
10 Conditioning and
Stability

Lab Objective: The condition number of a function measures how sensitive that function is to
changes in the input. On the other hand, the stability of an algorithm measures how accurately that
algorithm computes the value of a function from exact input. Both of these concepts are important
for answering the crucial question, “is my computer telling the truth?” In this lab, we examine the
conditioning of common linear algebra problems, including computing polynomial roots and matrix
eigenvalues. We also present an example to demonstrate how two different algorithms for the same
problem may not have the same level of stability.

Conditioning
The absolute condition number of a function f : Rm → Rn at a point x ∈ Rm is defined by

κ̂(x) = lim
δ→0+

sup
‖h‖<δ

‖f(x+ h)− f(x)‖
‖h‖

. (10.1)

In other words, the absolute condition number of f is the limit of the change in output over
the change of input. Similarly, the relative condition number of f is the limit of the relative change
in output over the relative change in input.

κ(x) = lim
δ→0+

sup
‖h‖<δ

(
‖f(x+ h)− f(x)‖

‖f(x)‖

/
‖h‖
‖x‖

)
=
‖x‖
‖f(x)‖

κ̂(x). (10.2)

A function with a large condition number is called ill-conditioned. Small changes to the input
of an ill-conditioned function may produce large changes in output. It is important to know if a
function is ill-conditioned because floating point representation almost always introduces some input
error, and therefore the outputs of ill-conditioned functions cannot be trusted.

The condition number of a matrix A, κ(A) = ‖A‖‖A−1‖, is an upper bound on the condition
number for many of the common problems associated with the matrix, such as solving the system
Ax = b. If A is square but not invertible, then κ(A) =∞ by convention. To compute κ(A), we often
use the matrix 2-norm, which is the largest singular value σmax of A. Recall that if σ is a singular
value of A, 1

σ is a singular value of A−1. Thus, we have that

κ(A) =
σmax

σmin
, (10.3)

which is also a valid equation for non-square matrices.

1

2 Lab 10. Conditioning and Stability

Achtung!

Ill-conditioned matrices can wreak havoc in even simple applications. For example, the matrix

A =

[
1 1

1 1.0000000001

]
is extremely ill-conditioned, with κ(A) ≈ 4× 1010. Solving the systems Ax = b1 and Ax = b2

can result in wildly different answers, even when b1 and b2 are extremely close.

>>> import numpy as np
>>> from scipy import linalg as la

>>> A = np.array([[1, 1], [1, 1+1e-10]])
>>> np.linalg.cond(A)
39999991794.058899

Set up and solve a simple system of equations.
>>> b1 = np.array([2, 2])
>>> x1 = la.solve(A, b1)
>>> print(x1)
[2. 0.]

Solve a system with a very slightly different vector b.
>>> b2 = np.array([2, 2+1e-5])
>>> la.norm(b1 - b2)
>>> x2 = la.solve(A, b2)
>>> print(x2)
[-99997.99172662 99999.99172662] # This solution is hugely different!

If you find yourself working with matrices that have large condition numbers, check your
math carefully or try to reformulate the problem entirely.

Note

An orthonormal matrix U has orthonormal columns and satisfies UTU = I and ‖U‖2 = 1. If
U is square, then U−1 = UT and UT is also orthonormal. Therefore κ(U) = ‖U‖2‖U−1‖2 = 1.
Even if U is not square, all of its singular values are equal to 1, and again κ(U) = σmax/σmin = 1.

The condition number of a matrix cannot be less than 1 since σmax ≥ σmin by definition.
Thus orthonormal matrices are, in a sense, the best kind of matrices for computations. This is
one of the main reasons why numerical algorithms based on the QR decomposition or the SVD
are so important.

3

Problem 1. Write a function that accepts a matrix A and computes its condition number
using (10.3). Use scipy.linalg.svd(), or scipy.linalg.svdvals() to compute the singular
values of A. Avoid computing A−1. If the smallest singular value is 0, return ∞ (np.inf).

Validate your function by comparing it to np.linalg.cond(). Check that orthonormal
matrices have a condition number of 1 (use scipy.linalg.qr() to generate an orthonormal
matrix) and that singular matrices have a condition number of ∞ according to your function.

The Wilkinson Polynomial

Let f : Cn+1 → Cn be the function that maps a collection of n + 1 coefficients (cn, cn−1, . . . , c0) to
the n roots of the polynomial cnxn + cn−1x

n−1 + . . .+ c2x
2 + c1x+ c0. Finding polynomial roots is

an extremely ill-conditioned problem in general, so the condition number of f is likely very large. To
see this, consider the Wilkinson polynomial, made famous by James H. Wilkinson in 1963.

w(x) =

20∏
r=1

(x− r) = x20 − 210x19 + 20615x18 − 1256850x17 + · · ·

Let w̃(x) be w(x) where the coefficient on x19 is very slightly perturbed from −210 to −210.0000001.
The following code computes and compares the roots of w̃(x) and w(x) using NumPy and SymPy.

