Lab 18

Transit time crossing a river

Lab Objective: This lab discusses a classical calculus of variations problem: how is a river to be crossed in the shortest possible time? We will look at a numerical solution using the pseudospectral method.

Suppose a boat is to be rowed across a river, from a point A on one side of a river $(x=-1)$, to a point B on the other side $(x=1)$. Assuming the boat moves at a constant speed 1 relative to the current, how must the boat be steered to minimize the time required to cross the river?

Let us consider a typical trajectory for the boat as it crosses the river. If T is the time required to cross the river, then the position s of the boat at time t is

$$
\begin{aligned}
s(t) & =\langle x(t), y(t)\rangle, \quad t \in[0, T] \\
s^{\prime}(t) & =\left\langle x^{\prime}(t), y^{\prime}(t)\right\rangle \\
& =\langle\cos \theta(x(t)), \sin \theta(x(t))\rangle+\langle 0, c(x(t))\rangle
\end{aligned}
$$

Here $\langle\cos \theta, \sin \theta\rangle$ represents the motion of the boat due to the rower, and $\langle 0, c\rangle$ is the motion of the boat due to the current.

We can relate the angle at which the boat is steered to the graph of its trajectory by noting that

$$
\begin{align*}
y^{\prime}(x) & =\frac{y^{\prime}(t)}{x^{\prime}(t)} \\
& =\frac{\sin \theta+c}{\cos \theta} \tag{18.1}\\
& =c \sec \theta+\tan \theta
\end{align*}
$$

The time T required to cross the river is given by

$$
\begin{align*}
T & =\int_{-1}^{1} t^{\prime}(x) d x \\
& =\int_{-1}^{1} \frac{1}{x^{\prime}(t)} d x \tag{18.2}\\
& =\int_{-1}^{1} \sec \theta(x) d x
\end{align*}
$$

Figure 18.1: The river's current, along with a possible trajectory for the boat.

We would like to find an expression for the total time T required to cross the river from A to B, in terms of the graph of the boat's trajectory. To derive the functional $T[y]$, we note that

$$
\begin{aligned}
T[y] & =\int_{-1}^{1} \sec \theta d x \\
& =\int_{-1}^{1} \frac{1}{1-c^{2}}\left(c \tan \theta+\sec \theta-c^{2} \sec \theta-c \tan \theta\right) d x \\
& =\int_{-1}^{1} \frac{1}{1-c^{2}}\left(c \tan \theta+\sec \theta-c y^{\prime}\right) d x
\end{aligned}
$$

Since

$$
\begin{aligned}
c \tan \theta+\sec \theta & =\sqrt{1-c^{2}+(c \sec \theta+\tan \theta)^{2}} \\
& =\sqrt{1-c^{2}+\left(y^{\prime}\right)^{2}}
\end{aligned}
$$

we obtain at last

$$
\begin{equation*}
T[y]=\int_{-1}^{1}\left[\alpha(x) \sqrt{1+\left(\alpha y^{\prime}\right)^{2}(x)}-\left(\alpha^{2} c y^{\prime}\right)(x)\right] d x \tag{18.3}
\end{equation*}
$$

where $\alpha=\left(1-c^{2}\right)^{-1 / 2}$.

Problem 1. Assume that the current is given by $c(x)=-\frac{7}{10}\left(x^{2}-1\right)$. (This function assumes, for example, that the current is faster near the center of the river.) Write a Python function that accepts as arguments a function y, its derivative y^{\prime}, and an x-value, and returns $L\left(x, y(x), y^{\prime}(x)\right.$) (where $T[y]=$ $\left.\int_{-1}^{1} L\left(x, y(x), y^{\prime}(x)\right)\right)$. Use that function to define a second function that numerically computes $T[y]$ for a given path $y(x)$.

Problem 2. Let $y(x)$ be the straight-line path between $A=(-1,0)$ and $B=(1,5)$. Numerically calculate $T[y]$ to get an upper bound on the minimum time required to cross from A to B. Using (18.2), find a lower bound on the minimum time required to cross.

We look for the path $y(x)$ that minimizes the time required for the boat to cross the river, so that the function T is minimized. From the calculus of variations we know that a smooth path $y(x)$ minimizes T only if the Euler-Lagrange equation is satisfied. Recall that the Euler-Lagrange equation is

$$
L_{y}-\frac{d}{d x} L_{y^{\prime}}=0
$$

Since $L_{y}=0$, we see that the shortest time trajectory satisfies

$$
\begin{equation*}
\frac{d}{d x} L_{y^{\prime}}=\frac{d}{d x}\left(\alpha^{3}(x) y^{\prime}(x)\left(1+\left(\alpha y^{\prime}\right)^{2}(x)\right)^{-1 / 2}-\alpha^{2}(x) c\right)=0 \tag{18.4}
\end{equation*}
$$

Problem 3. Numerically solve the Euler-Lagrange equation (18.4), using $c(x)=-\frac{7}{10}\left(x^{2}-1\right)$ and $\alpha=\left(1-c^{2}\right)^{-1 / 2}$, and $y(-1)=0, y(1)=5$.

Hint: Since this boundary value problem is defined over the doimain $[-1,1]$, it is easy to solve using the pseudospectral method. Begin by replacing each $\frac{d}{d x}$ with the pseudospectral differentiation matrix D. Then impose the boundary conditions and solve.

Problem 4. Plot the angle at which the boat should be pointed at each x-coordinate. (Hint: Use Equation (18.1); see Figure 18.3. Note that the angle the boat should be steered is not described by the tangent vector to the trajectory.)

Figure 18.2: Numerical computation of the trajectory with the shortest transit time.

Figure 18.3: The optimal angle to steer the boat.

