
� Image Segmentation

Lab Objective: Graph theory has a variety of applications. A graph (or network) can be represented
in many ways on a computer. In this lab, we study a common matrix representation for graphs and
show how certain properties of the matrix representation correspond to inherent properties of the
original graph. We also introduce tools for working with images in Python, and conclude with an
application of using graphs and linear algebra to segment images.

Graphs as Matrices
A graph is a mathematical structure that represents relationships between objects. Graphs are

defined by G = (V,E), where V is a set of vertices (or nodes) and E is a set of edges, each of which

connects one node to another. A graph can be classified in several ways.

• The edges of an undirected graph are bidirectional: if an edge goes from node A to node B,

then that same edge also goes from B to A. For example, the graphs G1 and G2 in Figure 5.1

are both undirected. In a directed graph, edges only go one way, usually indicated by an arrow

pointing from one node to another. In this lab, we focus on undirected graphs.

• The edges of a weighted graph have a weight assigned to them, such as G2. A weighted graph

could represent a collection of cities with roads connecting them: each vertex would represent

a city, and the edges would represent roads between the cities. The length of each road could

be the weight of the corresponding edge. An unweighted graph like G1 does not have weights

assigned to its edges, but any unweighted graph can be thought of as a weighted graph by

assigning a weight of 1 to every edge.

6

3

4 5

2

1

(a) G1, an unweighted undirected graph.

1

2

3

4

5

6

3 1 1

2

.5

(b) G2, a weighted undirected graph.

Figure 5.1

��

�� Lab �. Image Segmentation

Adjacency, Degree, and Laplacian Matrices

For computation and analysis, graphs are commonly represented by a few special matrices. For these

definitions, let G be a graph with N nodes and let wij be the weight of the edge connecting node i
to node j (if such an edge exists).

1. The adjacency matrix of G is the N ⇥N matrix A with entries

aij =

(
wij if an edge connects node i and node j

0 otherwise.

The adjacency matrices A1 of G1 and A2 of G2 are as follows.

A1 =

2

6666664

0 1 0 0 1 1

1 0 1 0 1 0

0 1 0 1 0 0

0 0 1 0 1 1

1 1 0 1 0 0

1 0 0 1 0 0

3

7777775
A2 =

2

6666664

0 3 0 0 0 0

3 0 0 0 0 0

0 0 0 1 0 0

0 0 1 0 2 .5
0 0 0 2 0 1

0 0 0 .5 1 0

3

7777775

Notice that these adjacency matrices are symmetric. This is always the case for undirected

graphs since the edges are bidirectional.

2. The degree matrix of G is the N ⇥N diagonal matrix D whose ith diagonal entry is

dii =
NX

j=1

wij . (5.1)

The degree matrices D1 of G1 and D2 of G2 are given below.

D1 =

2

6666664

3 0 0 0 0 0

0 3 0 0 0 0

0 0 2 0 0 0

0 0 0 3 0 0

0 0 0 0 3 0

0 0 0 0 0 2

3

7777775
D2 =

2

6666664

3 0 0 0 0 0

0 3 0 0 0 0

0 0 1 0 0 0

0 0 0 3.5 0 0

0 0 0 0 3 0

0 0 0 0 0 1.5

3

7777775

The ith diagonal entry of D is called the degree of node i, the sum of the weights of the edges

leaving node i.

3. The Laplacian matrix of G is the N ⇥N matrix L given by

L = D �A, (5.2)

where D is the degree matrix of G and A is the adjacency matrix of G. For G1 and G2, the

Laplacian matrices L1 and L2 are given below.

L1 =

2

6666664

3 �1 0 0 �1 �1

�1 3 �1 0 �1 0

0 �1 2 �1 0 0

0 0 �1 3 �1 �1

�1 �1 0 �1 3 0

�1 0 0 �1 0 2

3

7777775
L2 =

2

6666664

3 �3 0 0 0 0

�3 3 0 0 0 0

0 0 1 �1 0 0

0 0 �1 3.5 �2 �.5
0 0 0 �2 3 �1

0 0 0 �.5 �1 1.5

3

7777775

��

Problem 1. Write a function that accepts the adjacency matrix A of a graph G. Use (5.1)

and (5.2) to compute the Laplacian matrix L of G.

(Hint: The diagonal entries of D can be computed in one line by summing A over an axis.)

