
� Least Squares and
Computing
Eigenvalues

Lab Objective: Because of its numerical stability and convenient structure, the QR decomposition
is the basis of many important and practical algorithms. In this lab, we introduce linear least squares
problems, tools in Python for computing least squares solutions, and two fundamental algorithms
for computing eigenvalue. The QR decomposition makes solving several of these problems quick and
numerically stable.

Least Squares
A linear system Ax = b is overdetermined if it has more equations than unknowns. In this situation,

there is no true solution, and x can only be approximated.

The least squares solution of Ax = b, denoted

b
x, is the “closest” vector to a solution, meaning

it minimizes the quantity kAb
x� bk2. In other words,

b
x is the vector such that Ab

x is the projection

of b onto the range of A, and can be calculated by solving the normal equations:1

ATAb
x = AT

b

If A is full rank (which it usually is in applications) its QR decomposition provides an efficient

way to solve the normal equations. Let A = bQ bR be the reduced QR decomposition of A, so

bQ is

m⇥ n with orthonormal columns and

bR is n⇥ n, invertible, and upper triangular. Since

bQT bQ = I,
and since

bRT
is invertible, the normal equations can be reduced as follows (we omit the hats on

bQ
and

bR for clarity):

ATAb
x = AT

b

(QR)TQRb
x = (QR)Tb

RTQTQRb
x = RTQT

b

RTRb
x = RTQT

b

Rb
x = QT

b (4.1)

Thus

b
x is the least squares solution to Ax = b if and only if

bRb
x = bQT

b. Since

bR is upper

triangular, this equation can be solved quickly with back substitution.

1See Chapter 3 of Volume I for a formal derivation of the normal equations.
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Problem 1. Write a function that accepts an m ⇥ n matrix A of rank n and a vector b of

length n. Use the QR decomposition and (4.1) to solve the normal equations corresponding to

Ax = b.

You may use either SciPy’s QR routine or one of your own QR routines. In addition, you

may use la.solve_triangular(), SciPy’s optimized routine for solving triangular systems.

Fitting a Line

The least squares solution can be used to find the best fit curve of a chosen type to a set of points.

Consider the problem of finding the line y = ax + b that best fits a set of m points {(xk, yk)}mk=1.

Ideally, we seek a and b such that yk = axk + b for all k. The following linear system simultaneously

represents all of these equations.
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Note that A has full column rank as long as not all of the xk values are the same.

Because this system has two unknowns, it is guaranteed to have a solution if it has two or fewer

equations. However, if there are more than two data points, the system is overdetermined if any set

of three points is not collinear. We therefore seek a least squares solution, which in this case means

finding the slope ba and y-intercept

bb such that the line y = bax+bb best fits the data.

Figure 4.1 is a typical example of this idea where ba ⇡ 1
2 and

bb ⇡ �3.

Figure 4.1
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Problem 2. The file housing.npy contains the purchase-only housing price index, a measure

of how housing prices are changing, for the United States from 2000 to 2010.

a
Each row in the

array is a separate measurement; the columns are the year and the price index, in that order.

To avoid large numerical computations, the year measurements start at 0 instead of 2000.

Find the least squares line that relates the year to the housing price index (i.e., let year

be the x-axis and index the y-axis).

1. Construct the matrix A and the vector b described by (4.2).

(Hint: np.vstack(), np.column_stack(), and/or np.ones() may be helpful.)

2. Use your function from Problem 1 to find the least squares solution.

3. Plot the data points as a scatter plot.

4. Plot the least squares line with the scatter plot.

aSee http://www.fhfa.gov/DataTools/Downloads/Pages/House-Price-Index.aspx.

Note

The least squares problem of fitting a line to a set of points is often called linear regression,

and the resulting line is called the linear regression line. SciPy’s specialized tool for linear

regression is scipy.stats.linregress(). This function takes in an array of x-coordinates and

a corresponding array of y-coordinates, and returns the slope and intercept of the regression

line, along with a few other statistical measurements.

For example, the following code produces Figure 4.1.

