
Lab 10

Wave Phenomena

Advection Equation

The advection equation (or transport equation) is given by ut + sux = 0, where s

is a nonzero constant. Consider the Cauchy problem

ut + sux = 0, −∞ < x <∞,
u(x, 0) = f(x).

The function f(x) may be thought of as an initial wave or signal. The general

solution of this initial boundary value problem is u(x, t) = f(x − st) (check this!).

The solution u(x, t) is a travelling wave that takes the signal f(x) and moves it

along at a constant speed s - to the right if s > 0, and to the left if s < 0.

Wave Equation

Many different wave phenomena can be described using a hyperbolic PDE called

the wave equation. These wave phenomena occur in fields such as electromagnetics,

fluid dynamics, and acoustics. This equation is given by

utt = s24u. (10.1)

The 1D equation can be derived in the context of many physical models; a common

derivation describes the motion of a string vibrating in a plane. Another nice

derivation uses Hooke’s law from the theory of elasticity.

After making the change of variables (ξ, η) = (x−st, x+st) and using the chain

rule, we find that the 1D wave equation utt = s2uxx is equivalent to uξη = 0. The

general solution of this last equation is

u(ξ, η) = F (ξ) +G(η)

for some scalar functions F and G. In (x, t) coordinates the solution is

u(x, t) = F (x− st) +G(x+ st)
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Thus the general solution of the wave equation is the sum of two parts: one is

a signal travelling to the right with constant speed |s|, and the other is a signal

travelling to the left with speed |s|.
The wave equation is usually seen in the context of an initial boundary value

problem. This takes the form

utt = s2uxx, 0 < x < l, t > 0,

u(0, t) = u(l, t) = 0,

u(x, 0) = f(x),

ut(x, 0) = g(x).

Numerical solution of the wave equation

We look to approximate u(x, t) on a grid of points (xj , tm)J,Mj=0,m=0. Denote the

approximation to u(xj , tm) by Umj . Recall that the centered approximations in

space and time are

DttU
m
j =

Um+1
j − 2Umj + Um−1

j

(4t)2
,

DxxU
m
j =

Umj+1 − 2Umj + Umj−1

(4x)2
.

The resulting method is given by

Um+1
j − 2Umj + Um−1

j

(4t)2
= s2

Umj+1 − 2Umj + Umj−1

(4x)2
,

Um+1
j = −Um−1

j + 2(1− λ2)Umj + λ2(Umj+1 + Umj−1),

where λ = s(4t)/(4x). This method may be written in matrix form as

Um+1 = AUm − Um−1

where

A =


2(1− λ2) λ2

λ2 2(1− λ2) λ2

. . .
. . .

. . .

λ2 2(1− λ2) λ2

λ2 2(1− λ2)


and

Um =


Um1
Um2

...

UmJ−1


In the matrix equation above, we have already used the boundary conditions

to determine that Um0 = UmJ = 0 at each time tm. Note that, to obtain the

approximation Um+1
j of u(xj , tm+1), the method uses the value of the approximation
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at the previous two time steps. We can find the solution for the first two time

steps by using the initial conditions. Using the initial conditions directly gives an

approximation at t = t0 = 0 :

U0
j = f(xj), 1 ≤ j ≤ J − 1

To obtain an approximation at the second time step, we consider the Taylor

expansion

u(xj , t1) = u(xj , 0) + ut(xj , 0)4t+ utt(xj , 0)
4t2

2
+ uttt(xj , t

∗
1)
4t3

6
.

Recalling that the solution u(x, t) satisfies the wave equation, we substitute in

expressions from our initial conditions:

u(xj , t1) = u(xj , 0) + g(xj)4t+ s2f ′′(xj)
4t2

2
+ uttt(xj , t

∗
1)
4t3

6
.

Ignoring the third order term, we obtain a second order approximation for the

second time step:

U1
j = U0

j + g(xj)4t+ s2f ′′(xj)
4t2

2
, 1 ≤ j ≤ J − 1

or if f is not readily differentiable,

U1
j = U0

j + g(xj)4t+
λ2

2
(U0

j−1 − 2U0
j + U0

j+1)

This method is conditionally stable; the CFL condition is that λ ≤ 1.