Test your function on the graphs G1 and G2 from Figure 5.1 and validate your results

with scipy.sparse.csgraph.laplacian().

Connectivity

A connected graph is a graph where every vertex is connected to every other vertex by at least one

path. For example, G1 is connected, whereas G2 is not because there is no path from node 1 (or

node 2) to node 3 (or nodes 4, 5, or 6). The naïve brute-force algorithm for determining if a graph

is connected is to check that there is a path from each edge to every other edge. While this may

work for very small graphs, most interesting graphs have thousands of vertices, and for such graphs

this approach is prohibitively expensive. Luckily, an interesting result from algebraic graph theory

relates the connectivity of a graph to its Laplacian matrix.

If L is the Laplacian matrix of a graph, then the definition of D and the construction L = D�A
guarantees that the rows (and columns) of L must each sum to 0. Therefore L cannot have full rank,

so � = 0 must be an eigenvalue of L. Furthermore, if L represents a graph that is not connected,

more than one of the eigenvalues of L must be zero. To see this, let J ⇢ {1, 2, . . . , N} such that the

vertices {vj}j2J form a connected component of the graph, meaning that there is a path between

each pair of vertices in the set. Next, let x be the vector with entries

xk =

(
1, k 2 J

0, k 62 J.

Then x is an eigenvector of L corresponding to the eigenvalue � = 0.

For example, the example graph G2 has two connected components.

1. J1 = {1, 2} so that x1 = [1, 1, 0, 0, 0, 0]T. Then

L2x1 =

2

6666664

3 �3 0 0 0 0

�3 3 0 0 0 0

0 0 1 �1 0 0

0 0 �1 3.5 �2 �.5
0 0 0 �2 3 �1

0 0 0 �.5 �1 1.5

3

7777775

2

6666664

1

1

0

0

0

0

3

7777775
=

2

6666664

0

0

0

0

0

0

3

7777775
= 0.

2. J2 = {3, 4, 5, 6} and hence x2 = [0, 0, 1, 1, 1, 1]T. Then

L2x2 =

2

6666664

3 �3 0 0 0 0

�3 3 0 0 0 0

0 0 1 �1 0 0

0 0 �1 3.5 �2 �.5
0 0 0 �2 3 �1

0 0 0 �.5 �1 1.5

3

7777775

2

6666664

0

0

1

1

1

1

3

7777775
=

2

6666664

0

0

0

0

0

0

3

7777775
= 0.

In fact, it can be shown that the number of zero eigenvalues of the Laplacian exactly equals

the number of connected components. This makes calculating how many connected components are

in a graph only as hard as calculating the eigenvalues of its Laplacian.

�6 Lab �. Image Segmentation

A Laplacian matrix L is always a positive semi-definite matrix when all weights in the graph

are positive, meaning that its eigenvalues are each nonnegative. The second smallest eigenvalue of

L is called the algebraic connectivity of the graph. It is clearly 0 for non-connected graphs, but

for a connected graph, the algebraic connectivity provides useful information about its sparsity or

“connectedness.” A higher algebraic connectivity indicates that the graph is more strongly connected.

Problem 2. Write a function that accepts the adjacency matrix A of a graph G and a small

tolerance value tol. Compute the number of connected components in G and its algebraic

connectivity. Consider all eigenvalues that are less than the given tol to be zero.

Use scipy.linalg.eig() or scipy.linalg.eigvals() to compute the eigenvalues of

the Laplacian matrix. These functions return complex eigenvalues (with negligible imaginary

parts); use np.real() to extract the real parts.

Images as Matrices
Computer images are stored as arrays of integers that indicate pixel values. Most m ⇥ n grayscale

(black and white) images are stored in Python as a m ⇥ n NumPy arrays, while most m ⇥ n color

images are stored as 3-dimensional m⇥n⇥3 arrays. Color image arrays can be thought of as a stack

of three m⇥ n arrays, one each for red, green, and blue values. The datatype for an image array is

np.uint8, unsigned 8-bit integers that range from 0 to 255. A 0 indicates a black pixel while a 255

indicates a white pixel.

Use scipy.misc.imread() to read an image from a file. Matplotlib’s plt.imshow() displays

an image array, but it displays arrays of floats between 0 and 1 more cleanly than arrays of 8-bit

integers. Therefore it is customary to scale the array by dividing each entry by 255 before processing

or showing the image. In this case, a 0 still indicates a black pixel, but now a 1 indicates pure white.

