
Lab 1

Finite Volume Methods

When solving a PDE numerically, how do we deal with discontinuous initial data?

The Finite Volume method has particular strength in this area. It is commonly used

for hyperbolic PDEs whose solutions can spontaneously develop discontinuities as

they evolve in time. These solutions are often called shock waves.

Conservation Laws

Consider the conservation law

ut + f(u)x = 0, (1.1)

where u is a (spatially) one-dimensional conserved quantity, and f(u) is the flux of

u. The continuous integral formulation of (1.1) states that

d

dt

∫ b

a

u(x, t)dx +

∫ b

a

f(u)x dx = 0.

d
dt

∫ b

a
u(x, t)dx may be thought of as the time evolution of the total ‘mass’ of u

across the domain [a, b], and is dependent only on the flux through the boundaries,

since

d

dt

∫ b

a

u(x, t)dx = f(u(a))− f(u(b)).

This fact is an important idea utilized by finite volume methods, which generally

consider the evolution of u not at a given point, but instead in volume-averaged

regions. For example, let {xi} be a grid of equally spaced points with spacing ∆x,

and let Ci be the i-th ‘volume’ (subinterval) defined by (xi−1/2, xi+1/2). We are

interested in the evolution of the volume average of u over this interval,

Un
i =

1

∆x

∫
Ci

u(x, tn)dx,

where {tn} is the time discretization.

1

2 Lab 1. Finite Volume Methods

t n

t n+1

U i
n U i+1

nU i−1
n

U i
n+1

F i−1 /2
n F i+1 /2

n

Figure 1.1: A schematic of the fluxes for the finite volume method as indicated by

(1.3).

The evolution of these volume-averaged quantities will depend only on the flux

through the cell edges, so that

d

dt

∫
Ci

u(x, t)dx = f(u(xi−1/2, t))− f(u(xi+1/2, t)). (1.2)

We can then construct a time-stepping method where
∑

i U
n
i ∆x (the total ‘mass’

of the system) is conserved from one time step n to the next.

Let Fn
i−1/2 = 1

4t

∫ tn+1

tn
f(u(xi−1/2, t)) dt. Then

∫ tn+1

tn

[
d

dt

∫
Ci

u(x, t) dx

]
=

∫
Ci

u(x, tn+1)− u(x, tn) dx,

= 4t
(
Fn
i−1/2 − Fn

i+1/2

)
.

Thus, by integrating (1.2) in time, we may approximate the evolution of the cell

(‘volume’) averages with the method

Un+1
i = Un

i −
∆t

∆x

(
Fn
i+1/2 − Fn

i−1/2

)
. (1.3)

where Un
i = 1

4x

∫
Ci

u(x, tn) dt. This formulation guarantees the conservation prop-

erties that are so desirable for conservation laws, if the time-averaged fluxes Fn
i−1/2

can be discretized in a natural way.

The key contribution of finite volume methods is the computation of Fn
i−1/2.

For a truly nonlinear f(u) this can be rather complicated and messy, and typically

will involve solving what is usually referred to as the Riemann problem for the

conservation law. The interested student can look at [Le2002] for a very thorough

introduction and discussion on the subject. We will consider the linear problem

in one dimension. The analog to higher dimensions is obtained by considering the

eigenvector decomposition of any linear system. Nonlinear equations complicate

things further.

3

The linear advection equation and upwinding

The simplest conservation law describes the advection or transport of a quantity.

The PDE is given by

ut + aux = 0, (1.4)

and describes the motion of a concentration of some constituent u by a constant

velocity one-dimensional ‘wind’ a > 0. In higher dimensions this is an important

problem in many fields, for example the transport of chemicals in the atmosphere

and oceans, proper mixing of various properties in metallurgy, and the passing of

information along a network.

Note that whenever u(x, t) is a solution of the advection equation, then u(x −
at, t0) (for any fixed t0) is also a solution. Thus, if u(x, 0) = u0(x) then the solution

for all time can be represented by u(x, t) = u0(x−at). This is an important property

of (1.4), and gives a new meaning to the term advection: this equation merely takes

the initial conditions and passively transports them with velocity a.