>>> import numpy as np
>>> from scipy.stats import linregress

# Generate some random data close to the line y = .5x - 3.
>>> x = np.linspace(0, 10, 20)
>>> y = .5*x - 3 + np.random.randn(20)

# Use linregress() to calculate m and b, as well as the correlation
# coefficient, p-value, and standard error. See the documentation for
# details on each of these extra return values.
>>> a, b, rvalue, pvalue, stderr = linregress(x, y)

>>> plt.plot(x, y, 'k*', label="Data Points")
>>> plt.plot(x, a*x + b, label="Least Squares Fit")
>>> plt.legend(loc="upper left")
>>> plt.show()

http://www.fhfa.gov/DataTools/Downloads/Pages/House-Price-Index.aspx
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Fitting a Polynomial

Least squares can also be used to fit a set of data to the best fit polynomial of a specified degree. Let

{(xk, yk)}mk=1 be the set of m data points in question. The general form for a polynomial of degree

n is as follows.

pn(x) = cnx
n + cn�1x

n�1 + · · ·+ c2x
2 + c1x+ c0 =

nX

i=0

cix
i

Note that the polynomial is uniquely determined by its n + 1 coefficients {ci}ni=0. Ideally, then, we

seek the set of coefficients {ci}ni=0 such that

yk = cnx
n
k + cn�1x

n�1
k + · · ·+ c2x

2
k + c1xk + c0

for all values of k. These m linear equations yield the following linear system:
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If m > n+ 1 this system is overdetermined, requiring a least squares solution.

Working with Polynomials in NumPy

The m ⇥ (n + 1) matrix A of (10.5) is called a Vandermonde matrix.2 NumPy’s np.vander() is a

convenient tool for quickly constructing a Vandermonde matrix, given the values {xk}mk=1 and the

number of desired columns.

>>> print(np.vander([2, 3, 5], 2))
[[2 1] # [[2**1, 2**0]
[3 1] # [3**1, 3**0]
[5 1]] # [5**1, 5**0]]

>>> print(np.vander([2, 3, 5, 4], 3))
[[ 4 2 1] # [[2**2, 2**1, 2**0]
[ 9 3 1] # [3**2, 3**1, 3**0]
[25 5 1] # [5**2, 5**1, 5**0]
[16 4 1]] # [4**2, 4**1, 4**0]

NumPy also has powerful tools for working efficiently with polynomials. The class np.poly1d
represents a 1-dimensional polynomial. Instances of this class are callable like a function.

3

The

constructor accepts the polynomial’s coefficients, from largest degree to smallest.

Table 4.1 lists some attributes and methods of the np.poly1d class.

2Vandermonde matrices have many special properties and are useful for many applications, including polynomial
interpolation and discrete Fourier analysis.

3Class instances can be made callable by implementing the __call__() magic method.
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Attribute Description

coeffs The n+ 1 coefficients, from greatest degree to least.

order The polynomial degree (n).

roots The n� 1 roots.

Method Returns

deriv() The coefficients of the polynomial after being differentiated.

integ() The coefficients of the polynomial after being integrated (with c0 = 0).

Table 4.1: Attributes and methods of the np.poly1d class.

# Create a callable object for the polynomial f(x) = (x-1)(x-2) = x^2 - 3x + 2.
>>> f = np.poly1d([1, -3, 2])
>>> print(f)

2
1 x - 3 x + 2

# Evaluate f(x) for several values of x in a single function call.
>>> f([1, 2, 3, 4])
array([0, 0, 2, 6])

Problem 3. The data in housing.npy is nonlinear, and might be better fit by a polynomial

than a line.

Write a function that uses (10.5) to calculate the polynomials of degree 3, 6, 9, and 12

that best fit the data. Plot the original data points and each least squares polynomial together

in individual subplots.

(Hint: define a separate, refined domain with np.linspace() and use this domain to smoothly

plot the polynomials.)

Instead of using Problem 1 to solve the normal equations, you may use SciPy’s least

squares routine, scipy.linalg.lstsq().