>>> from scipy.misc import imread
>>> from matplotlib import pyplot as plt

>>> image = imread("dream.png") # Read a (very) small image.
>>> print(image.shape) # Since the array is 3-dimensional,
(48, 48, 3) # this is a color image.

The image is read in as integers from 0 to 255.
>>> print(image.min(), image.max(), image.dtype)
0 254 uint8

Scale the image to floats between 0 and 1 for Matplotlib.
>>> scaled = image / 255.
>>> print(scaled.min(), scaled.max(), scaled.dtype)
0.0 0.996078431373 float64

Display the scaled image.
>>> plt.imshow(scaled)
>>> plt.axis("off")
>>> plt.show()

��

A color image can be converted to grayscale by averaging the RGB values of each pixel, resulting

in a 2-D array called the brightness of the image. To properly display a grayscale image, specify the

keyword argument cmap="gray" in plt.imshow().

Average the RGB values of a colored image to obtain a grayscale image.
>>> brightness = scaled.mean(axis=2) # Average over the last axis.
>>> print(brightness.shape) # Note that the array is now 2-D.
(48, 48)

Display the image in gray.
>>> plt.imshow(brightness, cmap="gray")
>>> plt.axis("off")
>>> plt.show()

Finally, it is often important in applications to flatten an image matrix into a large 1-D array.

Use np.ravel() to convert a m⇥ n array into a 1-D array with mn entries.

>>> import numpy as np
>>> A = np.random.randint(0, 10, (3,4))
>>> print(A)
[[4 4 7 7]
[8 1 2 0]
[7 0 0 9]]

Unravel the 2-D array (by rows) into a 1-D array.
>>> np.ravel(A)
array([4, 4, 7, 7, 8, 1, 2, 0, 7, 0, 0, 9])

Unravel a grayscale image into a 1-D array and check its size.
>>> M,N = brightness.shape
>>> flat_brightness = np.ravel(brightness)
>>> M*N == flat_brightness.size
True
>>> print(flat_brightness.shape)
(2304,)

Problem 3. Define a class called ImageSegmenter.

1. Write the constructor so that it accepts the name of an image file. Read the image, scale

it so that it contains floats between 0 and 1, then store it as an attribute. If the image is

in color, compute its brightness matrix by averaging the RGB values at each pixel (if it is

a grayscale image, the image array itself is the brightness matrix). Flatten the brightness

matrix into a 1-D array and store it as an attribute.

2. Write a method called show_original() that displays the original image. If the original

image is grayscale, remember to use cmap="gray" as part of plt.imshow().

�8 Lab �. Image Segmentation

Achtung!

Matplotlib’s plt.imread() also reads image files. However, this function automatically scales

PNG image entries to floats between 0 and 1, but it still reads non-PNG image entries as 8-bit

integers. To avoid this inconsistent behavior, always use scipy.misc.imread() to read images

and divide by 255 when scaling is desired.

Graph-based Image Segmentation
Image segmentation is the process of finding natural boundaries in an image and partitioning the

image along those boundaries (see Figure 5.2). Though humans can easily pick out portions of an

image that “belong together,” it takes quite a bit of work to teach a computer to recognize boundaries

and sections in an image. However, segmenting an image often makes it easier to analyze, so image

segmentation is ongoing area of research in computer vision and image processing.

Figure 5.2: The image dream.png and its segments.

There are many ways to approach image segmentation. The following algorithm, developed by

Jianbo Shi and Jitendra Malik in 2000 [Shi2000], converts the image to a graph and “cuts” it into

two connected components.

Constructing the Image Graph

Let G be a graph whose vertices are the mn pixels of an m ⇥ n image (either grayscale or color).

Each vertex i has a brightness B(i), the grayscale or average RGB value of the pixel, as well as a

coordinate location X(i), the indices of the pixel in the original image array.

Define wij , the weight of the edge between pixels i and j, by

wij =

(
exp

⇣
� |B(i)�B(j)|

�2
B

� kX(i)�X(j)k
�2
X

⌘
if kX(i)�X(j)k < r

0 otherwise,

(5.3)

where r, �2
B and �2

X are constants for tuning the algorithm. In this context, k · k is the standard

euclidean norm, meaning that kX(i) � X(j)k is the physical distance between vertices i and j,
measured in pixels.

