
6 The SVD and Image
Compression

Lab Objective: The Singular Value Decomposition (SVD) is an incredibly useful matrix factor-
ization that is widely used in both theoretical and applied mathematics. The SVD is structured in
a way that makes it easy to construct low-rank approximations of matrices, and it is therefore the
basis of several data compression algorithms. In this lab we learn to compute the SVD and use it to
implement a simple image compression routine.

The SVD of a matrix A is a factorization A = U⌃V H
where U and V have orthonormal columns

and ⌃ is diagonal. The diagonal entries of ⌃ are called the singular values of A and are the square

roots of the eigenvalues of AHA. Since AHA is always positive semidefinite, its eigenvalues are all

real and nonnegative, so the singular values are also real and nonnegative. The singular values �i

are usually sorted in decreasing order so that ⌃ = diag(�1,�2, . . . ,�n) with �1 � �2 � . . . � �n � 0.

The columns ui of U , the columns vi of V , and the singular values of A satisfy Avi = �iui.

Every m⇥ n matrix A of rank r has an SVD with exactly r nonzero singular values. Like the

QR decomposition, the SVD has two main forms.

• Full SVD: Denoted A = U⌃V H
. U is m⇥m, V is n⇥n, and ⌃ is m⇥n. The first r columns

of U span R(A), and the remaining n� r columns span N (AH). Likewise, the first r columns

of V span R(AH), and the last m� r columns span N (A).

• Compact (Reduced) SVD: Denoted A = U1⌃1V H
1 . U1 is m⇥ r (the first r columns of U),

V1 is n⇥ r (the first r columns of V ), and ⌃1 is r⇥ r (the first r⇥ r block of ⌃). This smaller

version of the SVD has all of the information needed to construct A and nothing more. The

zero singular values and the correpsonding columns of U and V are neglected.
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Finally, the SVD yields an outer product expansion of A in terms of the singular values and the

columns of U and V .

A =

rX

i=1

�iuiv
H
i (6.1)

Note that only terms from the compact SVD are needed for this expansion.

Computing the Compact SVD

It is difficult to compute the SVD from scratch because it is an eigenvalue-based decomposition.

However, given an eigenvalue solver such as scipy.linalg.eig(), the algorithm becomes much

simpler. First, obtain the eigenvalues and eigenvectors of AHA, and use these to compute ⌃. Since

AHA is normal, it has an orthonormal eigenbasis, so set the columns of V to be the eigenvectors of

AHA. Then, since Avi = �iui, construct U by setting its columns to be ui =
1
�i
Avi.

The key is to sort the singular values and the corresponding eigenvectors in the same manner.

In addition, it is computationally inefficient to keep track of the entire matrix ⌃ since it is a matrix

of mostly zeros, so we need only store the singular values as a vector �. The entire procedure for

computing the compact SVD is given below.

Algorithm 6.1
1: procedure compact_SVD(A)

2: �, V  eig(AHA) . Calculate the eigenvalues and eigenvectors of AHA.

3: �  
p
� . Calculate the singular values of A.

4: �  sort(�) . Sort the singular values from greatest to least.
5: V  sort(V ) . Sort the eigenvectors the same way as in the previous step.

6: r  count(� 6= 0) . Count the number of nonzero singular values (the rank of A).

7: �1  �:r . Keep only the positive singular values.

8: V1  V:,:r . Keep only the corresponding eigenvectors.

9: U1  AV1/�1 . Construct U with array broadcasting.

10: return U1,�1, V H
1

Problem 1. Write a function that accepts a matrix A and a small error tolerance tol. Use

Algorithm 6.1 to compute the compact SVD of A. In step 6, compute r by counting the number

of singular values that are greater than tol.
Consider the following tips for implementing the algorithm.

• The Hermitian AH
can be computed with A.conj().T.

• In step 4, the way that � is sorted needs to be stored so that the columns of V can be

sorted the same way. Consider using np.argsort() and fancy indexing to do this, but

remember that by default it sorts from least to greatest (not greatest to least).

• Step 9 can be done by looping over the columns of V , but it can be done more easily and

efficiently with array broadcasting.