>>> import sympy as sy
>>> from matplotlib import pyplot as plt

The roots of w are 1, 2, ..., 20.
>>> w_roots = np.arange(1, 21)

Get the exact Wilkinson polynomial coefficients using SymPy.
>>> x, i = sy.symbols('x i')
>>> w = sy.poly_from_expr(sy.product(x-i, (i, 1, 20)))[0]
>>> w_coeffs = np.array(w.all_coeffs())
>>> print(w_coeffs[:6])
[1 -210 20615 -1256850 53327946 -1672280820]

Perturb one of the coefficients very slightly.
>>> h = np.zeros(21)
>>> h[1]=1e-7
>>> new_coeffs = w_coeffs - h
>>> print(new_coeffs[:6])
[1 -210.000000100000 20615 -1256850 53327946 -1672280820]

Use NumPy to compute the roots of the perturbed polynomial.
>>> new_roots = np.roots(np.poly1d(new_coeffs))

Figure 10.1a plots w(x) and w̃(x) together, and Figure 10.1b and compares their roots in the
complex plane.

4 Lab 10. Conditioning and Stability

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
x

4
3
2
1
0
1
2
3
4

w
(x

)
1e13

Original
Perturbed

(a) The original and perturbed Wilkinson
polynomials. They match for only about half of the

domain.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Real Axis

3

2

1

0

1

2

3

Im
ag

in
ar

y
Ax

is

Original
Perturbed

(b) Roots of the original and pertubed Wilkinson
polynomials. About half of the perturbed roots are

imaginary.

Figure 10.1

Figure 10.1 clearly indicates that a very small change in just a single coefficient drastically
changes the nature of the polynomial and its roots. To quantify the difference, estimate the condition
numbers (this example uses the L∞ norm to compute κ̂ and κ).

Sort the roots to ensure that they are in the same order.
>>> w_roots = np.sort(w_roots)
>>> new_roots = np.sort(new_roots)

Estimate the absolute condition number in the infinity norm.
>>> k = la.norm(new_roots - w_roots, np.inf) / la.norm(h, np.inf)
>>> print(k)
28262391.3304

Estimate the relative condition number in the infinity norm.
>>> k * la.norm(w_coeffs, np.inf) / la.norm(w_roots, np.inf)
1.95063629993970+25 # This is huge!!

There are some caveats to this example.

1. Computing the quotients in (10.1) and (10.2) for a fixed perturbation h only approximates the
condition number. The true condition number is the limit of such quotients. We hope that
when ‖h‖ is small, a random quotient is at least the same order of magnitude as the limit, but
there is no way to be sure.

2. This example assumes that NumPy’s root-finding algorithm, np.roots(), is stable, so that the
difference between w_roots and new_roots is due to the difference in coefficients, and not to
problems with np.roots(). We will return to this issue in the next section.

Even with these caveats, it is apparent that root finding is a difficult problem to solve correctly.
Always check your math carefully when dealing with polynomial roots.

5

Problem 2. Write a function that carries out the following experiment 100 times.

1. Randomly perturb the true coefficients of the Wilkinson polynomial by replacing each
coefficient ci with ci ∗ ri, where ri is drawn from a normal distribution centered at 1 with
standard deviation 10−10 (use np.random.normal()).

2. Plot the perturbed roots as small points in the complex plane. That is, plot the real part
of the coefficients on the x-axis and the imaginary part on the y-axis. Plot on the same
figure in each experiment.
(Hint: use a pixel marker, marker=',', to avoid overcrowding the figure.)

3. Compute the absolute and relative condition numbers with the L∞ norm.

Plot the roots of the unperturbed Wilkinson polynomial with the perturbed roots. Your final
plot should resemble Figure 10.2. Finally, return the average computed absolute and relative
condition numbers.

0 5 10 15 20
Real Axis

6

4

2

0

2

4

6

Im
ag

in
ar

y
Ax

is

Perturbed
Original

Figure 10.2: This figure replicates Figure 12.1 on p. 93 of Numerical Linear Algebra by Lloyd
N. Trefethen and David Bau III.