��

With this definition for wij , pixels that are farther apart than the radius r are not connected at

all in G. Pixels within r of each other are more strongly connected if they are similar in brightness

and close together (the value in the exponential is negative but close to zero). On the other hand,

highly contrasting pixels where |B(i) � B(j)| is large have weaker connections (the value in the

exponential is highly negative).

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

image

flattened image adjacency matrix A

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0 4 8 12

0

4

8

12

1 4 5 6 9

Figure 5.3: The grid on the left represents a 4⇥ 4 (m⇥ n) image with 16 pixels. On the right is the

corresponding 16⇥ 16 (mn⇥mn) adjacency matrix with all nonzero entries shaded. For example, in

row 5, entries 1, 4, 5, 6, and 9 are nonzero because those pixels are within radius r = 1.2 of pixel 5.

Since there are mn total pixels, the adjacency matrix A of G with entries wij is mn⇥mn. With

a relatively small radius r, A is relatively sparse, and should therefore be constructed and stored as

a sparse matrix. The degree matrix D is diagonal, so it can be stored as a regular 1-dimensional

NumPy array. The procedure for constructing these matrices can be summarized in just a few steps.

1. Initialize A as a sparse mn⇥mn matrix and D as a vector with mn entries.

2. For each vertex i (i = 0, 1, . . . ,mn� 1),

(a) Find the set of all vertices Ji such that kX(i)�X(j)k < r for each j 2 Ji. For example,

in Figure 5.3 i = 5 and Ji = {1, 4, 5, 6, 9}.
(b) Calculate the weights wij for each j 2 Ji according to (5.3) and store them in A.

(c) Set the ith element of D to be the sum of the weights, di =
P

j2Ji
wij .

The most difficult part to implement efficiently is step 2a, computing the neighborhood Ji of

the current pixel i. However, the computation only requires knowing the current index i, the radius

r, and the height and width m and n of the original image. The following function takes advantage

of this fact and returns (as NumPy arrays) both Ji and the distances kX(i)�X(j)k for each j 2 Ji.

6� Lab �. Image Segmentation

def get_neighbors(index, radius, height, width):
"""Calculate the flattened indices of the pixels that are within the given
distance of a central pixel, and their distances from the central pixel.

Parameters:
index (int): The index of a central pixel in a flattened image array

with original shape (radius, height).
radius (float): Radius of the neighborhood around the central pixel.
height (int): The height of the original image in pixels.
width (int): The width of the original image in pixels.

Returns:
(1-D ndarray): the indices of the pixels that are within the specified

radius of the central pixel, with respect to the flattened image.
(1-D ndarray): the euclidean distances from the neighborhood pixels to

the central pixel.
"""
Calculate the original 2-D coordinates of the central pixel.
row, col = index // width, index % width

Get a grid of possible candidates that are close to the central pixel.
r = int(radius)
x = np.arange(max(col - r, 0), min(col + r + 1, width))
y = np.arange(max(row - r, 0), min(row + r + 1, height))
X, Y = np.meshgrid(x, y)

Determine which candidates are within the given radius of the pixel.
R = np.sqrt(((X - col)**2 + (Y - row)**2))
mask = R < radius
return (X[mask] + Y[mask]*width).astype(np.int), R[mask]

To see how this works, consider Figure 5.3 where the original image is 4⇥ 4 and the goal is to

compute the neighborhood of the pixel i = 5.

Compute the neighbors and corresponding distances from the figure.
>>> neighbors_1, distances_1 = get_neighbors(5, 1.2, 4, 4)
>>> print(neighbors_1, distances_1, sep='\n')
[1 4 5 6 9]
[1. 1. 0. 1. 1.]

Increasing the radius from 1.2 to 1.5 results in more neighbors.
>>> neighbors_2, distances_2 = get_neighbors(5, 1.5, 4, 4)
>>> print(neighbors_2, distances_2, sep='\n')
[0 1 2 4 5 6 8 9 10]
[1.41421356 1. 1.41421356 1. 0. 1.

1.41421356 1. 1.41421356]

6�

Problem 4. Write a method for the ImageSegmenter class that accepts floats r defaulting to

5, �2
B defaulting to .02, and �2

X defaulting to 3. Compute the adjacency matrix A and the

degree matrix D according to the weights specified in (5.3).

Initialize A as a scipy.sparse.lil_matrix, which is optimized for incremental construc-

tion. Fill in the nonzero elements of A one row at a time. Use get_neighbors() at each step

to help compute the weights.