Test your function by calculating the compact SVD for random matrices. Verify that U
and V are orthonormal, that U⌃V H = A, and that the number of nonzero singular values is

the rank of A. You may also want to compre your results to SciPy’s SVD algorithm.
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>>> import numpy as np
>>> from scipy import linalg as la

# Generate a random matrix and get its compact SVD via SciPy.
>>> A = np.random.random((10,5))
>>> U,s,Vh = la.svd(A, full_matrices=False)
>>> print(U.shape, s.shape, Vh.shape)
(10, 5) (5,) (5, 5)

# Verify that U is orthonormal, U Sigma Vh = A, and the rank is correct.
>>> np.allclose(U.T @ U, np.identity(5))
True
>>> np.allclose(U @ np.diag(s) @ Vh, A)
True
>>> np.linalg.matrix_rank(A) == len(s)
True

Visualizing the SVD

An m ⇥ n matrix A defines a linear transformation that sends points from Rn
to Rm

. The SVD

decomposes a matrix into two rotations and a scaling, so that any linear transformation can be easily

described geometrically. Specifically, V H
represents a rotation, ⌃ a rescaling along the principal axes,

and U another rotation.

Problem 2. Write a function that accepts a 2 ⇥ 2 matrix A. Generate a 2 ⇥ 200 matrix S
representing a set of 200 points on the unit circle, with x-coordinates on the top row and y-
coordinates on the bottom row (recall the equation for the unit circle in polar coordinates:

x = cos(✓), y = sin(✓), ✓ 2 [0, 2⇡]). Also define the matrix

E =
⇥
e1 0 e2

⇤
=


1 0 0

0 0 1

�
,

so that plotting the first row of S against the second row of S displays the unit circle, and

plotting the first row of E against its second row displays the standard basis vectors in R2
.

Compute the full SVD A = U⌃V H
using scipy.linalg.svd(). Plot four subplots to

demonstrate each step of the transformation, plotting S and E, V HS and V HE, ⌃V HS and

⌃V HE, then U⌃V HS and U⌃V HE.

For the matrix

A =


3 1

1 3

�
,

your function should produce Figure 6.1.

(Hint: Use plt.axis("equal") to fix the aspect ratio so that the circles don’t appear elliptical.)
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(a) S (b) V

H
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Figure 6.1: Each step in transforming the unit circle and two unit vectors using the matrix A.

Using the SVD for Data Compression

Low-Rank Matrix Approximations

If A is a m⇥ n matrix of rank r < min{m,n}, then the compact SVD offers a way to store A with

less memory. Instead of storing all mn values of A, storing the matrices U1, ⌃1 and V1 only requires

saving a total of mr + r + nr values. For example, if A is 100 ⇥ 200 and has rank 20, then A has

20, 000 values, but its compact SVD only has total 6, 020 entries, a significant decrease.

The truncated SVD is an approximation to the compact SVD that allows even greater efficiency

at the cost of a little accuracy. Instead of keeping all of the nonzero singular values, the truncated

SVD only keeps the first s < r singular values, plus the corresponding columns of U and V . In this

case, (6.1) becomes the following.

As =

sX

i=1

�iuiv
H
i

More precisely, the truncated SVD of A is As = bU b⌃bV H
, where

bU is m ⇥ s, bV is n ⇥ s, and

b⌃
is s⇥ s. The resulting matrix As has rank s and is only an approximation to A, since r � s nonzero

singular values are neglected.



6�

bU (m⇥ s) b⌃ (s⇥ s) bV H (s⇥ n)2

666666664

u1 · · · us us+1 · · · ur

3

777777775

2

666666664

�1

.

.

.

�s

�s+1

.

.

.

�r

3

777777775

2

666666664

v

H
1
.

.

.

v

H
s

v

H
s+1
.

.

.

v

H
r

3

777777775

U1 (m⇥ r) ⌃1 (r ⇥ r) V H
1 (r ⇥ n)

The beauty of the SVD is that it makes it easy to select the information that is most important.

