
Lab 1

Anisotropic Diffusion

Lab Objective: Demonstrate the use of finite difference schemes in image anal-

ysis.

A common task in image processing is to remove extra static from an image.

This is most easily done by simply blurring the image, which can be accomplished

by treating the image as a rectangular domain and applying the diffusion (heat)

equation:

ut = c∆u

where c is some diffusion constant and ∆ is the Laplace operator. Unfortunately,

this also blurs the boundary lines between distinct elements of the image.

A more general form of the diffusion equation in two dimensions is:

ut = ∇ · (c(x, y, t)∇u)

where c is a function representing the diffusion coefficient at each given point and

time. In this case, ∇· is the divergence operator and ∇ is the gradient.

To blur a picture uniformly, choose c to be a constant function. Since c controls

how much diffusion is allowed at each point, it can be modified so that diffusion

is minimized across edges in the image. In this way we attempt to limit diffusion

near the boundaries between different features of the image, and allow smaller

details of the image (such as static) to blur away. This method for image denoising

is especially useful for denoising low quality images, and was first introduced by

Pietro Perona and Jitendra Malik in 1987. It is known as Anisotropic Diffusion or

Perona-Malik Diffusion.

A Finite Difference Scheme

Suppose we have some estimate E of the rate of change at a given point in an

image. E will be largest at the boundaries in the image. We will then let c(x, y, t) =

g(E(x, y, t)) where g is some function such that g(0) = 1 and lim
x→∞

g(x) = 0. Thus

c will be small where E is large, so that little diffusion occurs near the boundaries

of different portions of the image.

1

2 Lab 1. Anisotropic Diffusion

We will model this system using a finite differencing scheme with an array of

values at a 2D grid of points, and iterate through time. Let Un
l,m be the discretized

approximation of the function u, n be the index in time, l be the index along the

x-axis, and m be the index along the y-axis.

The Laplace operator can be approximated with the finite difference scheme

∆u = uxx + uyy ≈
Un
l−1,m − 2Un

l,m + Un
l+1,m

(∆x)2
+
Un
l,m−1 − 2Un

l,m + Un
l,m+1

(∆y)2
.

A good metric to use with images is to let the distance between each pixel be equal

to one, so ∆x = ∆y = 1. Rearranging terms, we obtain

∆u ≈ (Un
l−1,m − Un

l,m) + (Un
l+1,m − Un

l,m) + (Un
l,m−1 − Un

l,m) + (Un
l,m+1 − Un

l,m).

Again, since we are working with images and not some time based problem, we can

without loss of generality let ∆t = 1, so we obtain the finite difference scheme

Un+1
l,m = Un

l,m+(Un
l−1,m−Un

l,m)+(Un
l+1,m−Un

l,m)+(Un
l,m−1−Un

l,m)+(Un
l,m+1−Un

l,m).

We will now limit the diffusion near the edges of objects by making the modification

Un+1
l,m = Un

l,m+λ
(
g(|Un

l−1,m − Un
l,m|)(Un

l−1,m − Un
l,m)

+ g(|Un
l+1,m − Un

l,m|)(Un
l+1,m − Un

l,m)

+ g(|Un
l,m−1 − Un

l,m|)(Un
l,m−1 − Un

l,m)

+ g(|Un
l,m+1 − Un

l,m|)(Un
l,m+1 − Un

l,m)
)
,

where λ ≤ 1
4 is the stability condition.

In this difference scheme, each term is affected most by nearby terms that are

most similar to it, so less diffusion will happen anywhere there is a sharp difference

between pixels. This scheme also has the useful property that it does not increase

or decrease the total brightness of the image. Intuitively, this is because the effect

of each point on its neighbors is exactly the opposite effect its neighbors have on it.

Two commonly used functions for g are g(x) = e−(xσ)
2

and g(x) = 1

1+(xσ)
2 . The

parameter σ allows us to control how much diffusion decreases across boundaries,

with larger σ values allowing more diffusion. Note that g(0) = 1 and lim
x→∞

g(x) = 0

for both functions. In this lab we use g(x) = e−(xσ)
2

.