Problem 1. Consider the initial boundary value problem

utt = uxx,

u(0, t) = u(1, t) = 0,

u(x, 0) = sin(2πx),

ut(x, 0) = 0.

Numerically approximate the solution u(x, t) at t = .5. Use J = 5 subinter-

vals in the x dimension and M = 5 subintervals in the t dimension. Compare

your results with the analytic solution u(x, t) = sin (2πx) cos (2πt). This

function is known as a standing wave.
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Problem 2. Consider the initial boundary value problem

utt = uxx,

u(0, t) = u(1, t) = 0,

u(x, 0) = .2e−m
2(x−1/2)2

ut(x, 0) = −.4m2(x− 1/2)e−m
2(x−1/2)2 .

The solution of this problem is a Gaussian pulse. It travels to the right

at a constant speed. This solution models, for example, a wave pulse in a

stretched string. Note that the fixed boundary conditions reflect the pulse

back when it meets the boundary.

Numerically approximate the solution u(x, t) at t = 1 (set m = 20). Use

200 subintervals in space and 220 in time, and animate your results. Then use

200 subintervals in space and 180 in time. Note that the stability condition

is not satisfied for the second mesh.

Problem 3. Consider the initial boundary value problem

utt = uxx,

u(0, t) = u(1, t) = 0,

u(x, 0) = .2e−m
2(x−1/2)2

ut(x, 0) = 0.

The initial condition separates into two smaller, slower-moving pulses, one

travelling to the right and the other to the left. This solution models, for

example, a plucked guitar string

Numerically approximate the solution u(x, t) at t = 2 (set m = 20).

Use 200 subintervals in space and 440 in time, and animate your results.

It is rather easy to see that the solution to this problem is the sum of two

travelling waves, one travelling to the left and the other to the right, as

described earlier. How can the solution to the first problem also be shown

to be the sum of two travelling waves?
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Problem 4. Consider the initial boundary value problem

utt = uxx,

u(0, t) = u(1, t) = 0,

u(x, 0) =

{
1/3 if 5/11 < x < 6/11,

0 otherwise

ut(x, 0) = 0.

Numerically approximate the solution u(x, t) at t = 2. Use 200 subin-

tervals in space and 440 in time, and animate your results. Even though

the method is second order and stable for this discretization, since the initial

condition is discontinuous there are large dispersive errors. The finite volume

method can be used to smooth out the numerical solution.

Travelling Wave Solutions of an Evolution Equation

Recall that the advection (transport) equation with initial conditions, given by

ut + sux = 0, −∞ < x <∞,
u(x, 0) = f(x),

has as its general solution u(x, t) = f(x−st). Consider a general evolutionary PDE

of the form

ut = G(u, ux, uxx, . . .) (10.2)

An interesting question to ask is whether (10.2) has travelling wave solutions: is

there a signal or wave profile f(x), so that u(x, t) = f(x − st) is a solution of

(10.2) that carries the signal at a constant speed s? These travelling waves are

often significant physically. For example, in a PDE modeling insect population

dynamics a travelling wave could represent a swarm of locusts; in a PDE describing

a combustion process a travelling wave could represent an explosion or detonation.

Burgers’ equation

We will examine the process of studying travelling wave solutions using Burgers’

equation, a nonlinear PDE from gas dynamics. It is given by

ut +

(
u2

2

)
x

= νuxx, (10.3)

where u and ν represent the velocity and viscosity of the gas, respectively. It models

both the process of transport with the nonlinear advection term (u2/2)x = uux, as

well as diffusion due to the viscosity of the gas (νuxx).
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Let us look for a travelling wave solution u(x, t) = û(x−st) for Burgers equation.

We transform (10.3) into the moving frame (x, t)→ (x̄, t̄) = (x−st, t). In this frame

(10.3) becomes

ut̄ − sux̄ +

(
u2

2

)
x̄

= νux̄x̄ (10.4)

This new frame of reference corresponds to an observer moving along with the wave,

so that the wave appears stationary as the observer studies it. Thus, ût̄ = 0, so

that the wave profile û satisfies the ordinary differential equation

−sux̄ +

(
u2

2

)
x̄

= νux̄x̄. (10.5)

From here on we will drop the bar notation for simplicity. We seek a trav-

elling wave solution with asymptotically constant boundary conditions; that is,

limx→±∞ û(x) = u± both exist, and limx→±∞ û′(x) = 0. We will suppose that

u− > u+ > 0.

