
4 Unix Shell 2

Lab Objective: Introduce system management, calling Unix Shell commands within Python, and
other advanced topics. As in the last lab, the majority of learning will not be had in finishing the
problems, but in following the examples.

File Security
To begin, run the following command while inside the Shell2/Python/ directory (Shell2/ is the
end product of Shell1/ from the previous lab). Notice your output will differ from that printed
below; this is for learning purposes.

$ ls -l
-rw-rw-r-- 1 username groupname 194 Aug 5 20:20 calc.py
-rw-rw-r-- 1 username groupname 373 Aug 5 21:16 count_files.py
-rwxr-xr-x 1 username groupname 27 Aug 5 20:22 mult.py
-rw-rw-r-- 1 username groupname 721 Aug 5 20:23 project.py

Notice the first column of the output. The first character denotes the type of the item whether
it be a normal file, a directory, a symbolic link, etc. The remaining nine characters denote the
permissions associated with that file. Specifically, these permissions deal with reading, wrtiting, and
executing files. There are three categories of people associated with permissions. These are the user
(the owner), group, and others. For example, look at the output for mult.py. The first character
- denotes that mult.py is a normal file. The next three characters, rwx tell us the owner can read,
write, and execute the file. The next three characters r-x tell us members of the same group can
read and execute the file. The final three characters --x tell us other users can execute the file and
nothing more.

Permissions can be modified using the chmod command. There are two different ways to specify
permissions, symbolic permissions notation and octal permissions notation. Symbolic permissions
notation is easier to use when we want to make small modifications to a file’s permissions. See Table
4.1.

Octal permissions notation is easier to use when we want to set all the permissions as once.
The number 4 corresponds to reading, 2 corresponds to writing, and 1 corresponds to executing. See
Table 4.2.

The commands in Table 4.3 are also helpful when working with permissions.

1



2 Lab 4. Unix Shell 2

Command Description
chmod u+x file1 Add executing (x) permissions to user (u)
chmod g-w file1 Remove writing (w) permissions from group (g)
chmod o-r file1 Remove reading (r) permissions from other other users (o)
chmod a+w file1 Add writing permissions to everyone (a)

Table 4.1: Symbolic permissions notation

Command Description
chmod 760 file1 Sets rwx to user, rw- to group, and --- to others
chmod 640 file1 Sets rw- to user, r-- to group, and --- to others
chmod 775 file1 Sets rwx to user, rwx to group, and r-x to others
chmod 500 file1 Sets r-x to user, --- to group, and --- to others

Table 4.2: Octal permissions notation

Scripts
A shell script is a series of shell commands saved in a file. Scripts are useful when we have a process
that we do over and over again. The following is a very simple script.

#!/bin/bash
echo "Hello World"

The first line starts with "#!". This is called the shebang or hashbang character sequence. It is
followed by the absolute path to the bash interpreter. If we were unsure where the bash interpreter
is saved, we run which bash.

Problem 1. Create a file called hello.sh that contains the previous text and save it in the
Scripts/ directory. The file extension .sh is technically unnecessary, but it is good practice
to always include an extension.

To execute a script, type the script name preceded by ./

$ cd Scripts
$ ./hello.sh
bash: ./hello.sh: Permission denied

# Notice you do not have permission to execute this file. This is by default.
$ ls -l hello.sh
-rw-r--r-- 1 username groupname 31 Jul 30 14:34 hello.sh

Problem 2. Add executable permissions to hello.sh. Run the script to verify that it worked.

You can do this same thing with Python scripts. All you have to do is change the path following
the shebang. To see where the Python interpreter is stored, run which python.



3

Command Description
chown change owner
chgrp change group
getfacl view all permissions of a file in a readable format.

Table 4.3: Other commands when working with permissions

Command Description
df dir1 Display available disk space in file system containing dir1
du dir1 Display disk usage within dir1 [-a, -h]
free Display amount of free and used memory in the system
ps Display a snapshot of current processes
top Display interactive list of current processes

Table 4.4: Commands for resource management

Problem 3. The Python/ directory contains a file called count_files.py, a Python script
that counts all the files within the Shell2/ directory. Modify this file so it can be run as a
script and change the permissions of this script so the user and group can execute the script.

Note

If you would like to learn how to run scripts on a set schedule, consider researching cron jobs.

Resource Management

To be able to optimize performance, it is valuable to always be aware of the resources we are using.
Hard drive space and computer memory are two resources we must constantly keep in mind. The
commands found in Table 4.4 are essential to managing resources.

Job Control

Let’s say we had a series of scripts we wanted to run. If we knew that these would take a while to
execute, we may want to start them all at the same time and let them run while we are working
on something else. In Table 4.5, we have listed some of the most common commands used in job
control. We strongly encourage you to experiment with these commands.