Larger singular values correspond to columns of U and V that contain more information, so dropping

the smallest singular values retains as much information as possible. In fact, given a matrix A, its

rank-s truncated SVD approximation As is the best rank s approximation of A with respect to both

the induced 2-norm and the Frobenius norm. This result is called the Schmidt, Mirsky, Eckhart-
Young Theorem, a very significant concept that appears in signal processing, statistics, machine

learning, semantic indexing (search engines), and control theory.

Problem 3. Write a function that accepts a matrix A and a positive integer s.

1. Use your function from Problem 1 or scipy.linalg.svd() to compute the compact SVD

of A, then form the truncated SVD by stripping off the appropriate columns and entries

from U1, ⌃1, and V1. Return the best rank s approximation As of A (with respect to the

induced 2-norm and Frobenius norm).

2. Also return the number of entries required to store the truncated form

bU b⌃bV H
(where

b⌃
is stored as a one-dimensional array, not the full diagonal matrix). The number of entries

stored in NumPy array can be accessed by its size attribute.

>>> A = np.random.random((20, 20))
>>> A.size
400

3. If s is greater than the number of nonzero singular values of A (meaning s > rank(A)),

raise a ValueError.

Use np.linalg.matrix_rank() to verify the rank of your approximation.

Error of Low-Rank Approximations
Another result of the Schmidt, Mirsky, Eckhart-Young Theorem is that the exact 2-norm error of

the best rank-s approximation As for the matrix A is the (s+ 1)th singular value of A.

kA�Ask2 = �s+1 (6.2)

This offers a way to approximate A within a desired error tolerance ✏: choose s such that �s+1 is the

largest singular value that is less than ✏, then compute As. This As throws away as much information

as possible without violating the property kA�Ask2 < ✏.
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Problem 4. Write a function that accepts a matrix A and an error tolerance ✏.

1. Compute the compact SVD of A, then use (6.2) to compute the lowest rank approximation

As of A with 2-norm error less than ✏. Avoid calculating the SVD more than once.

(Hint: np.argmax(), np.where(), and/or fancy indexing may be useful.)

2. As in the previous problem, also return the number of entries needed to store the resulting

approximation As via the truncated SVD.

3. If ✏ is less than or equal to the smallest singular value of A, raise a ValueError; in this

case, A cannot be approximated within the tolerance by a matrix of lesser rank.

This function should be close to identical to the function from Problem 3, but with the extra

step of identifying the appropriate s. Construct test cases to validate that kA�Ask2 < ✏.

Image Compression

Images are stored on a computer as matrices of pixel values. Sending an image over the internet or

a text message can be expensive, but computing and sending a low-rank SVD approximation of the

image can considerably reduce the amount of data sent while retaining a high level of image detail.

Successive levels of detail can be sent after the inital low-rank approximation by sending additional

singular values and the corresponding columns of V and U.

Examining the singular values of an image gives us an idea of how low-rank the approximation

can be. Figure 6.2 shows the image in hubble_gray.jpg and a log plot of its singular values. The

plot in 6.2b is typical for a photograph—the singular values start out large but drop off rapidly.

In this rank 1041 image, 913 of the singular values are 100 or more times smaller than the largest

singular value. By discarding these relatively small singular values, we can retain all but the finest

image details, while storing only a rank 128 image. This is a huge reduction in data size.

(a) NGC 3603 (Hubble Space Telescope). (b) Singular values on a log scale.

Figure 6.2

Figure 6.3 shows several low-rank approximations of the image in Figure 6.2a. Even at a low

rank the image is recognizable. By rank 120, the approximation differs very little from the original.
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(a) Rank 2 (b) Rank 20 (c) Rank 120

Figure 6.3

Grayscale images are stored on a computer as 2-dimensional arrays, while color images are

stored as 3-dimensional arrays—one layer each for red, green, and blue arrays. To read and display

images, use scipy.misc.imread() and plt.imshow(). Images are read in as integer arrays with

entries between 0 and 255 (dtype=np.uint8), but plt.imshow() works better if the image is an

array of floats in the interval [0, 1]. Scale the image properly by dividing the array by 255.

