digits of accuracy?

This is a question about the convergence of your solution. The following

code generates the log-log plot in Figure 1.2, and demonstrates second-order

convergence for our finite difference approximation of (1.7). Use this code to

determine what h (and hence what N) is needed for the error to be less than

10−4. You don’t need to return the value of h, but make sure you understand

by looking at the plot.

note: The function bvp is not provided; you need to use your code from

6 Lab 1. The Finite Difference Method

10-4 10-3 10-2 10-1 100

h

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

E(h)

h 2

Figure 1.2: Demonstration of second order convergence for the finite difference

approximation (1.8) of the BVP given in (1.7) with ε = .5.

problem 2 to define it. Make sure your function is compatible with the code

below. It must take 5 parameters as input and return the solution.

num_approx = 10 # Number of Approximations

N = 5*np.array([2**j for j in range(num_approx)])

h, max_error = (1.-0)/N[:-1], np.ones(num_approx-1)

Best numerical solution, used to approximate the true solution.

bvp returns the grid, and the grid function, approximating the solution

with N subintervals of equal length.

num_sol_best = bvp(lambda x:-1, epsilon=.1, alpha=1, beta=3, N=N[-1])

for j in range(len(N)-1):

num_sol = bvp(lambda x:-1, epsilon=.1, alpha=1, beta=3, N=N[j])

max_error[j] = np.max(np.abs(num_sol- num_sol_best[::2**(num_approx-j-1)]) ←↩
)

plt.loglog(h,max_error,'.-r',label="$E(h)$")

plt.loglog(h,h**(2.),'-k',label="$h^{\, 2}$")

plt.xlabel("h")

plt.legend(loc='best')

plt.show()

print "The order of the finite difference approximation is about ", ((np.log(←↩
max_error[0]) -

np.log(max_error[-1]))/(np.log(h[0]) - np.log(h[-1]))), "."

7

Problem 4. Extend your finite difference code to the case of a general sec-

ond order linear BVP with boundary conditions (These boundary conditions

are sometimes called Dirichlet conditions):

a1(x)y′′ + a2(x)y′ + a3(x)y = f(x), x ∈ (a, b),

y(a) = α, y(b) = β.

Use your code to solve the boundary value problem

εy′′ − 4(π − x2)y = cosx,

y(0) = 0, y(π/2) = 1,

for ε = 0.1. (Hint: How should the finite difference operator Dh in (1.8) be

modified?)

0.0 0.5 1.0 1.5

x

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

y

Figure 1.3: The solution to Problem 4.

The next few problems will help you troubleshoot your finite difference code.

Problem 5. Numerically solve the boundary value problem

εy′′ + xy′ = −επ2 cos(πx)− πx sin(πx),

y(−1) = −2, y(1) = 0,

for ε = 0.1, 0.01, and 0.001.

8 Lab 1. The Finite Difference Method

Problem 6. Numerically solve the boundary value problem

(ε+ x2)y′′ + 4xy′ + 2y = 0,

y(−1) = 1/(1 + ε), y(1) = 1/(1 + ε),

for ε = 0.05, 0.02.

1.0 0.5 0.0 0.5 1.0

x

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

y

Figure 1.4: The solution to Problem 5.

9

1.0 0.5 0.0 0.5 1.0

x

0

10

20

30

40

50

60

y

Figure 1.5: The solution to Problem 6.

	The Finite Difference Method