>>> from scipy import linalg as la

# Define A and b appropriately.

# Solve the normal equations using SciPy's least squares routine.
# The least squares solution is the first of four return values.
>>> x = la.lstsq(A, b)[0]

Compare your results to np.polyfit(). This function receives an array of x values, an

array of y values, and an integer for the polynomial degree, and returns the coefficients of the

best fit polynomial of that degree.
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Achtung!

Having more parameters in a least squares model is not always better. For a set of m points, the

best fit polynomial of degree m� 1 interpolates the data set, meaning that p(xk) = yk exactly

for each k. In this case there are enough unknowns that the system is no longer overdetermined.

However, such polynomials are highly subject to numerical errors and are unlikely to accurately

represent true patterns in the data.

Choosing to have too many unknowns in a fitting problem is (fittingly) called overfitting,
and is an important issue to avoid in any statistical model.

Fitting a Circle

Suppose the set of m points {(xk, yk)}mk=1 are arranged in a nearly circular pattern. The general

equation of a circle with radius r and center (c1, c2) is as follows:

(x� c1)
2 + (y � c2)

2 = r2. (4.4)

The circle is uniquely determined by r, c1, and c2, so these are the parameters that should be

solved for in a least squares formulation of the problem. However, (4.4) is not linear in any of these

variables.

(x� c1)
2 + (y � c2)

2 = r2

x2 � 2c1x+ c21 + y2 � 2c2y + c22 = r2

x2 + y2 = 2c1x+ 2c2y + r2 � c21 � c22 (4.5)

The quadratic terms x2
and y2 are acceptable because the points {(xk, yk)}mk=1 are given.

To eliminate the nonlinear terms in the unknown parameters r, c1, and c2, define a new variable

c3 = r2 � c21 � c22. Then for each point (xk, yk), (4.5) becomes the following:

2c1xk + 2c2yk + c3 = x2
k + y2k

These m equations are linear in c1, c2, and c3, and can be written as a linear system.
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After solving for the least squares solution, r can be recovered with the relation r =
p
c21 + c22 + c3.

Finally, plotting a circle is best done with polar coordinates. Using the same variables as before, the

circle can be represented in polar coordinates.

x = r cos(✓) + c1, y = r sin(✓) + c2, ✓ 2 [0, 2⇡] (4.7)

To plot the circle, solve the least squares system for c1, c2, and r, define an array for ✓, then use

(4.7) to calculate the coordinates of the points the circle.
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# Load some data and construct the matrix A and the vector b.
>>> xk, yk = np.load("circle.npy").T
>>> A = np.column_stack((2*xk, 2*yk, np.ones_like(xk)))
>>> b = xk**2 + yk**2

# Calculate the least squares solution and solve for the radius.
>>> c1, c2, c3 = la.lstsq(A, b)[0]
>>> r = np.sqrt(c1**2 + c2**2 + c3)

# Plot the circle using polar coordinates.
>>> theta = np.linspace(0, 2*np.pi, 200)
>>> x = r*np.cos(theta) + c1
>>> y = r*np.sin(theta) + c2
>>> plt.plot(x, y) # Plot the circle.
>>> plt.plot(xk, yk, 'k*') # Plot the data points.
>>> plt.axis("equal")

Problem 4. The general equation for an ellipse is

ax2 + bx+ cxy + dy + ey2 = 1.

Write a function that calculates the parameters for the ellipse that best fits the data in the

file ellipse.npy. Plot the original data points and the ellipse together, using the following

function to plot the ellipse.

def plot_ellipse(a, b, c, d, e):
"""Plot an ellipse of the form ax^2 + bx + cxy + dy + ey^2 = 1."""
theta = np.linspace(0, 2*np.pi, 200)
cos_t, sin_t = np.cos(theta), np.sin(theta)
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A = a*(cos_t**2) + c*cos_t*sin_t + e*(sin_t**2)
B = b*cos_t + d*sin_t
r = (-B + np.sqrt(B**2 + 4*A)) / (2*A)
plt.plot(r*cos_t, r*sin_t, lw=2)
plt.gca().set_aspect("equal", "datalim")

Computing Eigenvalues
The eigenvalues of an n⇥n matrix A are the roots of its characteristic polynomial det(A��I). Thus,

finding the eigenvalues of A amounts to computing the roots of a polynomial of degree n. However,

for n � 5, it is provably impossible to find an algebraic closed-form solution to this problem.

