
9 Newton’s Method

Lab Objective: Newton’s method, the classical method for finding the zeros of a function, is
one of the most important algorithms of all time. In this lab, we implement Newton’s method in
arbitrary dimensions and use it to solve a few interesting problems. We also explore in some detail
the convergence (or lack of convergence) of the method under various circumstances.

Iterative Methods
An iterative method is an algorithm that must be applied repeatedly to obtain a result. The general
idea behind any iterative method is to make an initial guess at the solution to a problem, apply a
few easy computations to better approximate the solution, use that approximation as the new initial
guess, and repeat until done. More precisely, let F be some function used to approximate the solution
to a problem. Starting with an initial guess of x0, compute

xk+1 = F (xk) (9.1)

for successive values of k to generate a sequence {xk}∞k=0 that hopefully converges to the true solution.
If the terms of the sequence are vectors, they are denoted by xk.

In the best case, the iteration converges to the true solution x, written limk→∞ xk = x or
xk → x. In the worst case, the iteration continues forever without approaching the solution. In
practice, iterative methods require carefully chosen stopping criteria to guarantee that the algorithm
terminates at some point. The general approach is to continue iterating until the difference between
two consecutive approximations is sufficiently small, and to iterate no more than a specific number
of times. That is, choose a very small ε > 0 and an integer N ∈ N, and update the approximation
using (9.1) until either

|xk − xk−1| < ε or k > N. (9.2)

The choices for ε and N are significant: a “large” ε (such as 10−6) produces a less accurate
result than a “small” ε (such 10−16), but demands less computations; a small N (10) also potentially
lowers accuracy, but detects and halts nonconvergent iterations sooner than a large N (10,000). In
code, ε and N are often named tol and maxiters, respectively (or similar).

While there are many ways to structure the code for an iterative method, probably the cleanest
way is to combine a for loop with a break statement. As a very simple example, let F (x) = x

2 . This
method converges to x = 0 independent of starting point.

1

2 Lab 9. Newton’s Method

>>> F = lambda x: x / 2
>>> x0, tol, maxiters = 10, 1e-9, 8
>>> for k in range(maxiters): # Iterate at most N times.
... print(x0, end=' ')
... x1 = F(x0) # Compute the next iteration.
... if abs(x1 - x0) < tol: # Check for convergence.
... break # Upon convergence, stop iterating.
... x0 = x1 # Otherwise, continue iterating.
...
10 5.0 2.5 1.25 0.625 0.3125 0.15625 0.078125

In this example, the algorithm terminates after N = 8 iterations (the maximum number of
allowed iterations) because the tolerance condition |xk − xk−1| < 10−9 is not met fast enough. If N
had been larger (say 40), the iteration would have quit early due to the tolerance condition.

Newton’s Method in One Dimension
Newton’s method is an iterative method for finding the zeros of a function. That is, if f : R → R,
the method attempts to find a x̄ such that f(x̄) = 0. Beginning with an initial guess x0, calculate
successive approximations for x̄ with the recursive sequence

xk+1 = xk −
f(xk)

f ′(xk)
. (9.3)

The sequence converges to the zero x̄ of f if three conditions hold:

1. f and f ′ exist and are continuous,

2. f ′(x̄) 6= 0, and

3. x0 is “sufficiently close” to x̄.

In applications, the first two conditions usually hold. If x̄ and x0 are not “sufficiently close,” Newton’s
method may converge very slowly, or it may not converge at all. However, when all three conditions
hold, Newton’s method converges quadratically, meaning that the maximum error is squared at every
iteration. This is very quick convergence, making Newton’s method as powerful as it is simple.

Problem 1. Write a function that accepts a function f , an initial guess x0, the derivative f ′,
a stopping tolerance defaulting to 10−5, and a maximum number of iterations defaulting to 15.
Use Newton’s method as described in (9.3) to compute a zero x̄ of f . Terminate the algorithm
when |xk − xk−1| is less than the stopping tolerance or after iterating the maximum number
of allowed times. Return the last computed approximation to x̄, a boolean value indicating
whether or not the algorithm converged, and the number of iterations completed.

