
� Facial Recognition

Lab Objective: A facial recognition algorithm attempts to match a person’s portrait to a database
of many portraits. Facial recognition is becoming increasingly important in security, law enforcement,
artificial intelligence, and other areas. Though humans can easily match pictures to people, computers
are beginning to surpass humans at facial recognition. In this lab, we implement a basic facial
recognition system that relies on eigenvectors and the SVD to efficiently determine the difference
between faces.

Preparing an Image Database
The faces94 face image dataset

1

contains several photographs of 153 people, organized into folders

by person. To perform facial recognition on this dataset, select one image per person and convert

these images into a database. For this particular facial recognition algorithm, the entire database

can be stored in just a few NumPy arrays.

Digital images are stored on computers as arrays of pixels. Therefore, an m⇥ n image can be

stored in memory as an m ⇥ n matrix or, equivalently, as an mn-vector by concatenating the rows

of the matrix. Then a collection of k images can be stored as a single mn⇥ k matrix F , where each

column of F represents a single image. That is, if

F =

2

4
f1 f2 · · · fk

3

5 ,

then each fi is a mn-vector representing a single image.

The following function obtains one image for each person in the faces94 dataset and converts

the collection of images into an mn⇥ k matrix F described above.

import numpy as np
from os import walk
from scipy.misc import imread

def get_faces(path="./faces94"):
# Traverse the directory and get one image per subdirectory.

1See http://cswww.essex.ac.uk/mv/allfaces/faces94.html.
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faces = []
for (dirpath, dirnames, filenames) in walk(path):

for fname in filenames:
if fname[-3:]=="jpg": # Only get jpg images.

# Load the image, convert it to grayscale,
# and flatten it into a vector.
faces.append(np.ravel(imread(dirpath+"/"+fname, flatten=True)))
break

# Put all the face vectors column-wise into a matrix.
return np.transpose(faces)

Problem 1. Write a function that accepts an image as a flattened mn-vector, along with its

original dimensions m and n. Use np.reshape() to convert the flattened image into its original

m⇥ n shape and display the result with plt.imshow().
(Hint: use cmap='gray' in plt.imshow() to display images in grayscale.)

Unzip the faces94.zip archive and use get_faces() to construct F . Each faces94
image is 200⇥ 180, and there are 153 people in the dataset, so F should be 36000⇥ 153. Use

your function to display one of the images stored in F .

The Eigenfaces Method
With the image database F , we could construct a simple facial recognition system with the following

strategy. Let g be an mn-vector representing an unknown face that is not part of the database F .

Then the fi that minimizes kg�fik2 is the matching face. Unfortunately, computing kg�fik2 for each

i is very computationally expensive, especially if the images are high-resolution and/or the database

contains a large number of images. The eigenfaces method is a way to reduce the computational cost

of finding the closest matching face by focusing on only the most important features of each face.

Because the method ignores less significant facial features, it is also usually more accurate than the

naïve method.

The first step of the algorithm is to shift the images by the mean face. Shifting a set of data by

the mean exaggerates the distinguishing features of each entry. In the context of facial recognition,

shifting by the mean accentuates the unique features of each face. For the images vectors stored in

F , the mean face µ is the defined to be the element-wise average of the fi.

µ =
1

k

kX

i=1

fi

Hence, the ith mean-shifted face vector f̄i is given by

f̄i = fi � µ.

Next, define F̄ as the mn⇥ k matrix whose columns are given by the mean-shifted face vectors:

F̄ =

2

4
f̄1 f̄2 · · · f̄k

3

5 .
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(a) The mean face. (b) An original face. (c) A mean-shifted face.

Figure 7.1

Problem 2. Write a class called FacialRec whose constructor accepts a path to a directory

of images. In the constructor, use get_faces() to construct F , then compute the mean face

µ and the shifted faces F̄ . Store each array as an attribute.

(Hint: Both µ and F̄ can be computed in a single line of code by using NumPy functions and/or

array broadcasting.)

Use your function from Problem 1 to visualize the mean face, and compare it to Figure

7.1a. Also display an original face and its corresponding mean-shifted face. Compare your

results with Figures 7.1b and 7.1c.

To increase computational efficiency and minimize storage, the face vectors can be represented

with fewer values by projecting F̄ onto a lower-dimensional subspace. Let s be a natural number

such that s < r, where r is the rank of F̄ . By projecting F̄ onto an s-dimensional subspace, each

face can be stored with only s values.

Specifically, let U⌃V H
be the compact SVD of F̄ with rank r, which can also be represented by

F̄ =

rX

i=1

�iuiv
H
i .