Calculating Eigenvalues

Let f : Mn(C) → Cn be the function that maps an n × n matrix with complex entries to its n
eigenvalues. This problem is well-conditioned for symmetric matrices, but it can be extremely ill-
conditioned for non-symmetric matrices. Let A be an n× n matrix and let λ be the vector of the n
eigenvalues of A. If Ã = A +H is a pertubation of A and λ̃ are its eigenvalues, then the condition
numbers of f can be estimated by

κ̂(A) =
‖λ− λ̃‖
‖H‖

, κ(A) =
‖A‖
‖λ‖

κ̂(A). (10.4)

6 Lab 10. Conditioning and Stability

Problem 3. Write a function that accepts a matrix A and estimates the condition number of
the eigenvalue problem using (10.4). For the perturbation H, construct a matrix with complex
entries where the real and imaginary parts are drawn from normal distributions centered at 0
with standard deviation σ = 10−10.

reals = np.random.normal(0, 1e-10, A.shape)
imags = np.random.normal(0, 1e-10, A.shape)
H = reals + 1j*imags

Use scipy.linalg.eig() or scipy.linalg.eigvals() to compute the eigenvalues of A and
A + H, and use the 2-norm for both the vector and matrix norms. Return the absolute and
relative condition numbers.

Problem 4. Write a function that accepts bounds [xmin, xmax, ymin, ymax] and an integer res.
Use your function from Problem 3 to compute the relative condition number of the eigenvalue
problem for the 2× 2 matrix [

1 x

y 1

]
at every point of an evenly spaced res×res grid over the domain [xmin, xmax] × [ymin, ymax].
Plot these estimated relative condition numbers using plt.pcolormesh() and the colormap
cmap='gray_r'. With res=200, your plot should look similar to the following figure.

Problem 4 shows that the conditioning of the eigenvalue problem depends heavily on the matrix,
and that it is difficult to know a priori how bad the problem will be. Luckily, most real-world problems
requiring eigenvalues are symmetric. In their book on Numerical Linear Algebra, L. Trefethen and
D. Bau III summed up the issue of conditioning and eigenvalues when they stated, “if the answer is
highly sensitive to perturbations, you have probably asked the wrong question.”

7

Stability
The stability of an algorithm is measured by the error in its output. Let f : Rm → Rn be a problem
to be solved, as in the previous section, and let f̃ be an actual algorithm for solving the problem.
The forward error of f at x is ||f(x)− f̃(x)||, and the relative forward error of f at x is

||f(x)− f̃(x)||
||f(x)||

.

An algorithm is called stable if its relative forward error is small.1

As an example, consider again NumPy’s root-finding algorithm that we used to investigate the
Wilkinson polynomial. The exact roots of w(x) are clearly 1, 2, . . . , 20. Had we not known this, we
could have tried computing the roots from the coefficients using np.roots() (without perturbing
the coefficients at all).

w_coeffs holds the coefficients and w_roots holds the true roots.
>>> computed_roots = np.sort(np.roots(np.poly1d(w_coeffs)))
>>> print(computed_roots[:6]) # The computed roots are close to integers.
[1. 2. 3. 3.99999999 5.00000076 5.99998749]

Compute the forward error.
>>> forward_error = la.norm(w_roots - computed_roots)
>>> print(forward_error)
0.020612653126379665

Compute the relative forward error.
>>> forward_error / la.norm(w_roots)
0.00038476268486104599 # The error is nice and small.

This analysis suggests that np.roots() is a stable algorithm, so large condition numbers of
Problem 2 really are due to the poor conditioning of the problem, not the way in which the problem
was solved.

Note

Conditioning is a property of a problem to be solved, such as finding the roots of a polynomial
or calculating eigenvalues. Stability is a property of an algorithm to solve a problem, such
as np.roots() or scipy.linalg.eig(). If a problem is ill-conditioned, any algorithm used to
solve that problem may result in suspicious solutions, even if that algorithm is stable.

Least Squares
The ordinary least squares (OLS) problem is to find the x that minimizes ‖Ax− b‖2 for fixed A and
b. It can be shown that an equivalent problem is finding the solution of AHAx = AHb, called the
normal equations. A common application of least squares is polynomial approximation. Given a set
of m data points {(xk, yk)}mk=1, the goal is to find the set of coefficients {ci}ni=0 such that

yk ≈ cnxnk + cn−1x
n−1
k + · · ·+ c2x

2
k + c1xk + c0

1See the Additional Material section for alternative (and more rigorous) definitions of algorithmic stability.

8 Lab 10. Conditioning and Stability

for all k, with the smallest possible error. These m linear equations yield the following linear system.

Ax =

xn1 xn−11 · · · x21 x1 1

xn2 xn−12 · · · x22 x2 1

xn3 xn−13 · · · x23 x3 1
...

...
...

...
...

xnm xn−1m · · · x2m xm 1

cn
cn−1
...
c2
c1
c0

=

y1
y2
y3
...
ym

 = b (10.5)

Problem 5. Write a function that accepts an integer n. Solve for the coefficients of the poly-
nomial of degree n that best fits the data found in stability_data.npy. Use two approaches
to get the least squares solution:

1. Use la.inv() to solve the normal equations: x = (ATA)−1ATb. Although this approach
seems intuitive, it is actually highly unstable and can return an answer with a very large
forward error.