For this equation the computation of the flux appears straightforward: Fn
i−1/2 =

aU
n

i−1/2 where the U
n

i−1/2 refers to the time average of Ui−1/2 over the interval tn
to tn+1. Let us determine how to approximate this time average. Note from Figure

1.2 that when a > 0 the flux that determines Un+1
i will be dependent on the value

of Un
i−1. Thus, one possibility is to approximate the flux by Fn

i−1/2 = aUn
i−1. Using

this approximation of the flux together with the flux differencing formula (1.3) yields

the first order upwind method, given by

Un+1
i = Un

i −
a∆t

∆x

(
Un
i − Un

i−1
)
.

Another way to derive the upwind method is to instead suppose that what we want

to do is reconstruct u(x) at each time step n inside each cell (xi−1/2, xi+1/2)from the

mean values in that cell and its surrounding neighbors. This reconstructed ũ(x)n

is then defined piecewise for each cell i. The solution at the next time step can be

found as ũn+1(x) = ũn(x − a4t) which allows us to determine the fluxes Fn
i−1/2

once we have settled on a method for determining ũn(x) in each cell. The simplest

approach is

ũn(x) = Un
i for x ∈ (xi−1/2, xi+1/2)

This leads to fluxes given by

Fn
i−1/2 =

a

4t

∫ tn+1−tn

0

ũn(xi−1/2, t) dt, (1.5)

=
a

4t

∫ 4t

0

ũn(xi−1/2 − at) dt, (1.6)

= aUn
i−1.

The following code solves the problem

ut + aux = 0, 0 < x < 1,

u(x, t) = f(x),

u(0, t) = u(1, t),

(1.7)

4 Lab 1. Finite Volume Methods

U
i−1

U
i

U
i+1

U
i+2

U
i−2

Figure 1.2: The piecewise linear reconstruction for the upwind and Lax-Wendroff

methods. The solid lines represent the simplest reconstruction of the cell aver-

ages leading to the upwind method, and the dashed lines are those whose slope is

obtained via the Lax-Wendroff method. Note that the LW method introduces a

spurious maximum at i + 3/2 (the cell edge between Ui+1 and Ui+2) and the min-

imum at i − 3/2 will be unphysical exaggerated. The upwind method avoids this

difficulties, but clearly loses a significant amount of the available information. This

provides the motivation for the slope limiters.

where f represents a signal with two parts: one is smooth and the other is dis-

continuous. Notice that this PDE has periodic boundary conditions. Essentially

we are evolving the signal around the unit circle. This allows us to evolve the sig-

nal much further to test our numerical methods, since we only have to discretize

the interval [0, 1] instead of a much larger domain. To see how to implement the

boundary conditions, consider a grid 0 = x0 < x1 < . . . < xN−1 < xN = 1 of evenly

spaced points. Since u(x) is periodic then u(xN) = u(x0), so it is sufficient to track

x0, . . . , xN−1.

import numpy as np

from matplotlib import pyplot as plt

from math import floor

def upwind(u0, a, xmin, xmax, t_final, nt):

5

""" Solve the advection equation with periodic

boundary conditions on the interval [xmin, xmax]

using the upwind finite volume scheme.

Use u0 as the initial conditions.

a is the constant from the PDE.

Use the size of u0 as the number of nodes in

the spatial dimension.

Let nt be the number of spaces in the time dimension

(this is the same as the number of steps if you do

not include the initial state).

Plot and show the computed solution along

with the exact solution. """

dt = float(t_final) / nt

Since we are doing periodic boundary conditions,

we need to divide by u0.size instead of (u0.size - 1).

dx = float(xmax - xmin) / u0.size

lambda_ = a * dt / dx

u = u0.copy()

for j in xrange(nt):

The Upwind method. The np.roll function helps us

account for the periodic boundary conditions.

u -= lambda_ * (u - np.roll(u, 1))

Get the x values for the plots.

x = np.linspace(xmin, xmax, u0.size+1)[:-1]

Plot the computed solution.

plt.plot(x, u, label='Upwind Method')

Find the exact solution and plot it.

distance = a * t_final

roll = int((distance - floor(distance)) * u0.size)

plt.plot(x, np.roll(u0, roll), label='Exact solution')

Show the plot with the legend.

plt.legend(loc='best')

plt.show()

Define the initial conditions.

Leave off the last point since we're using periodic

boundary conditions.

nx = 30

nt = nx * 3 // 2

x = np.linspace(0., 1., nx+1)[:-1]

u0 = np.exp(-(x - .3)**2 / .005)

arr = (.6 < x) & (x < .7)

u0[arr] += 1.

Run the simulation.

upwind(u0, 1.2, 0, 1, 1.2, nt)

Try running the previous code block with nx set to 30, 60, 120, and 240. You

will notice that the numerical solution diffuses with time. It diffuses especially fast

at the points of discontinuity.