The first r columns of U form a basis for the range of F̄ . Recall that the Schmidt, Mirsky, Eckart-

Young Theorem states that the matrix

F̄s =

sX

i=1

�iuiv
H
i

is the best rank-s approximation of F̄ for each s < r. This means that kF̄ � F̄sk is minimized against

all other kF̄ � Bk where B has rank s. As a consequence of this theorem, the first s columns of U
form a basis that provides the “best” s-dimensional subspace for approximating F̄ .

The s basis vectors u1, . . . ,us are are commonly called the eigenfaces because they are eigen-

vectors of F̄ F̄T
and because they resemble face images. Each original face image can be efficiently

represented in terms of these eigenfaces. See Figure 7.2 for visualizations of the some of the eigenfaces

for the facesd94 data set.
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Figure 7.2: The first, 50th, and 100th eigenfaces.

In general, the lower eigenfaces provide a more general information of a face and higher-ordered

eigenfaces provide the details necessary to distinguish particular faces.

2

These eigenfaces will be

used to construct the face images in the dataset. The more eigenfaces used, the more detailed the

resulting image will be.

Next, let Us be the matrix with the first s eigenfaces as columns. Since the eigenfaces {ui}si=1

form an orthonormal set, Us is an orthonormal matrix (independent of s) and hence UT
s Us = I.

The matrix Ps = UsUT
s projects vectors in Rmn

to the subspace spanned by the orthonormal basis

{ui}si=1, and the change of basis matrix UT
s puts the projection in terms of the basis of eigenfaces.

Thus the projection

b
fi of f̄i in terms of the basis of eigenfaces is given by

b
fi = UT

s Psf̄i = UT
s UsU

T
s f̄i = UT

s f̄i. (7.1)

Note carefully that though the shifted image f̄i has mn entries, the projection

b
fi has only s entries

since Us is mn⇥ s. Likewise, the matrix

bF that has the projections

b
fi as columns is s⇥ k, and

bF = UT
s F. (7.2)

Problem 3. In the constructor of FacialRec, calculate the compact SVD of F̄ and save the

matrix U as an attribute. Compare the computed eigenfaces (the columns of U) to Figure 7.2.

Also write a method that accepts a vector of length mn or an mn⇥ l matrix, as well as an

integer s. Construct Us by taking the first s columns of U , then use (7.1) or (7.2) to calculate

the projection of the input vector or matrix onto the span of the first s eigenfaces.

(Hint: this method should be implemented with a single line of code.)

Reducing the mean-shifted face image f̄i to the lower-dimensional projection

b
fi drastically re-

duces the computational cost of the facial recognition algorithm, but this efficiency gain comes at

a price. A projection image only approximates the corresponding original image, but as long as s
isn’t too small, the approximation is usually good enough for the algorithm to work well. Before

completing the facial recognition system, we reconstruct some of these projections to visualize the

amount of information lost.

2Neil Muller, Lourenco Magaia, and B. M. Herbst. Singular Value Decomposition, Eigenfaces, and 3D Reconstruc-

tions. SIAM Review. 2004. 46:3, 518-545.
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From (7.1), since UT
s projects f̄i and performs a change of basis to get

b
fi, its transpose Us puts

b
fi back into the original basis with as little error as possible. That is,

Us
b
fi ⇡ f̄i = fi � µ,

so that we have the approximation

e
fi = Us

b
fi + µ ⇡ fi. (7.3)

This

e
fi is called the reconstruction of fi.

(a) A reconstruction with s = 5. (b) A reconstruction with s = 19. (c) A reconstruction with s = 75.

Figure 7.3: An image rebuilt with various numbers of eigenfaces. The image is already recognizable

when it is reconstructed with only 19 eigenfaces—less than an eighth of the 153 eigenfaces! Note the

similarities between this method and regular image compression via the truncated SVD.