It is worth noting that this particular difference scheme is not an accurate finite

difference scheme for the version of the diffusion equation we discussed before, but

it does accomplish the same thing in the same way. As it turns out, this particular

scheme is the solution to a slightly different diffusion PDE, but can still be used the

same way.

For this lab’s examples we read in the image using the scipy.misc.imread function,

and normalized it so that the colors are represented as floating point values between

0 and 1. An image can converted to black and white when it is read by including

the argument flatten=True.

3

from matplotlib import cm, pyplot as plt

from scipy.misc import imread, imsave

To read in an image, convert it to grayscale, and rescale it.

picture = imread('balloon.png', flatten=True) * 1./255

To display the picture as grayscale

plt.imshow(picture, cmap=cm.gray)

plt.show()

Problem 1. Complete the following fuction, implementing anisotropic dif-

fusion for black and white images using the following boundary conditions:

For the top edge let

Un+1
l,m = Un

l,m+λ(g(|Un
l−1,m − Un

l,m|)(Un
l−1,m − Un

l,m)

+ g(|Un
l+1,m − Un

l,m|)(Un
l+1,m − Un

l,m)

+ g(|Un
l,m+1 − Un

l,m|)(Un
l,m+1 − Un

l,m))

Do the other edges similarly.

For the top left corner let

Un+1
l,m = Un

l,m+λ(g(|Un
l+1,m − Un

l,m|)(Un
l+1,m − Un

l,m)

+ g(|Un
l,m+1 − Un

l,m|)(Un
l,m+1 − Un

l,m))

Do the other corners similarly.

Essentially we are just using the terms of the difference scheme that are

actually defined.

In your function, use

g(x) = e−(xσ)
2

def anisdiff_bw(U, N, lambda_, g):

""" Run the Anisotropic Diffusion differencing scheme

on the array U of grayscale values for an image.

Perform N iterations, use the function g

to limit diffusion across boundaries in the image.

Operate on U inplace to optimize performance. """

pass

Show the original image and the diffused image for σ = .1, λ = .25,

N = 5, 20, 100.

4 Lab 1. Anisotropic Diffusion

original image 5 iterations with σ = .1 and λ = .25

20 iterations 100 iterations

5

Color Schemes

Colored images can be processed in a similar manner. Instead of being represented

as a two-dimensional array, colored images are represented as three dimensional

arrays. The third dimension is used to store the intensities of each of the standard

3 colors. This diffusion process can be carried out in the exact same way, on each

of the arrays of intensities for each color, but instead of detecting edges just in

one color, we need to detect edges in any color, so instead of using something

of the form g(|Un
l+1,m − Un

l,m|) as before, we will now use something of the form

g(||Un
l+1,m−Un

l,m||), where Un
l+1,m and Un

l,m are vectors now instead of scalars. The

difference scheme can be treated as an equation on vectors in 3-space and now reads:

Un+1
l,m = Un

l,m+λ(g(||Un
l−1,m − Un

l,m||)(Un
l−1,m − Un

l,m)

+ g(||Un
l+1,m − Un

l,m||)(Un
l+1,m − Un

l,m)

+ g(||Un
l,m−1 − Un

l,m||)(Un
l,m−1 − Un

l,m)

+ g(||Un
l,m+1 − Un

l,m||)(Un
l,m+1 − Un

l,m))

When implementing this scheme for colored images, use the 2-norm on 3-space,

i.e ||x|| =
√
x21 + x22 + x23 where x1, x2, and x3 are the different coordinates of x.

Problem 2. Complete the following function to process a colored image.

You may modify your colde from the previous problem. Measure the differ-

ence between pixels using the 2-norm. Use the corresponding vector versions

of the boundary conditions given in Problem 1.

def anisdiff_color(U, N, lambda_, sigma):

""" Run the Anisotropic Diffusion differencing scheme

on the array U of grayscale values for an image.