4 Lab 4. Unix Shell 2

Command Description
COMMAND & Adding an ampersand to the end of a command

runs the command in the background
bg %N Restarts the Nth interrupted job in the background
fg %N Brings the Nth job into the foreground
jobs Lists all the jobs currently running
kill %N Terminates the Nth job
ps Lists all the current processes
Ctrl-C Terminates current job
Ctrl-Z Interrupts current job
nohup Run a command that will not be killed if the user logs out

Table 4.5: Job control commands

The five_secs.sh and ten_secs.sh scripts in the Scripts/ directory take five seconds and
ten seconds to execute respectively. These will be particularly useful as you are experimenting with
these commands.

# Don't forget to change permissions if needed
$ ./ten_secs.sh &
$ ./five_secs.sh &
$ jobs
[1]+ Running ./ten_secs.sh &
[2]- Running ./five_secs.sh &
$ kill %2
[2]- Terminated ./five_secs.sh &
$ jobs
[1]+ Running ./ten_secs.sh &

Problem 4. In addition to the five_secs.sh and ten_secs.sh scripts, the Scripts/ folder
contains three scripts that each take about forty-five seconds to execute. Execute each of these
commands in the background so all three are running at the same time. While they are all
running, write the output of jobs to a new file log.txt saved in the Scripts/ directory.

Using Python for File Management
Bash itself has control flow tools like if-else blocks and loops, but most of the syntax is highly
unintuitive. Python, on the other hand, has extremely intuitive syntax for these control flow tools,
so using Python to do shell-like tasks can result in some powerful but specific file management
programs. Table 4.6 relates some of the common shell commands to Python functions, most of which
come from the os module in the standard library.

In addition to these, Python has a few extra functions that are useful for file management and
shell commands. See Table 4.7. The two functions os.walk() and glob.glob() are especially useful
for doing searches like find and grep.



5

Shell Command Python Function
ls os.listdir()
cd os.chdir()
pwd os.getcwd()

mkdir os.mkdir(), os.mkdirs()
cp shutil.copy()
mv os.rename(), os.replace()
rm os.remove(), shutil.rmtree()
du os.path.getsize()

chmod os.chmod()

Table 4.6: Shell-Python compatibility

Function Description
os.walk() Iterate through the subfolders of a given directory.

os.path.isdir() Return True if the input is a directory.
os.path.isfile() Return True if the input is a file.

os.path.join() Join several folder names or file names into one path.
glob.glob() Return a list of file names that match a pattern.

subprocess.call() Execute a shell command.
subprocess.check_output() Execute a shell command and return its output as a string.

Table 4.7: Other useful Python functions for shell operations.

>>> import os
>>> from glob import glob

# Get the names of all Python files in the Python/ directory.
>>> glob("Python/*.py")
['Python/calc.py',
'Python/count_files.py',
'Python/mult.py',
'Python/project.py']

# Get the names of all .jpg files in any subdirectory.
>> glob("**/*.jpg", recursive=True)
['Photos/IMG_1501.jpg',
'Photos/IMG_1510.jpg',
'Photos/IMG_1595.jpg',
'Photos/img_1796.jpg',
'Photos/img_1842.jpg',
'Photos/img_1879.jpg',
'Photos/img_1987.jpg',
'Photos/IMG_2044.jpg',
'Photos/IMG_2164.jpg',
'Photos/IMG_2182.jpg',
'Photos/IMG_2379.jpg',
'Photos/IMG_2464.jpg',



6 Lab 4. Unix Shell 2

'Photos/IMG_2679.jpg',
'Photos/IMG_2746.jpg']

# Walk through the directory, looking for .sh files.
>>> for directory, subdirectories, files in os.walk('.'):
... for filename in files:
... if filename.endswith(".sh"):
... print(os.path.join(directory, filename))
...
./Scripts/five_secs.sh
./Scripts/script1.sh
./Scripts/script2.sh
./Scripts/script3.sh
./Scripts/ten_secs.sh

Problem 5. Write a Python function grep() that accepts the name of target string and a file
pattern. Find all files in the current directory or its subdirectories that match the file pattern,
then determine which ones contain the target string. For example, grep("*.py", "range(")
should search Python files for the command range(.

Validate your function by comparing it to grep -lR in the shell.

The subprocessmodule allows Python to execute actual shell commands in the current working
directory. Use subprocess.call() to run a Unix command, or subprocess.check_output() to run
a Unix command and record its output.