>>> from matplotlib import pyplot as plt

# Send the RGB values to the interval (0,1).
>>> image_gray = plt.imread("hubble_gray.jpg") / 255.
>>> image_gray.shape # Grayscale images are 2-d arrays.
(1158, 1041)

>>> image_color = plt.imread("hubble.jpg") / 255.
>>> image_color.shape # Color images are 3-d arrays.
(1158, 1041, 3)

# The final axis has 3 layers for red, green, and blue values.
>>> red_layer = image_color[:,:,0]
>>> red_layer.shape
(1158, 1041)

# Display a gray image.
>>> plt.imshow(red_layer, cmap="gray")
>>> plt.axis("off") # Turn off axis ticks and labels.
>>> plt.show()

# Display a color image.
>>> plt.imshow(image_color) # cmap=None by default.
>>> plt.axis("off")
>>> plt.show()
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Problem 5. Write a function that accepts the name of an image file and an integer s. Use

your function from Problem 3, to compute the best rank-s approximation of the image. Plot

the original image and the approximation in separate subplots. In the figure title, report the

difference in number of entries required to store the original image and the approximation (use

plt.suptitle()).
Your function should be able to handle both grayscale and color images. Read the image

in and check its dimensions to see if it is color or not. Grayscale images can be approximated

directly since they are represented by 2-dimensional arrays. For color images, let R, G, and B
be the matrices for the red, green, and blue layers of the image, respectively. Calculate the low-

rank approximations Rs, Gs, and Bs separately, then put them together in a new 3-dimensional

array of the same shape as the original image.

(Hint: np.dstack() may be useful for putting the color layers back together.)

Finally, it is possible for the low-rank approximations to have values slightly outside the

valid range of RGB values. Set any values outside of the interval [0, 1] to the closer of the two

boundary values.

(Hint: fancy indexing or np.clip() may be useful here.)

To check, compressing hubble_gray.jpg with a rank 20 approximation should appear

similar to Figure 6.3b and save 1, 161, 478 matrix entries.
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Additional Material
More on Computing the SVD

For an m⇥ n matrix A of rank r < min{m,n}, the compact SVD of A neglects last m� r columns

of U and the last n � r columns of V . The remaining columns of each matrix can be calculated by

using Gram-Schmidt orthonormalization. If m < r < n or n < r < m, only one of U1 and V1 will

need to be filled in to construct the full U or V . Computing these extra columns is one way to obtain

a basis for N (AH) or N (A).

Algorithm 6.1 begins with the assumption that we have a way to compute the eigenvalues and

eigenvectors of AHA. Computing eigenvalues is a notoriously difficult problem, and computing the

SVD from scratch without an eigenvalue solver is much more difficult than the routine described by

Algorithm 6.1. The procedure involves two phases:

1. Factor A into A = UaBV H
a where B is bidiagonal (only nonzero on the diagonal and the first

superdiagonal) and Ua and Va are orthonormal. This is usually done via Golub-Kahan Bidi-
agonalization, which uses Householder reflections, or Lawson-Hanson-Chan bidiagonalization,

which relies on the QR decomposition.

2. Factor B into B = Ub⌃V H
b by the QR algorithm or a divide-and-conquer algorithm. Then the

SVD of A is given by A = (UaUb)⌃(VaVb)
H
.

For more details, see Lecture 31 of Numerical Linear Algebra by Lloyd N. Trefethen and David Bau

III, or Section 5.4 of Applied Numerical Linear Algebra by James W. Demmel.

Animating Images with Matplotlib

Matplotlib can be used to animate images that change over time. For instance, we can show how

the low-rank approximations of an image change as the rank s increases, showing how the image is

recovered as more ranks are added. Try using the following code to create such an animation.

from matplotlib import pyplot as plt
from matplotlib.animation import FuncAnimation

def animate_images(images):
"""Animate a sequence of images. The input is a list where each
entry is an array that will be one frame of the animation.
"""
fig = plt.figure()
plt.axis("off")
im = plt.imshow(images[0], animated=True)

def update(index):
plt.title("Rank {} Approximation".format(index))
im.set_array(images[index])
return im, # Note the comma!

a = FuncAnimation(fig, update, frames=len(images), blit=True)
plt.show()

See https://matplotlib.org/examples/animation/dynamic_image.html for another example.

https://matplotlib.org/examples/animation/dynamic_image.html

