Visualizing
Complex-valued
Functions

Lab Objective: Functions that map from the complex plane into the complex plane are difficult
to fully visualize because the domain and range are both 2-dimensional. However, such functions
can be visualized at the expense of partial information. In this lab we present methods for analyzing
complez-valued functions visually, including locating their zeros and poles in the complex plane. We
recommend completing the exercises in a Jupyter Notebook.

Representations of Complex Numbers
A complex number z = z + iy can be written in polar coordinates as z = re*? where
o r=|z| = \/m is the magnitude of z, and
e 0 = arg(z) = arctan(y/x) is the argument of z, the angle in radians between z and 0.

Conversely, Euler’s formula is the relation re?® = r cos(6) + irsin(6). Then setting re? = z + iy and
equating real and imaginary parts yields the equations = r cos(f) and y = rsin(f).
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Figure 13.1: The complex number z can be represented in Cartesian coordinates as z = x + iy and
in polar coordinates as z = re*, when @ is in radians.

NumPy makes it easy to work with complex numbers and convert between coordinate systems.
The function np.angle() returns the argument 6 of a complex number (between —m and 7) and
np.abs() (or np.absolute()) returns the magnitude r. These functions also operate element-wise
on NumPy arrays.
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>>> import numpy as np

>>> z = 2 - 2x1j # 1j is the imaginary unit i = sqrt(-1).
>>> r, theta = np.abs(z), np.angle(z)
>>> print(r, theta) # The angle is between -pi and pi.

2.82842712475 -0.785398163397

# Check that z = r * e~ (ixtheta)
>>> np.isclose(z, r*np.exp(lj*theta))
True

# These function also work on entire arrays.
>>> np.abs(np.arange(5) + 2j*np.arange(5))
array ([ O. , 2.23606798, 4.47213595, 6.70820393, 8.94427191])

Complex Functions

A function f : C — C is called a complez-valued function. Visualizing f is difficult because C has 2
real dimensions, so the graph of f should be 4-dimensional. However, since it is possible to visualize
3-dimensional objects, f can be visualized by ignoring one dimension. There are two main strategies
for doing this: assign a color to each point z € C corresponding to either the argument 6 of f(z), or
to the magnitude r of f(z). The graph that uses the argument is called a complex color wheel graph.
Figure 13.2 displays the identity function f(z) = z using these two methods.
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Figure 13.2: The identity function f : C — C defined by f(z) = 2. On the left, the color at each
point z represents the angle § = arg(f(z)). As 0 goes from — to , the colors cycle smoothly
counterclockwise from red to green to blue and back to red (this colormap is called "hsv"). On the
right, the color represents the magnitude r = |f(z)|. The further a point is from the origin, the
greater its magnitude (the colormap is the default, "viridis").



The plots in Figure 13.2 use Cartesian coordinates in the domain and polar coordinates in
the codomain. The procedure for plotting in this way is fairly simple. Begin by creating a grid of
complex numbers: create the real and imaginary parts separately, then use np.meshgrid() to turn
them into a single array of complex numbers. Pass this array to the function f, compute the angle
and argument of the resulting array, and plot them using plt.pcolormesh(). The following code

sets up the complex domain grid.

>>> x = np.linspace(-1, 1, 400)
>>> y = np.linspace(-1, 1, 400)
>>> X, Y = np.meshgrid(x, y)
>>> Z = X + 1j%Y

# Real domain.

# Imaginary domain.

# Make grid matrices.

# Combine the grids into a complex array.

Visualizing the argument and the magnitude separately provides different perspectives of the
function f. The angle plot is generally more useful for visualizing function behavior, though the
magnitude plot often makes it easy to spot important points such as zeros and poles.
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Figure 13.3: Plots of f(z) = V22 + 1 on {z+iy | z,y € [-3,3]}. Notice how a discontinuity is clearly
visible in the angle plot on the left, but disappears from the magnitude plot on the right.

Problem 1. Write a function that accepts a function f : C — C, bounds [Fmin, "max, tmin, imax]
for the domain, an integer res that determines the resolution of the plot, and a string to set
the figure title. Plot arg(f(z)) and |f(z)| on an equally-spaced resxres grid over the domain
{z + iy | £ € [Fmin, Tmax], ¥ € [tmin, tmax)} I separate subplots.

1. For arg(f(2)), set the plt.pcolormesh() keyword arguments vmin and vmax to —m and
7, respectively. This forces the color spectrum to work well with np.angle(). Use the
colormap "hsv", which starts and ends red, so that the color is the same for —7 and 7.
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2. For |f(2)|, set norm=matplotlib.colors.LogNorm() in plt.pcolormesh() so that the
color scale is logarithmic. Use a sequential colormap like "viridis" or "magma".

3. Set the aspect ratio to "equal" in each plot. Give each subplot a title, and set the overall
figure title with the given input string.

Use your function to visualize f(z) = z on {z +iy | z,y € [-1,1]} and f(2) = V22 + 1 on
{z +iy | z,y € [-3,3]}. Compare the resulting plots to Figures 13.2 and 13.3, respectively.

Interpreting Complex Plots

Plots of a complex function can be used to quickly identify important points in the function’s domain.

Zeros

A complex number z is called a zero of the complex-valued function f if f(z9) = 0. The mutliplicity
or order of z is the largest integer n such that f can be written as f(z) = (z — 20)"g(z) where
g(z0) # 0. In other words, f has a zero of order n at zy if the Taylor series of f centered at zp can
be written as

f(z)= i ap(z — 2)* with a,, # 0.
k=n

Angle and magnitude plots make it easy to locate a function’s zeros and to determine their
multiplicities.