$ cd Shell2/Scripts
$ python
>>> import subprocess
>>> subprocess.call(["ls", "-l"])
total 40
-rw-r--r-- 1 username groupname 20 Aug 26 2016 five_secs.sh
-rw-r--r-- 1 username groupname 21 Aug 26 2016 script1.sh
-rw-r--r-- 1 username groupname 21 Aug 26 2016 script2.sh
-rw-r--r-- 1 username groupname 21 Aug 26 2016 script3.sh
-rw-r--r-- 1 username groupname 21 Aug 26 2016 ten_secs.sh
0 # decode() translates the result to a string.
>>> file_info = subprocess.check_output(["ls", "-l"]).decode()
>>> file_info.split('\n')
['total 40',
'-rw-r--r-- 1 username groupname 20 Aug 26 2016 five_secs.sh',
'-rw-r--r-- 1 username groupname 21 Aug 26 2016 script1.sh',
'-rw-r--r-- 1 username groupname 21 Aug 26 2016 script2.sh',
'-rw-r--r-- 1 username groupname 21 Aug 26 2016 script3.sh',
'-rw-r--r-- 1 username groupname 21 Aug 26 2016 ten_secs.sh',
'']



7

Achtung!

Be extremely careful when creating a shell process from Python. If the commands depend on
user input, the program is vulnerable to a shell injection attack. For example, consider the
following function.

>>> def inspect_file(filename):
... """Return information about the specified file from the shell."""
... return subprocess.check_output(["ls", "-l", filename]).decode()

If inspect_file() is given the input ".; rm -rf /", then ls -l . is executed innocently,
and then rm -rf / destroys the computer.a Be careful not to execute a shell command from
within Python in a way that a malicious user could potentially take advantage of.

aSee https://en.wikipedia.org/wiki/Code_injection#Shell_injection for more example attacks.

Problem 6. Write a Python function that accepts an integer n. Search the current directory
and all subdirectories for the n largest files. Return a list of filenames, in order from largest to
smallest.
(Hint: the shell commands ls -s and du show the file size.)

Downloading Files
The Unix shell has tools for downloading files from the internet. The most popular are wget and
curl. At its most basic, curl is the more robust of the two while wget can download recursively.

When we want to download a single file, we just need the URL for the file we want to download.
This works for PDF files, HTML files, and other content simply by providing the right URL.

$ wget https://github.com/Foundations-of-Applied-Mathematics/Data/blob/master/←↩
Volume1/dream.png

The following are also useful commands using wget.

# Download files from URLs listed in urls.txt
$ wget -i list_of_urls.txt

# Download in the background
$ wget -b URL

# Download something recursively
$ wget -r --no-parent URL

https://en.wikipedia.org/wiki/Code_injection#Shell_injection


8 Lab 4. Unix Shell 2

Problem 7. The file urls.txt in the Documents/ directory contains a list of URLs. Download
the files in this list using wget and move them to the Photos/ directory.

When you finish this problem, archive and compress your entire Shell2/ directory and
save it as ShellFinal.tar.gz. Include the -p flag on tar to preserve the file permissions.
(Hint: see the previous lab for a refresher on tar. See also https://xkcd.com/1168/.)

One Final Note
Though there are multiple Unix shells, one of the most popular is the bash shell. The bash shell
is highly customizable. In your home directory, you will find a hidden file named .bashrc. All
customization changes are saved in this file. If you are interested in customizing your shell, you can
customize the prompt using the PS1 environment variable. As you become more and more familiar
with the Unix shell, you will come to find there are commands you run over and over again. You can
save commands you use frequently using alias. If you would like more information on these and
other ways to customize the shell, you can find many quality reference guides and tutorials on the
internet.

https://xkcd.com/1168/


9

Additional Material
sed and awk

sed and awk are two different scripting languages in their own right. Like Unix, these languages
are easy to learn but difficult to master. It is very common to combine Unix commands and
sed and awk commands. We will address the basics, but if you would like more information see
<http://www.theunixschool.com/p/awk-sed.html>

Printing Specific Lines Using sed

We have already used the head and tail commands to print the beginning and end of a file respec-
tively. What if we wanted to print lines 30 to 40, for example? We can accomplish this using sed.
In the Documents/ folder, you will find the lines.txt file. We will use this file for the following
examples.

# Same output as head -n3
$ sed -n 1,3p lines.txt
line 1
line 2
line 3

# Same output as tail -n3
$ sed -n 3,5p lines.txt
line 3
line 4
line 5

# Print lines 2-4
$ sed -n 3,5p lines.txt
line 2
line 3
line 4

# Print lines 1,3,5
$ sed -n -e 1p -e 3p -e 5p lines.txt
line 1
line 3
line 5

Find and Replace Using sed

Using sed, we can also perform find and replace. We can perform this function on the output of
another commmand or we can perform this function in place on other files. The basic syntax of this
sed command is the following.

sed s/str1/str2/g



10 Lab 4. Unix Shell 2

This command will replace every instance of str1 with str2. More specific examples follow.