2. Use la.qr() with mode='economic' and la.solve_triangular() to solve the system
Rx = QTb, which is equivalent to solving the normal equations. This algorithm has the
advantage of being stable.

Load the data and set up the system (10.5) with the following code.

xk, yk = np.load("stability_data.npy").T
A = np.vander(xk, n+1)

Plot the resulting polynomials together with the raw data points. Return the forward
error ‖Ax− b‖2 of both approximations.
(Hint: The function np.polyval() will be helpful for plotting the resulting polynomials.)

Test your function using various values of n, taking special note of what happens for values
of n near 14 (pictured below).

0.0 0.2 0.4 0.6 0.8 1.0
0

5

10

15

20

25
Normal Equations
QR Solver

9

Catastrophic Cancellation
When a computer takes the difference of two very similar numbers, the result is often stored with
a small number of significant digits and the tiniest bit of information is lost. However, these small
errors can propagate into large errors later down the line. This phenomenon is called catastrophic
cancellation, and is a common cause for numerical instability.

Catastrophic cancellation is a potential problem whenever floats or large integers that are very
close to one another are subtracted. This problem can be avoided by either rewriting the program
to not use subtraction, or by increasing the number of significant digits that the computer tracks.

For example, consider the simple problem of computing
√
a −
√
b. The computation can be

done directly with subtraction, or by performing the equivalent division

√
a−
√
b = (

√
a−
√
b)

√
a+
√
b

√
a+
√
b
=

a− b
√
a+
√
b
.

>>> from math import sqrt # np.sqrt() fails for very large numbers.

>>> a = 10**20 + 1
>>> b = 10**20
>>> sqrt(a) - sqrt(b) # Do the subtraction directly.
0.0 # a != b, so information has been lost.

>>> (a - b) / (sqrt(a) + sqrt(b)) # Use the alternative formulation.
5e-11 # Much better!

In this example, a and b are distinct enough that the computer can still tell that a− b = 1, but√
a and

√
b are so close to each other that

√
a−
√
b is computed as 0.

Problem 6. Let I(n) =
∫ 1

0
xnex−1dx. It can be shown that for a positive integer n,

I(n) = (−1)n!n+ (−1)n+1 n!

e
, (10.6)

where !n = n!
∑n
k=0

(−1)k
k! is the subfactorial of n. Write a function to do the following.

1. Use SymPy’s sy.integrate() to evaluate the integral form of I(n) for n = 5, 10, . . . , 50.
Convert the symbolic results of each integration to a float. Since this is done symbolically,
these values can be accepted as the true values of I(n).
(Hint: be careful that the values of n in the integrand are actual integers, not floats.)

2. Use (10.6) to compute I(n) for the same values of n. Use sy.subfactorial() to compute
!n and sy.factorial() to compute n!.
(Hint: be careful to only pass actual integers to these functions.)

3. Plot the relative forward error of the results computed in step 2 at each of the given values
of n. Use a log scale on the y-axis. Is (10.6) a stable way to compute I(n)? Why?

The examples presented in this lab are just a few of the ways that a mathematical problem can
turn into a computational train wreck. Always use stable algorithms when possible, and remember
to check if problems are well conditioned or not.

10 Lab 10. Conditioning and Stability

Additional Material
Other Notions of Stability
The definition of stability can be made more rigorous in the following way. Let f be a problem to
solve and f̃ an algorithm to solve it. If for every x in the domain there exists a x̃ such that

‖x̃− x‖
‖x‖

and
‖f̃(x)− f(x̃)‖
‖f(x̃)‖

are small (close to εmachine ≈ 10−16), then f̃ is called stable. In other words, “A stable algorithm
gives nearly the right answer to nearly the right question” (Trefethen, Bao, 104). Note carefully that
the quantity on the right is slightly different from the plain forward error introduced earlier.

Stability is desirable, but plain stability isn’t the best possible condition. For example, if for
every input x there exists a x̃ such that ‖x̃−x‖/‖x‖ is small and f̃(x) = f(x̃) exactly, then f̃ is called
backward stable. Thus “A backward stable algorithm gives exactly the right answer to nearly the right
question” (Trefethen, Bao, 104). Backward stable algorithms are generally more trustworthy than
stable algorithms, but they are also less common.

Stabilty of Linear System Solvers
The algorithms presented so far in this manual have different levels of stability. The LU decomposition
(with pivoting) is usually very good, but there are some pathological examples of matrices that
can cause it to break down. Even so, scipy.linalg.solve() uses the LU decomposition. The
QR decomposition (also with pivoting) is generally considered to be a better option than the LU
decomposition and is more stable. However, solving a linear system using the SVD is even more
stable than using the QR decomposition. For this reason, scipy.linalg.lstsq() uses the SVD.

	Conditioning and Stability