4

In

addition, numerically computing the roots of a polynomial is a famously ill-conditioned problem,

meaning that small changes in the coefficients of the polynomial (brought about by small changes

in the entries of A) may yield wildly different results. Instead, eigenvalues must be computed with

iterative methods.

The Power Method

The dominant eigenvalue of the n ⇥ n matrix A is the unique eigenvalue of greatest magnitude, if

such an eigenvalue exists. The power method iteratively computes the dominant eigenvalue of A and

its corresponding eigenvector.

Begin by choosing a vector x0 such that kx0k = 1, and define the following:

xk+1 =
Axk

kAxkk

If A has a dominant eigenvalue �, and if the projection of x0 onto the subspace spanned by the

eigenvectors corresponding to � is nonzero, then the sequence of vectors {xk}1k=0 converges to an

eigenvector x of A corresponding to �.

Since x is an eigenvector of A, Ax = �x. Left multiplying by x

T
on each side gives x

TAx =

�xT
x, and hence � = x

TAx

x

T
x

. This ratio is called the Rayleigh quotient. However, since each xk is

normalized, x

T
x = kxk2 = 1, so � = x

TAx.

The entire algorithm is summarized below.

Algorithm 4.1
1: procedure Power Method(A)

2: m,n shape(A) . A is square so m = n.

3: x0  random(n) . A random vector of length n
4: x0  x0/kx0k . Normalize x0

5: for k = 1, 2, . . . , N � 1 do
6: xk+1  Axk

7: xk+1  xk+1/kxk+1k
8: return x

T
NAxN , xN

4This result, called Abel’s impossibility theorem, was first proven by Niels Heinrik Abel in 1824.
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The power method is limited by a few assumptions. First, not all square matrices A have

a dominant eigenvalue. However, the Perron-Frobenius theorem guarantees that if all entries of

A are positive, then A has a dominant eigenvalue. Second, there is no way to choose an x0 that is

guaranteed to have a nonzero projection onto the span of the eigenvectors corresponding to �, though

a random x0 will almost surely satisfy this condition. Even with these assumptions, a rigorous proof

that the power method converges is most convenient with tools from spectral calculus.

Problem 5. Write a function that accepts an n⇥n matrix A, a maximum number of iterations

N , and a stopping tolerance tol. Use Algorithm 4.1 to compute the dominant eigenvalue of A
and a corresponding eigenvector. Continue the loop in step 5 until either kxk+1 � xkk is less

than the tolerance tol, or until iterating the maximum number of times N .

Test your function on square matrices with all positive entries, verifying that Ax = �x.

Use SciPy’s eigenvalue solver, scipy.linalg.eig(), to compute all of the eigenvalues and

corresponding eigenvectors of A and check that � is the dominant eigenvalue of A.

# Construct a random matrix with positive entries.
>>> A = np.random.random((10,10))

# Compute the eigenvalues and eigenvectors of A via SciPy.
>>> eigs, vecs = la.eig(A)

# Get the dominant eigenvalue and eigenvector of A.
# The eigenvector of the kth eigenvalue is the kth column of 'vecs'.
>>> loc = np.argmax(eigs)
>>> lamb, x = eigs[loc], vecs[:,loc]

# Verify that Ax = lambda x.
>>> np.allclose(A @ x, lamb * x)
True

The QR Algorithm

An obvious shortcoming of the power method is that it only computes one eigenvalue and eigenvector.

The QR algorithm, on the other hand, attempts to find all eigenvalues of A.

Let A0 = A, and for arbitrary k let QkRk = Ak be the QR decomposition of Ak. Since A is

square, so are Qk and Rk, so they can be recombined in reverse order.

Ak+1 = RkQk

This recursive definition establishes an important relation between the Ak.

Q�1
k AkQk = Q�1

k (QkRk)Qk = (Q�1
k Qk)(RkQk) = Ak+1

Thus Ak is orthonormally similar to Ak+1, and similar matrices have the same eigenvalues. The

series of matrices {Ak}1k=0 converges to the following block matrix.
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Each Si is either a 1⇥1 or 2⇥2 matrix.