Test your function against functions like f(x) = ex − 2 (see Figure 9.1) or f(x) = x4 − 3.
Check that the computed zero x̄ satisfies f(x̄) ≈ 0. Also consider comparing your function to
scipy.optimize.newton(), which accepts similar arguments.

3

0.0 0.5 1.0 1.5 2.0

x0

x1

x2x3

f(x) = ex 2

Figure 9.1: Newton’s method approximates the zero of a function (blue) by choosing as the next
approximation the x-intercept of the tangent line (red) that goes through the point (xk, f(xk)). In
this example, f(x) = ex−2, which has a zero at x̄ = log(2). Setting x0 = 2 and using (9.3) to iterate,
we have x1 = x0 − f(x0)

f ′(x0)
= 2− e2−2

e2 ≈ 1.2707. Similarly, x2 ≈ 0.8320, x3 ≈ .7024, and x4 ≈ 0.6932.
After only a few iterations, the zero log(2) ≈ 0.6931 is already computed to several digits of accuracy.

Note

Newton’s method can be used to find zeros of functions that are hard to solve for analytically.
For example, the function f(x) = sin(x)

x − x is not continuous on any interval containing 0, but
it can be made continuous by defining f(0) = 1. Newton’s method can then be used to compute
the zeros of this function.

Problem 2. Suppose that an amount of P1 dollars is put into an account at the beginning of
years 1, 2, ..., N1 and that the account accumulates interest at a fractional rate r (so r = .05

corresponds to 5% interest). In addition, at the beginning of years N1 + 1, N1 + 2, ..., N1 +N2,
an amount of P2 dollars is withdrawn from the account and that the account balance is exactly
zero after the withdrawal at year N1 +N2. Then the variables satisfy

P1[(1 + r)N1 − 1] = P2[1− (1 + r)−N2].

Write a function that, given N1, N2, P1, and P2, uses Newton’s method to determine r.
For the initial guess, use r0 = 0.1.
(Hint: Construct f(r) such that when f(r) = 0, the equation is satisfied. Also compute f ′(r).)

To test your function, if N1 = 30, N2 = 20, P1 = 2000, and P2 = 8000, then r ≈ 0.03878.
(From Atkinson, page 118).

4 Lab 9. Newton’s Method

Backtracking
Newton’s method may not converge for a variety of reasons. One potential problem occurs when the
step from xk to xk+1 is so large that the zero is stepped over completely. Backtracking is a strategy
that combats the problem of overstepping by moving only a fraction of the full step from xk to xk+1.
This suggests a slight modification to (9.3).

xk+1 = xk − α
f(xk)

f ′(xk)
, α ∈ (0, 1] (9.4)

Note that setting α = 1 results in the exact same method defined in (9.3), but for α ∈ (0, 1), only a
fraction of the step is taken at each iteration.

Problem 3. Modify your function from Problem 1 so that it accepts a parameter α that
defaults to 1. Incorporate (9.4) to allow for backtracking.

To test your modified function, consider f(x) = x1/3. The command x**(1/3.) fails
when x is negative, so the function can be defined with NumPy as follows.

import numpy as np
f = lambda x: np.sign(x) * np.power(np.abs(x), 1./3)

With x0 = .01 and α = 1, the iteration should not converge. However, setting α = .4, the
iteration should converge to a zero that is close to 0.

The backtracking constant α is significant, as it can result in faster convergence or convergence
to a different zero (see Figure 9.2). However, it is not immediately obvious how to choose an optimal
value for α.

1 0 1 2 3 4 5

1.00

0.75

0.50

0.25

0.00

0.25

0.50

x0 x

x

no backtracking
backtracking

Figure 9.2: Starting at the same initial value but using different backtracking constants can result
in convergence to two different solutions. The blue line converges to x̃ = (0,−1) with α = 1 in 5
iterations of Newton’s method while the orange line converges to x̂ = (3.75, .25) with α = 0.4 in 15

iterations. Note that the points in this example are 2-dimensional, which is discussed in the next
section.

5

Problem 4. Write a function that accepts the same arguments as your function from Problem
3 except for α. Use Newton’s method to find a zero of f using various values of α in the interval
(0, 1]. Plot the values of α against the number of iterations performed by Newton’s method.
Return a value for α that results in the lowest number of iterations.