Piecewise linear reconstruction and slope limiters

The upwind method is formally only first order, and actually does relatively poorly

in terms of actually transporting the initial data with velocity a. You can notice

from the example code that the upwind method has errors that are ‘diffusive’ mean-

ing that the initial data is diffused as time evolves, losing the peaks and fine details.

6 Lab 1. Finite Volume Methods

This is because the error for the upwind method is on the order of the second

derivative of u which is of a diffusive nature. To get an improved method, consider

a better reconstruction inside each cell, i.e.

ũn(x) = Un
i + mn

i (x− xi) for x ∈ (xi−1/2, xi+1/2) (1.8)

where the slope of this linear reconstruction mn
i is determined as a function of the

neighboring cell averages at time n and Un
i itself. Then the flux is given by

Fn
i−1/2 =

a

4t

∫ tn+1−tn

0

ũn(xi−1/2 − at) dt,

=
a

4t

∫ 4t

0

Un
i−1 + mn

i (xi−1/2 − at− xi),

= a

(
Un
i−1 +

mn
i−1
2

(4x− a4t)

)
.

(1.9)

One of the most natural approaches is to just estimate the slope depending on the

cell i and a neighboring cell i + 1 or i− 1. This leads to two popular methods, the

Lax-Wendroff method and the Beam-Warming method (that really is the name).

The Lax-Wendroff method has a slope chosen as

mn
i =

Un
i+1 − Un

i

∆x
. (1.10)

which it turns out is formally second-order accurate. It turns out though that the

errors for this method are dispersive, meaning that near very steep gradients, the

method will generate very rapid oscillations (due to the third derivative of u not

being approximated accurately). Another way to consider how these errors arise is

to notice from Figure 1.2 that if the piecewise linear reconstruction is advocated by

some positive wind a then there will be places where the discontinuous nature of the

reconstruction will introduce spurious maxima or minima into the solution. These

become the spurious waves seen in simulations using the Lax-Wendroff method.

A solution to this dilemma between balancing the diffusive and dispersive errors

comes from constructing slopes mn
i that ensure no such non-monotonic transport

takes place. The basic idea is to constrain the slope so that the reconstructed

piecewise linear function ũn(x) will not generate unphysical extremal values when

it is advocated by some finite wind a. The Minmod limiter chooses the slope as

mn
i = minmod

(
Un
i − Un

i−1
∆x

,
Un
i+1 − Un

i

∆x

)
(1.11)

where

minmod(a, b) =

a if |a| < |b| and ab > 0

b if |b| < |a| and ab > 0

0 if ab < 0.

(1.12)

7

0.0 0.2 0.4 0.6 0.8 1.0
0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Analytic solution
Upwind
Lax Wendroff
Min mod

Figure 1.3: Solutions of (1.7) at time t = 1.2 using various methods. Here the

advection coefficient is a = 1.2, and there are N = 100 subintervals in space, 150

subintervals in time.

Problem 1. Implement the Lax Wendroff method and use it to solve (1.7).

For N = 30, 60, 120, 240, plot the analytic solution, the upwind solution, and

the Lax-Wendroff solution. (You should have 4 separate plots, each with 3

graphs.) You should be able to tell that the Lax Wendroff method approxi-

mates the smooth portion of the signal much better, as it does not struggle

with diffusion. Unfortunately, it has some difficulty with the discontinuous

portion, where unphysical oscillations are seen. Recall that we saw something

similar in the waves lab when there were discontinuous initial conditions.

Hint: Use equations 1.9 and 1.3.

Problem 2. Implement the Minmod method and use it to solve (1.7). For

N = 30, 60, 120, 240, plot the anaytic solution, the upwind solution, the Lax-

Wendroff solution, and the Minmod solution. (You should have 4 separate

plots, each with 4 graphs.) Be sure to vectorize the minmod operation.

Hint: Use equations 1.9 and 1.3.

8 Lab 1. Finite Volume Methods

Beyond piecewise linear reconstructions

As you can imagine, using a linear approximation is not the only option. There are a

host of high order finite volume methods that consider polynomial reconstructions

of ũn inside each cell. The key is then to use some nonlinear limiting technique

that will ensure that when ũn(x) is advocated that no new extrema are introduced.

Choosing the correct limiter for the given application then becomes an art unto

itself.

	Finite Volume Methods