Perform N iterations, use the function g = e^{-x^2/sigma^2}

to limit diffusion across boundaries in the image.

Operate on U inplace to optimize performance. """

pass

Show the original image and the diffused image for σ = .1, λ = .25, N =

5, 20, 100.

Hint: If you have an m× n× 3 matrix representing the RGB differences

of each pixel, then to find a matrix representing the norm of the differences,

you can use the following code. This code squares each value and sums along

the last axis, and takes the square root. In order to keep the dimension size

of the matrix and aid in broadcasting, you must use keepdims=True.

x is mxnx3 matrix of pixel color values

norm = np.sqrt(np.sum(x**2, axis=2, keepdims=True))

6 Lab 1. Anisotropic Diffusion

original image after 50 iterations

Figure 1.1: Smearing of similar colors when using an anisotropic diffusion filter.

Noisy Images

Problem 3. Use the following code to add noise to your grayscale image.

from numpy.random import randint

image = imread('balloon.jpg', flatten=True)

x, y = image.shape

for i in xrange(x*y//100):

image[randint(x),randint(y)] = 127 + randint(127)

Run anisdiff_bw() on the noisy image with σ = .1, λ = .25, N = 20.

Display the original image and the noisy image. Explain why anisotropic

diffusion does not smooth out the noise.

Hint: Don’t forget to rescale.

Minimum Bias (Optional)

This sort of anisotropic diffusion can be very effective, but, depending on the image,

it may also smear out edges that do not have large differences between them. An

example of this limitation can be seen in Figure 1.1

As we can see, after 100 iterations, some of the boundaries between similar

shades of grey have smeared unevenly. You may still have to look closely to see

it. This can be counteracted somewhat by further decreasing the σ value, but if

7

we have random noise throughout the image, this will not remove it. If we have

random static in the image, we can remove this using a modified version of the filter.

Instead of measuring the rate of change in the picture in each direction, we change

each point according to whether or not any of its adjacent points have roughly the

same value it has. This is called a minimum-biased filter. This sort of trick is

especially good for removing isolated pixels that are different from those around

them. A very simple way to do this is by taking the average of the two smallest

differences between each pixel and its eight neighbors and using that in place of g

in the difference scheme above. Along the boundaries, we do not have 8 neighbors

for each pixel, but we can get by by just using the pixels we have and eliminating

the other terms in the difference scheme, just as we did before. This will make it so

that points that neighbor points of similar value will not be changed, while points

that do not match their surroundings will be faded to become more like the points

surrounding them. This does not have the same symmetrical diffusion as the other

scheme, i.e. if one pixel changes, it does not necessarily change its neighboring

pixels by the same amount. As long as you leave λ ≤ 1
4 and you have scaled the

pixels to have floating point values between 0 and 1, the scheme will still remain

within its minimum and maximum bounds, since the tendency is always to move

points closer to the values of their neighbors. To demonstrate the action of such a

filter, we make changes to random pixels in the color version of the same photo and

use both filters to remove the noise we have added. Below, we include an example

where we have added noise to the color version of that same picture, then used a

minimum-biased filter to diminish the noise and the original filter to smooth what

remains.

*Problem 4. (Optional)

Implement the minimum-biased finite difference scheme described above.

Add noise to balloons_color.jpg using the provided code below, and clean it

using your implementation. Show the original image, the noised image, and

the cleaned image.

image = imread('balloons_color.jpg')

x,y,z = image.shape

for dim in xrange(z):

for i in xrange(x*y//100):

Assign a random value to a random place

image[randint(x),randint(y),dim] = 127 + randint(127)

Hint: Don’t forget to rescale.

8 Lab 1. Anisotropic Diffusion

original image

randomly changed 100000 color val-

ues

300 iterations of a min-biased scheme

after 8 additional iterations of the

first filter with λ = .25 and σ = .04.

	Anisotropic Diffusion