A good test case for this problem is the function f(x) = x1/3 discussed in Problem 3. In
this case, your plot should show that the optimal value for α is actually closer to .3 than to .4.

Newton’s Method in Higher Dimensions
Newton’s method can be generalized to work on functions with a multivariate domain and range.
Let f : Rn → Rn be given by f(x) = [f1(x) f2(x) . . . fk(x)]T, with fi : Rn → R for each i. The
derivative Df : Rn → Rn×n is the n× n Jacobian matrix of f .

Df =

∂f1
∂x1

· · · ∂f1
∂xn

...
. . .

...
∂fn
∂x1

· · · ∂fn
∂xn

In this setting, Newton’s method seeks a vector x̄ such that f(x̄) = 0, the vector of n zeros.

With backtracking incorporated, (9.4) becomes the following.

xk+1 = xk − αDf(xk)
−1
f(xk). (9.5)

Note that if n = 1, (9.5) is exactly (9.4) because in that case, Df(x)−1 = 1/f ′(x).
This vector version of Newton’s method terminates when the maximum number of iterations is

reached or the difference between successive approximations is less than a predetermined tolerance ε
with respect to a vector norm, that is, ||xk − xk−1|| < ε.

Problem 5. Modify your function from Problems 1 and 3 so that it can compute a zero of a
function f : Rn → Rn for any n ∈ N. Take the following tips into consideration.

• If n > 1, f should be a function that accepts a 1-D NumPy array with n entries and
returns another NumPy array with n entries. Similarly, Df should be a function that
accepts a 1-D array with n entries and returns a n× n array. In other words, f and Df
are callable functions, but f(x) is a vector and Df(x) is a matrix.

• np.isscalar() may be useful for determining whether or not n > 1.

• Instead of computing Df(xk)−1 directly at each step, solve the system Df(xk)yk = f(xk)

and set xk+1 = xk − αyk. Always avoid taking matrix inverses when possible.

• The stopping criterion now requires using a norm function instead of abs().

After your modifications, carefully verify that your function still works in the case that
n = 1, and that your functions from Problems 2 and 4 also still work correctly. In addition,
your function from Problem 4 should also work for any n ∈ N .

6 Lab 9. Newton’s Method

Problem 6. Bioremediation involves the use of bacteria to consume toxic wastes. At a steady
state, the bacterial density x and the nutrient concentration y satisfy the system of nonlinear
equations

γxy − x(1 + y) = 0

−xy + (δ − y)(1 + y) = 0,

where γ and δ are parameters that depend on various physical features of the system.
For this problem, assume the typical values γ = 5 and δ = 1, for which the system has

solutions at (x, y) = (0, 1), (0,−1), and (3.75, .25). Write a function that finds an initial point
x0 = (x0, y0) such that Newton’s method converges to either (0, 1) or (0,−1) with α = 1, and
to (3.75, .25) with α = 0.55. As soon as a valid x0 is found, return it (stop searching).
(Hint: search within the rectangle [− 1

4 , 0]× [0, 14].)
(Adapted from problem 5.19 of M. T. Heath, Scientific Computing, an Introductory Sur-

vey, 2nd edition, McGraw Hill, 2002 and the Notes of Homer Walker).

Basins of Attraction
When a function f has many zeros, the zero that Newton’s method converges to depends on the
initial guess x0. For example, the function f(x) = x2 − 1 has zeros at −1 and 1. If x0 < 0, then
Newton’s method converges to −1; if x0 > 0 then it converges to 1 (see Figure 9.3a). The regions
(−∞, 0) and (0,∞) are called the basins of attraction of f . Starting in one basin of attraction leads
to finding one zero, while starting in another basin yields a different zero.

When f is a polynomial of degree greater than 2, the basins of attraction are much more
interesting. For example, the basis of attraction for f(x) = x3 − x are shown in Figure 9.3b. The
basin for the zero at the origin is connected, but the other two basins are disconnected and share a
kind of symmetry.

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

(a) Basins of attraction for f(x) = x2 − 1.

