
A Installing and
Managing Python

Lab Objective: One of the great advantages of Python is its lack of overhead: it is relatively easy
to download, install, start up, and execute. This appendix introduces tools for installing and updating
specific packages and gives an overview of possible environments for working efficiently in Python.

Installing Python via Anaconda
A Python distribution is a single download containing everything needed to install and run Python,
together with some common packages. For this curriculum, we strongly recommend using the
Anaconda distribution to install Python. Anaconda includes IPython, a few other tools for developing
in Python, and a large selection of packages that are common to applied mathematics, numerical
computing, and data science. Anaconda is free and available for Windows, Mac, and Linux.

Follow these steps to install Anaconda.

1. Go to http://www.continuum.io/downloads.

2. Download the Python 3.6 graphical installer specific to your machine.

3. Open the downloaded file and proceed with the default configurations.

Achtung!

This curriculum uses Python 3.6, not Python 2.7. With the wrong version of Python, some
example code within the labs may not execute as intended or result in an error.

For help with installation of Anaconda, visit https://docs.continuum.io/anaconda/install/.
This page contains links to detailed step by step installation instructions for each operating system,
as well as information for updating and uninstalling Anaconda.

Managing Packages
A package manager is a tool for installing or updating Python packages, which involves downloading
the right source code files, placing those files in the correct location on the machine, and linking the
files to the Python interpreter. Never try to install a package without using a package manager.

1

http://www.continuum.io/downloads
https://docs.continuum.io/anaconda/install/


2 Appendix A. Installing and Managing Python

Conda

Some packages are not included in the default Anaconda download but can still be installed using
conda, Anaconda’s package manager. See http://docs.continuum.io/anaconda/pkg-docs.html
for the complete list. When you need to update or install a package, always try using conda first.

Command Description
conda install package-name Install the specified package.
conda update package-name Update the specified package.
conda update conda Update conda itself.
conda update anaconda Update all packages included in Anaconda.
conda --help Display the documentation for conda.

For example, the following commands attempt to install and update matplotlib.

$ conda update conda # Make sure that conda is up to date.
$ conda install matplotlib # Attempt to install matplotlib.
$ conda update matplotlib # Attempt to update matplotlib.

See https://conda.io/docs/using/pkgs.html for more detailed examples.

Note

The best way to ensure a package has been installed correctly is to try importing it in IPython.

Achtung!

Be careful not to attempt to update a Python package while it is in use. It is safest to update
packages while the Python interpreter is not running.

Pip

The most generic Python package manager is called pip. While it has a larger package list, conda is
the cleaner and safer option. Only use pip to manage packages that are not available through conda.

Command Description
pip install package-name Install the specified package.
pip install --upgrade package-name Update the specified package.
pip freeze Display the version number on all installed packages.
pip --help Display the documentation for pip.

See https://pip.pypa.io/en/stable/user_guide/ for more complete documentation.

http://docs.continuum.io/anaconda/pkg-docs.html
https://conda.io/docs/using/pkgs.html
https://pip.pypa.io/en/stable/user_guide/


3

Workflows
There are several different ways to write and execute programs in Python. Try a variety of workflows
to find what works best for you.

Text editor + Terminal
The most basic way of developing in Python is to write the program in a text editor and then run it
using either the Python or IPython interpreter in the terminal.

There are many different text editors available for code development. Many text editors are
designed specifically for computer programming which contain features such as syntax highlighting
and error detection, and are highly customizable.

Some popular editors include:

• Atom (https://atom.io/)

• Sublime Text (https://www.sublimetext.com/)

• Notepad++ (Windows)

• TextWrangler (Mac)

• Geany (Linux)

• Vim

• Emacs

Once Python code has been written in a text editor, it can be executed in the terminal or
command line. This can be done directly by running

$ python <filename> # Do not include < >

or through the Python or IPython interpreter. The Python or IPython interpreters are opened by
running

$ python

or

$ ipython

in the terminal respectively. In these environments you can directly execute Python expressions
individually, or run entire Python files.

IPython is an enhanced version of Python that is more user-friendly and interactive. It has
many features that cater to productivity such as tab completion and object introspection.

Note

While Mac and Linux computers come with a bash terminal built in, Windows computers do
not. Windows does come with Powershell which works similarly. Python and IPython both
work in Powershell, along with commands such as conda and pip.However, some commands

https://atom.io/
https://www.sublimetext.com/


4 Appendix A. Installing and Managing Python

in Powershell are different than their bash analogs, and some programs (such as git) do not
work in Powershell. Windows users who want a bash terminal can download git bash at https:
//git-for-windows.github.io/.

Integrated Development Environments
Integrated Development Environments (IDEs) provide a comprehensive environment with all the
tools necessary for development combined into a single application. Most IDEs have many tightly
integrated tools that are easily accessible.

Eclipse with PyDev

Eclipse is a general purpose IDE that supports many languages. The PyDev plugin for Eclipse
contains all the tools needed to start working in Python. It includes a built-in debugger, and has a
very nice code editor. Eclipse with PyDev is available for Windows, Linux, and Mac OSX.

To download Eclipse, visit http://www.eclipse.org/. The PyDev pluggin can be installed
through the Eclipse application or downloaded from the web. For installation instructions, see
http://www.pydev.org/manual_101_install.html.

Spyder

Spyder: http://code.google.com/p/spyderlib/ Spyder is a Python IDE that comes included with
Anaconda. Spyder comes with built in Python and IPython consoles, as well as interactive testing
and debugging features.

Jupyter Notebook
The Jupyter Notebook (also known as IPython Notebook) is a browser-based interface for Python
that comes included as part of the Anaconda Python Distribution. It has an interface similar to
the IPython interpreter, except that input is stored in cells and can be modified and re-evaluated as
desired.

To begin using Jupyter Notebook, run the following command into the terminal:

$ jupyter notebook

This will open your file system in a web browser in the Jupyter framework. To create a Jupyter
Notebook, click the New drop down menu and choose “Python 3" under the heading Notebooks. A
new tab will open with a new Jupyter Notebook.

Jupyter Notebooks differ from different forms of Python development in that notebook files
contain not only the raw Python code, but also formatting information. As such, Juptyer notebook
files cannot be run in any other development environment. They also have a different file extention
(.ipynb) rather than the standard Python extension (.py)

Jupyter Notebooks also supports Markdown, which is a text formatting engine, LaTeX format-
ting, and embedding images. This makes Jupyter Notebooks ideal for presenting code.

https://git-for-windows.github.io/
https://git-for-windows.github.io/
http://www.eclipse.org/
http://www.pydev.org/manual_101_install.html
http://code.google.com/p/spyderlib/

	Installing and Managing Python