(Hint: Try to compute and store an entire row of weights at a time. What does the command

A[5, np.array([1, 4, 5, 6, 9])] = weights do?)

Finally, convert A to a scipy.sparse.csc_matrix, which is faster for computations.

Then return A and D.

Segmenting the Graph

With an image represented as a graph G, the goal is to now split G into two distinct connected

components by removing edges from the existing graph. This is called cutting G, and the set of edges

that are removed is called the cut. The cut with the least weight will best segment the image.

Let D be the degree matrix and L be the Laplacian matrix of G. Shi and Malik proved that

the eigenvector corresponding to the second smallest

1

eigenvalue of D�1/2LD�1/2
can be used to

minimize the cut: the indices of its positive entries are the indices of the pixels in the flattened image

which belong to one segment, and the indices of its negative entries are the indices of the pixels

which belong to the other segment. In this context D�1/2
refers to element-wise exponentiation, so

the (i, j)th entry of D�1/2
is 1/

p
dij .

Because A is mn ⇥mn, the desired eigenvector has mn entries. Reshaping the eigenvector to

be m⇥n allows it to align with the original image. Use the reshaped eigenvector to create a boolean

mask that indexes one of the segments. That is, construct a m⇥n array where the entries belonging

to one segment are True and the other entries are False.

>>> x = np.arange(-5,5).reshape((5,2)).T
>>> print(x)
[[-5 -3 -1 1 3]
[-4 -2 0 2 4]]

Construct a boolean mask of x describing which entries of x are positive.
>>> mask = x > 0
>>> print(mask)
[[False False False True True]
[False False False True True]]

Use the mask to zero out all of the nonpositive entries of x.
>>> x * mask
array([[0, 0, 0, 1, 3],

[0, 0, 0, 2, 4]])

1Both D and L are symmetric matrices, so all eigenvalues of D�1/2LD�1/2 are real, and therefore “the second
smallest one” is well-defined.

6� Lab �. Image Segmentation

Problem 5. Write a method for the ImageSegmenter class that accepts an adjacency matrix

A as a scipy.sparse.csc_matrix and a degree matrix D as a 1-D NumPy array. Construct

an m⇥ n boolean mask describing the segments of the image.

1. Compute the Laplacian L with scipy.sparse.csgraph.laplacian() or by converting

D to a sparse diagonal matrix and computing L = D�A (do not use your function from

Problem 1 unless it works correctly and efficiently for sparse matrices).

2. Construct D�1/2
as a sparse diagonal matrix using D and scipy.sparse.diags(), then

compute D�1/2LD�1/2
. Use @ or the dot() method of the sparse matrix for the matrix

multiplication, not np.dot().

3. Use scipy.spase.linalg.eigsh() to compute the eigenvector corresponding to the

second-smallest eigenvalue of D�1/2LD�1/2
. Set the keyword arguments which="SM"

and k=2 to compute only the two smallest eigenvalues and their eigenvectors.

4. Reshape the eigenvector as a m⇥ n matrix and use this matrix to construct the desired

boolean mask. Return the mask.

Multiplying the boolean mask component-wise by the original image array produces the positive
segment, a copy of the original image where the entries that aren’t in the segment are set to 0.

Computing the negative segment requires inverting the boolean mask, then multiplying the inverted

mask with the original image array. Finally, if the original image is a m ⇥ n ⇥ 3 color image, the

mask must be stacked into a m⇥ n⇥ 3 array to facilitate entry-wise multiplication.

>>> mask = np.arange(-5,5).reshape((5,2)).T > 0
>>> print(mask)
[[False False False True True]
[False False False True True]]

The mask can be negated with the tilde operator ~.
>>> print(~mask)
[[True True True False False]
[True True True False False]]

Stack a mask into a 3-D array with np.dstack().
>>> print(mask.shape, np.dstack((mask, mask, mask)).shape)
(2, 5) (2, 5, 3)

Problem 6. Write a method for the ImageSegmenter class that accepts floats r, �2
B , and �2

X ,

with the same defaults as in Problem 4. Call your methods from Problems 4 and 5 to obtain the

segmentation mask. Plot the original image, the positive segment, and the negative segment

side-by-side in subplots. Your method should work for grayscale or color images.

Use dream.png as a test file and compare your results to Figure 5.2.