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

(b) Basins of attraction for f(x) = x3 − x.

Figure 9.3: Basins of attraction with α = 1. Since choosing a different value for α can change which
zero Newton’s method converges to, the basins of attraction may change for other values of α.

It can be shown that Newton’s method converges in any Banach space with only slightly stronger
hypotheses than those discussed previously. In particular, Newton’s method can be performed over
the complex plane C to find imaginary zeros of functions. Plotting the basins of attraction over C
yields some interesting results.

7

The zeros of f(x) = x3−1 are 1, and − 1
2±
√
3
2 i. To plot the basins of attraction for f(x) = x3−1

on the square complex domain X = {a+bi | a ∈ [− 3
2 ,

3
2], b ∈ [− 3

2 ,
3
2]}, create an initial grid of complex

points in this domain using np.meshgrid().

>>> x_real = np.linspace(-1.5, 1.5, 500) # Real parts.
>>> x_imag = np.linspace(-1.5, 1.5, 500) # Imaginary parts.
>>> X_real, X_imag = np.meshgrid(x_real, x_imag)
>>> X_0 = X_real + 1j*X_imag # Combine real and imaginary parts.

The grid X0 is a 500×500 array of complex values to use as initial points for Newton’s method.
Array broadcasting makes it easy to compute an iteration of Newton’s method at every grid point.

>>> f = lambda x: x**3 - 1
>>> Df = lambda x: 3*x**2
>>> X_1 = X_0 - f(X_0)/Df(X_0)

After enough iterations, the (i, j)th element of the grid Xk corresponds to the zero of f that
results from using the (i, j)th element of X0 as the initial point. For example, with f(x) = x3 − 1,
each entry of Xk should be close to 1, − 1

2 +
√
3
2 i, or −

1
2 −

√
3
2 i. Each entry of Xk can then be assigned

a value indicating which zero it corresponds to. Some results of this process are displayed below.

(a) Basins of attraction for f(x) = x3 − 1. (b) Basins of attraction for f(x) = x3 − x.

Figure 9.4

Note

Notice that in some portions of Figure 9.4a, whenever red and blue try to come together, a
patch of green appears in between. This behavior repeats on an infinitely small scale, producing
a fractal. Because it arises from Newton’s method, this kind of fractal is called a Newton fractal.

Newton fractals show that the long-term behavior of Newton’s method is extremely
sensitive to the initial guess x0. Changing x0 by a small amount can change the output of
Newton’s method in a seemingly random way. This phenomenon is called chaos in mathematics.

8 Lab 9. Newton’s Method

Problem 7. Write a function that accepts a function f : C → C, its derivative f ′ : C → C,
an array zeros of the zeros of f , bounds [rmin, rmax, imin, imax] for the domain of the plot, an
integer res that determines the resolution of the plot, and number of iterations iters to run
the iteration. Compute and plot the basins of attraction of f in the complex plane over the
specified domain in the following steps.

1. Construct a res×res grid X0 over the domain {a+ bi | a ∈ [rmin, rmax], b ∈ [imin, imax]}.

2. Run Newton’s method (without backtracking) on X0 iters times, obtaining the res×res
array Xk. To avoid the additional computation of checking for convergence at each step,
do not use your function from Problem 5.

3. Xk cannot be directly visualized directly because its values are complex. Solve this issue
by creating another res×res array Y . To compute the (i, j)th entry Yi,j , determine
which zero of f is closest to the (i, j)th entry of Xk. Set Yi,j to the index of this zero in
the array zeros. If there are R distinct zeros, each Yi,j should be one of 0, 1, . . . , R− 1.
(Hint: np.argmin() may be useful.)

4. Use plt.pcolormesh() to visualize the basins. Recall that this function accepts three
array arguments: the x-coordinates (in this case, the real components of the initial grid),
the y-coordinates (the imaginary components of the grid), and an array indicating color
values (Y). Set cmap="brg" to get the same color scheme as in Figure 9.4.

Test your function using f(x) = x3 − 1 and f(x) = x3 − x. The resulting plots should
resemble Figures 9.4a and 9.4b, respectively (perhaps with the colors permuted).

	Newton's Method