5

In the example above on the right, since the first subdiagonal

entry is zero, S1 is the 1⇥ 1 matrix with a single entry, s1. But as s2,3 is not zero, S2 is 2⇥ 2.

Since S is block upper triangular, its eigenvalues are the eigenvalues of its diagonal Si blocks.

Then because A is similar to each Ak, those eigenvalues of S are the eigenvalues of A.

When A has real entries but complex eigenvalues, 2⇥ 2 Si blocks appear in S. Finding eigen-

values of a 2 ⇥ 2 matrix is equivalent to finding the roots of a 2nd degree polynomial, which has

a closed form solution via the quadratic equation. This implies that complex eigenvalues come in

conjugate pairs.

det(Si � �I) =

����
a� � b
c d� �

���� = (a� �)(d� �)� bc

= �2 � (a+ d)�+ (ad� bc) (4.8)

Hessenberg Preconditioning

The QR algorithm works more accurately and efficiently on matrices that are in upper Hessenberg

form, as upper Hessenberg matrices are already close to triangular. Furthermore, if H = QR is the

QR decomposition of upper Hessenberg H then RQ is also upper Hessenberg, so the almost-triangular

form is preserved at each iteration. Putting a matrix in upper Hessenberg form before applying the

QR algorithm is called Hessenberg preconditioning.
With preconditioning in mind, the entire QR algorithm is as follows.

Algorithm 4.2
1: procedure QR Algorithm(A, N)

2: m,n shape(A)

3: S  hessenberg(A) . Put A in upper Hessenberg form.

4: for k = 0, 1, . . . , N � 1 do
5: Q,R qr(S) . Get the QR decomposition of Ak.

6: S  RQ . Recombine Rk and Qk into Ak+1.

7: eigs  [] . Initialize an empty list of eigenvalues.

8: i 0

9: while i < n do
10: if Si is 1⇥ 1 then
11: Append the only entry si of Si to eigs
12: else if Si is 2⇥ 2 then
13: Calculate the eigenvalues of Si

14: Append the eigenvalues of Si to eigs
15: i i+ 1

16: i i+ 1 . Move to the next Si.

17: return eigs

5If all of the Si are 1⇥ 1 matrices, then the upper triangular S is called the Schur form of A. If some of the Si are
2⇥ 2 matrices, then S is called the real Schur form of A.
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Problem 6. Write a function that accepts an n ⇥ n matrix A, a number of iterations N ,

and a tolerance tol. Use Algorithm 4.2 to implement the QR algorithm with Hessenberg

preconditioning, returning the eigenvalues of A.

Consider the following implementation details.

• Use scipy.linalg.hessenberg() or your own Hessenburg algorithm to reduce A to

upper Hessenberg form in step 3.

• The loop in step 4 should run for N total iterations.

• Use scipy.linalg.qr() or one of your own QR factorization routines to compute the

QR decomposition of S in step 5. Note that since S is in upper Hessenberg form, Givens

rotations are the most efficient way to produce Q and R.

• Assume that Si is 1⇥ 1 in step 10 if one of two following criteria hold:

– Si is the last diagonal entry of S.

– The absolute value of element below the ith main diagonal entry of S (the lower left

element of the 2⇥ 2 block) is less than tol.

• If Si is 2 ⇥ 2, use the quadratic formula and (4.8) to compute its eigenvalues. Use the

function cmath.sqrt() to correctly compute the square root of a negative number.

Test your function on small random symmetric matrices, comparing your results to SciPy’s

scipy.linalg.eig(). To construct a random symmetric matrix, note that A + AT
is always

symmetric.

Note

Algorithm 4.2 is theoretically sound, but can still be greatly improved. Most modern computer

packages instead use the implicit QR algorithm, an improved version of the QR algorithm, to

compute eigenvalues.

For large matrices, there are other iterative methods besides the power method and the

QR algorithm for efficiently computing eigenvalues. They include the Arnoldi iteration, the

Jacobi method, the Rayleigh quotient method, and others.