$ sed s/line/LINE/g lines.txt
LINE 1
LINE 2
LINE 3
LINE 4
LINE 5

# Notice the file didn't change at all
$ cat lines.txt
line 1
line 2
line 3
line 4
line 5

# To save the changes, add the -i flag
$ sed -i s/line/LINE/g lines.txt
$ cat lines.txt
LINE 1
LINE 2
LINE 3
LINE 4
LINE 5

Formatting output using awk

Earlier in this lab we mentioned ls -l and as we have seen, this outputs lots of information. Using
awk, we can select which fields we wish to print. Suppose we only cared about the file name and the
permissions. We can get this output by running the following command.

$ ls -l | awk ' {print $1, $9} '

Notice we pipe the output of ls -l to awk. When calling a command using awk, we use
quotation marks. Note it is a common mistake to forget to add these quotation marks. Inside these
quotation marks, commands always take the same format.

awk ' <options> {<actions>} '

In the remaining examples we will not be using any of the options, but we will address various ac-
tions. For those interested in learning what options are available see <http://www.theunixschool.com/p/awk-
sed.html>.

In the Documents/ directory, you will find a people.txt file that we will use for the following
examples. In our first example, we use the print action. The $1 and $9 mean that we are going to
print the first and ninth fields. Beyond specifying which fields we wish to print, we can also choose
how many characters to allocate for each field.



11

# contents of people.txt
$ cat people.txt
male,John,23
female,Mary,31
female,Sally,37
male,Ted,19
male,Jeff,41
female,Cindy,25

# Change the field separator (FS) to "," at the beginning of execution (BEGIN)
# By printing each field individually proves we have successfully separated the←↩

fields
$ awk ' BEGIN{ FS = "," }; {print $1,$2,$3} ' < people.txt
male John 23
female Mary 31
female Sally 37
male Ted 19
male Jeff 41
female Cindy 25

# Format columns using printf so everything is in neat columns in order (gender←↩
,age,name)

$ awk ' BEGIN{ FS = ","}; {printf "%-6s %2s %s\n", $1,$3,$2} ' < people.txt
male 23 John
female 31 Mary
female 37 Sally
male 19 Ted
male 41 Jeff
female 25 Cindy

The statement "%-6s %2s %s\n" formats the columns of the output. This says to set aside six
characters left justied, then two characters right justified, then print the last field to its full length.

We have barely scratched the surface of what awk can do. Performing an internet search for
"awk one-liners" will give you many additional examples of useful commands you can run using awk.

System Management

In this section, we will address some of the basics of system management. As an introduction, the
commands in Table 4.8 are used to learn more about the computer system.



12 Lab 4. Unix Shell 2

Command Description
passwd Change user password
uname View operating system name
uname -a Print all system information
uname -m Print machine hardware
w Show who is logged in and what they are doing
whoami Print userID of current user

Table 4.8: Commands for system administration.

Secure Shell
Let’s say you are working for a company with a file server. Hundreds of people need to be able to
access the content of this machine, but how is that possible? Or say you have a script to run that
requires some serious computing power. How are you going to be able to access your company’s
super computer to run your script? We do this through Secure Shell (SSH).

SSH is a network protocol encrypted using public-key cryptography. The system we are con-
necting to is commonly referred to as the host and the system we are connecting from is commonly
referred to as the client. Once this connection is established, there is a secure tunnel through which
commands and files can be exchanged between the client and host. To end a secure connection, type
exit.

As a warning, you cannot normally SSH into a Windows machine. If you want to do this, search
on the web for available options.

$ whoami # use this to see what your current login is
client_username
$ ssh my_host_username@my_hostname

# You will then be prompted to enter the password for my_host_username

$ whoami # use this to verify that you are logged into the host
my_host_username

$ hostname
my_hostname

$ exit
logout
Connection to my_host_name closed.

Now that you are logged in on the host computer, all the commands you execute are as though
you were executing them on the host computer.

Secure Copy
When we want to copy files between the client and the host, we use the secure copy command, scp.
The following commands are run when logged into the client computer.

# copy filename to the host's system at filepath



13

$ scp filename host_username@hostname:filepath

#copy a file found at filepath to the client's system as filename
$ scp host_username@hostname:filepath filename

# you will be prompted to enter host_username's password in both these ←↩
instances

Generating SSH Keys (Optional)
If there is a host that we access on a regular basis, typing in our password over and over again can get
tedious. By setting up SSH keys, the host can identify if a client is a trusted user without needing to
type in a password. If you are interested in experimenting with this setup, a Google search of "How
to set up SSH keys" will lead you to many quality tutorials on how to do so.


	Unix Shell 2