Problem 4. Instantiate a FacialRec object that draws from the faces94 dataset. Select one

of the shifted images f̄i. For at least 4 values of s, use your method from Problem 3 to compute

the corresponding s-projection

b
fi, then use (7.3) to compute the reconstruction

e
fi. Display the

various reconstructions and the original image. Compare your results to Figure 7.3

Matching Faces
Let g be a vector representing an unknown face that is not part of the database. We determine which

image in the database is most like g by comparing

b
g to each of the

b
fi. Fist, shift g by the mean to

obtain ḡ, then project ḡ using a given number of eigenfaces.

b
g = UT

s ḡ = UT
s (g � µ) (7.4)

Next, determine which

b
fi is closest to

b
g. Since the columns of Us are an orthonormal basis,

the computation in this basis yields the same result as computing in the standard Euclidean basis

would. Then setting

j = argmin

i

kbfi � b
gk2, (7.5)

we have that the jth face image fj is the best match for g. Again, since

b
fi and

b
gi only have s entries,

the computation in (7.5) is much cheaper than comparing the raw fi to g.
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Problem 5. Write a method for the FacialRec class that accepts an image vector g and an

integer s. Use your method from Problem 3 to compute

bF and

b
g for the given s, then use (7.5)

to determine the best matching face in the database. Return the index of the matching face.

(Hint: scipy.linalg.norm() and np.argmin() may be useful.)

Note

This facial recognition system works by solving a nearest neighbor search, since the goal is to

find the fi that is “nearest” to the input image g. Nearest neighbor searches can be performed

more efficiently with the use of a k-d tree, a binary search tree for storing vectors. The system

could also be called a k-neighbors classifier with k = 1.

Problem 6. Write a method for the FacialRec class that accepts an flat image vector g, an

integer s, and the original dimensions of g. Use your method from Problem 5 to find the index

j of the best matching face, then display the original face g alongside the best match fj .

The following generator yields random faces from faces94 that can be used as test cases.

def sample_faces(num_faces, path="./faces94"):
# Get the list of possible images.
files = []
for (dirpath, dirnames, filenames) in walk(path):

for fname in filenames:
if fname[-3:]=="jpg": # Only get jpg images.

files.append(dirpath+"/"+fname)

# Get a subset of the image names and yield the images one at a time.
test_files = np.random.choice(files, num_faces, replace=False)
for fname in test_files:

yield np.ravel(imread(fname, flatten=True))

The yield keyword is like a return statement, but the next time the generator is called, it will

resume immediately after the last yield statement.

a

Use sample_faces() to get at least 5 random faces from faces94, and match each random

face to the database with s = 38. Iterate through the random faces with the following syntax.

for test_image in sample_faces(5):
# 'test_image' is a now flattened face vector.

aSee the Python Essentials lab on Profiling for more on generators.

Although there are other approaches to facial recognition that utilize more complex techniques,

the method of eigenfaces remains a wonderfully simple and effective solution.



��

Additional Material
Improvements on the Facial Recognition System with Eigenfaces

The FacialRec class does its job well, but it could be improved in several ways. Here are a few ideas.

• The most computationally intensive part of the algorithm is computing

bF . Instead of recom-

puting

bF every time the method from Problem 5 is called, store

bF and s as attributes the first

time the method is called. In subsequent calls, only recompute

bF if the user specifies a different

value for s.

• Load a scipy.spatial.KDTree object with

bF and use its query() method to compute (7.5).

Building a kd-tree is expensive, so be sure to only build a new tree when necessary (i.e., the

user specifies a new value for s).

• Include an error tolerance ✏ in the method for Problem 5. If kfj � gk > ✏, print a message or

raise an exception to indicate that there is no suitable match for g in the database. In this

case, add g to the database for future reference.

• Generalize the system by turning it into a k-neighbors classifier. In the constructor, add several

faces per person to the database (this requires modifying get_faces()). Assign each individual

a unique ID so that the system knows which faces correspond to the same person. Modify the

method from Problem 5 so that it also accepts an integer k, then use scipy.spatial.KDTree
to find the k nearest images to g. Choose the ID that belongs to the most nearest neighbors,

then return an index that corresponds to an individual with that ID.

In other words, choose the k faces fi that give the smallest values of kfi�b
gk2. These faces then

get to vote on which person g belongs to.

• Improve the user interface of the class by modifying the method from Problem 6 so that it

accepts a file name to read from instead of an array. A few lines of code from get_faces() or

sample_faces() might be helpful for this.

Other Methods for Facial Recognition

The method of facial recognition presented here is more formally called principal component analysis
(PCA) using eigenfaces. Several other machine learning and optimization techniques, such as linear

discriminant analysis (LDA), elastic matching, dynamic link matching, and Hidden Markov Models

(HMMs) have also been applied to the facial recognition problem. Other techniques focus on getting

better information about the faces in the first place, the most prevalent being 3-dimensional recog-

nition and thermal imaging. See https://en.wikipedia.org/wiki/Facial_recognition_system
for a good survey of different approaches to the facial recognition problem.

https://en.wikipedia.org/wiki/Facial_recognition_system