Note that to this point we still don’t know the speed of the travelling wave.

Integrating both sides of this differential equation, and then taking the limit as

x→ +∞, we obtain

−s
∫ x

−∞
u′ +

∫ x

−∞

(
u2

2

)′
= ν

∫ x

−∞
u′′,

−s(u(x)− u−) +
u2(x)

2
−
u2
−
2

= ν(u′(x)− u′(−∞)),

−s(u+ − u−) +
u2

+

2
−
u2
−
2

= 0.

Thus given boundary conditions u± at ±∞, the speed of the travelling wave must

be s = u−+u+

2 .

Usually at this point, the travelling wave must be numerically solved using the

profile ODE ((10.5) for Burgers equation). However, the profile ODE for Burgers

is simple enough that it is possible to obtain an analytic solution. The travelling

wave is given by

û(x) = s− a tanh
(ax

2ν
+ δ
)

where a = (u−−u+)/2 and δ is fixed real number. We get a family of solutions be-

cause any translation of a travelling wave solution is also a travelling wave solution.

Stability of travelling waves

Suppose that an evolutionary PDE

ut = G(u, ux, uxx, . . .). (10.6)

has a travelling wave solution u(x, t) = û(x−st). An interesting question to consider

is whether the mathematical solution, û, has a physical analogue. In other words,

does the travelling wave show up in real life? This question is the start of the

mathematical study of stability of travelling waves.
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We begin by translating (10.6) into the moving frame (x, t)→ (x̄, t̄) = (x−st, t).
In this frame the PDE becomes

ut − sux = G(u, ux, uxx, . . .).

In these coordinates the travelling wave is stationary. Thus, the solution of

ut − sux = G(u, ux, uxx, . . .),

u(x, t = 0) = û(x),

is given by u(x, t) = û(x). We say that the travelling wave û is asymptotically

orbitally stable if whenever v(x) is a small perturbation of û(x), the general solution

of

ut − sux = G(u, ux, uxx, . . .),

u(x, t = 0) = v(x),

converges to some translation of û as t→∞. Using this definition to prove stability

of a travelling wave is a nontrivial task.

Visualizing stability of the travelling wave solution of Burgers’ equation

The travelling wave solution of Burgers’ equation is a stable wave. To view this

numerically, we discretize the PDE

ut − sux + uux = uxx

using the second order centered approximations

DtU
n+1/2
j =

Un+1
j − Unj
4t

, DxxU
n+1/2
j =

1

2

(
Un+1
j+1 − U

n+1
j−1

24x
+
Unj+1 − Unj−1

24x

)
,

DxxU
n+1/2
j =

1

2

(
Un+1
j+1 − U

n+1
j + Un+1

j−1

(4x)2
+
Unj+1 − Unj + Unj−1

(4x)2

)

Substituting these expressions into the PDE we obtain a second-order, implicit

Crank-Nicolson method

Un+1
j − Unj = K1

[
(s− Un+1

j )(Un+1
j+1 − U

n+1
j−1 ) + (s− Unj )(Unj+1 − Unj−1)

]
+K2

[
(Un+1

j+1 − 2Un+1
j + Un+1

j−1 ) + (Unj+1 − 2Unj + Unj−1)
]
,

where K1 = 4t
44x and K2 = 4t

2(4x)2 .

Problem 5. Numerically solve the initial value problem

ut − sux + uux = uxx, x ∈ (−∞,∞),

u(x, 0) = v(x),
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for t ∈ [0, 1]. Let the perturbation v(x) be given by

v(x) = 3.5(sin (3x) + 1)
1√
2π

exp (−x2/2)

And let the initial condition be u(x, 0) = û(x) + v(x) Approximate the x

domain,(−∞,∞), numerically by the finite interval [−20, 20], and fix u(−20) =

u−, u(20) = u+. Let u− = 5, u+ = 1. Use 150 intervals in space and 350

steps in time. Animate your results. You should see the solution converge

to a translate of the travelling wave û.

Hint: This difference scheme is no longer a linear equation. We have a

nonlinear equation in Un+1. We can still solve this function using Newton’s

method or some other similar solver. In this case, use scipy.optimize.fsolve.