Problem 2. Use your function from Problem 1 to plot the following functions on the domain
{JJ + Zy | T,y € [_17 1]}

o f(z) =2"forn =234
o f(2) = 23 —iz* — 325. Compare the resulting plots to Figure 13.4.

Write a sentence or two about how the zeros of a function appear in angle and magnitude plots.
How can you tell the multiplicity of the zero from the plot?

Problem 2 shows that in an angle plot of f(z) = 2™, the colors cycle n times counterclockwise
around 0. This is explained by looking at z" in polar coordinates.

2" = (re'?)" = rmet?)

Multiplying # by a number greater than 1 compresses the graph along the “#-axis” by a factor of n.
In other words, the output angle repeats itself n times in one cycle of §. This is similar to taking a
scalar-valued function f: R — R and replacing f(z) with f(nx).

Problem 2 also shows that the plot of f(z) = 2% —iz* — 320 looks very similar to the plot of
f(z) = 2% near the origin. This is because when z is close to the origin, z* and 2® are much smaller
in magnitude than 23, and so the behavior of z* dominates the function. In terms of the Taylor series
centered at zp = 0, the quantity |z — 2zo|”™* is much smaller than |z — z|™ for z close to 2o, and so
the function behaves similar to a,(z — zp)™.
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Figure 13.4: The angle plot of f(z) = 2% —i2* — 325 on {z + iy | x,y € [-1,1]}. The angle plot
shows that f(z) has a zero of order 3 at the origin and 3 distinct zeros of order 1 scattered around
the origin. The magnitude plot makes it easier to pinpoint the location of the zeros.

Poles

A complex number zg is called a pole of the complex-valued function f if f can be written as
f(z) = g(2)/(z — zp) where g(z9) # 0. From this definition it is easy to see that lim,_,,, | f(z)| = o0,
but knowing that lim,_,., |f(z)| = oo is not enough information to conclude that z; is a pole of f.

The order of zy is the largest integer n such that f can be written as f(z) = g(z)/(z — 20)"
with g(zg9) # 0. In other words, f has a pole of order n at z if its Laurent series on a punctured
neighborhood of zy can be written as

f(z) = Z ar(z — 20)" with a_,, # 0.

Problem 3. Plot the following functions on domains that show all of its zeros and/or poles.
o f(z2)=z""forn=1,2,3.
o f(z)=2%+iz71+273.

Write a sentence or two about how the poles of a function appear in angle and magnitude plots.
How can you tell the multiplicity of the poles from the plot?

Problem 3 shows that in angle plot of 27!, the colors cycle n times clockwise around 0, as
opposed to the counter-clockwise rotations seen around roots. Again, this can be explained by
looking at the polar representation.

LT — (,rei(?)fn _ ,rfnei(fne)
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The minus sign on the 0 reverses the direction of the colors, and the n makes them cycle n times.

From Problem 3 it is also clear that f(z) = 22 +iz7! 4 273 behaves similarly to z=3 for z near
the pole at zg = 0. Since |z — zo| ~"** is much smaller than |z — 29| ™" when |z — 2| is small, near
zo the function behaves like a_,(z — z9)~™. This is why the order of a pole can be estimated by
counting the number of times the colors circle a point in the clockwise direction.

Counting Zeros and Poles

The Fundamental Theorem of Algebra states that a polynomial f with highest degree n has exactly
n zeros, counting multiplicity. For example, f(z) = 22 + 1 has two zeros, and f(z) = (z — i) has
three zeros, all at zg =4 (that is, z9 = ¢ is a zero with multiplicity 3).

The number of poles of function can also be apparent if it can be written as a quotient of
polynomials. For example, f(z) = z/(z+i)(z—i)? has one zeros and three poles, counting multiplicity.

Problem 4. Plot the following functions and count the number and order of their zeros and
poles. Adjust the bounds of each plot until you have found all zeros and poles.

o f(z)=—425+224—22%3 422+ 424
o f(2)=2"+625— 13125 — 4192* + 490622 — 13122 — 420z + 4900

_ 162*4+32253432224162+4
e f(z) = 162416231522

It is usually fairly easy to see how many zeros or poles a polynomial or quotient of polynomials
has. However, it can be much more difficult to know how many zeros or poles a different function
may or may not have without visualizing it.

Problem 5. Plot the following functions on the domain {x + iy | =,y € [-8,8]}. Explain
carefully what each graph reveals about the function and why the function behaves that way.

o f(z)=¢
o f(z) = tan(z)

(Hint: use the polar coordinate representation to mathematically examine the magnitude and
angle of each function.)

Essential Poles

A complex-valued function f has an essential pole at zg if its Laurent series in a punctured neigh-
borhood of zy requires infinitely many terms with negative exponents. For example,

oo
1 1 11 11
Yz = =l4+-+-=+=-=+....
¢ Zn!z” +z+222+6z3+
k=0
An essential pole can be thought of as a pole of order co. Therefore, in an angle plot the colors cycle
infinitely many times around an essential pole.



Figure 13.5: Angle plot of f(z) = €'/# on the domain {x + iy | 2,y € [~1,1]}. The colors circle
clockwise around the origin because it is a pole, not a zero. Because the pole is essential, the colors
repeat infinitely many times.

ACHTUNG!

Often, color plots like the ones presented in this lab can be deceptive because of a bad choice
of domain. Be careful to validate your observations mathematically.

Problem 6. For each of the following functions, plot the function on {z + iy | =,y € [-1, 1]}
and describe what this view of the plot seems to imply about the function. Then plot the
function on a domain that allows you to see the true nature of the roots and poles and describe
how it is different from what the original plot implied.

o f(2)=100z2 + 2
e f(z) =sin (ﬁ).

(Hint: zoom way in.)
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