
6 The Discrete Fourier
Transform

Lab Objective: The analysis of periodic functions has many applications in pure and applied
mathematics, especially in settings dealing with sound waves. The Fourier transform provides a way
to analyze such periodic functions. In this lab, we use Python to work with digital audio signals and
implement the discrete Fourier transform. We use the Fourier transform to detect frequencies present
in a given sound wave. We recommend this lab be done in a Jupyter Notebook.

Sound Waves
Sound is how vibrations are perceived in matter. These vibrations travel in waves. Sound waves have
two important characteristics that determine what is heard, or whether or not it can be heard. The
first characteristic is frequency, which is a measurement of the number of vibrations in a certain time
period, and determines the pitch of the sound. Only certain frequencies are perceptible to the human
ear. The second characteristic is intensity or amplitude, and determines the volume of the sound.
Sound waves correspond physically to continuous functions, but computers can approximate sound
waves using discrete measurements. Indeed, discrete measurements can be made indistinguishable
to the human ear from a truly continuous wave. Usually, sound waves are of a sinusoidal nature
(with some form of decay); the frequency is related to the wavelength, and the intensity to the wave
amplitude.

Digital Audio Signals
Computer use digital audio signals to approximate sound waves. These signals have two key com-
ponents that relate to the frequency and amplitude of sound waves: samples and sampling rate. A
sample is a measurement of the amplitude of a sound wave at a specific instant in time. The sampling
rate corresponds to the sound frequency.

To see why the sample rate is necessary, consider an array with samples from a sound wave.
If how frequently those samples were collected is unknown, then the sound wave can be arbitrarily
stretched or compressed to make a variety of sounds. See Figure ?? for an illustration of this principle.

However, if the rate at which a set of samples is taken is known, the wave can be reconstructed
exactly as it was recorded. If the sample rate is unknown, then the frequencies will be unknown.
In most applications, this sample rate will be measured in the number of samples taken per second,

1

2 Lab 6. The Discrete Fourier Transform

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time (s)

7500

5000

2500

0

2500

5000

7500

(a) The plot of tada.wav.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time (s)

7500

5000

2500

0

2500

5000

7500

(b) Compressed plot of tada.wav

Figure 6.1: The plots of the same set of samples from a sound wave with varying sample rates. The
plot on the left is the plot of the samples with the original sample rate (in this case, 22050), while
the sample rate of the plot on the right has been doubled, resulting in a compression of the actual
sound when played back. The compressed sound will be shorter and have a higher pitch. Similarly,
if this set of samples were played back with a lower sample rate will be stretched and have a lower
pitch.

Hertz (Hz). The standard rate for high quality audio is 44100 equally spaced samples per second, or
44.1 kHz.

Wave File Format

One of the most common audio file formats across operating systems is the wave format, also called
wav after its file extension. SciPy has built-in tools to read and create wav files. To read in a wav
file, use SciPy’s read() function that returns the file’s sample rate and samples.

Read from the sound file.
>>> from scipy.io import wavfile
>>> rate, wave = wavfile.read('tada.wav')

It is sometimes useful to visualize a sound wave by plotting time against the amplitude of the
sound, as in Figure ??. This type of plotting plots in the time domain. The amplitude of the sound
at a given time is just the value of the sample at that time. Note that since the sample rate is given
in samples per second, the length of the sound wave in seconds is found by dividing the number of
samples by the sample rate.

Problem 1. Make a class called SoundWave for storing digital audio signals. Write the con-
structor and have it accept a sample rate (integer) and an array of samples (NumPy array),
which it stores as class attributes. Then, write a method called plot() that generates the
graph of the sound wave. Use the sample rate to label the x-axis in terms of seconds. Finally,
construct a SoundWave object using the data in tada.wav and display its plot. Your plot should
look like Figure 6.1a.

3

Scaling
Writing a sound wave to a file is slightly more complicated than reading from a file. Use wavfile.
write(), specifying the name of the new file, the sample rate, and the array of samples.

Write a random signal sampled at a rate of 44100 Hz to my_sound.wav.
>>> wave = np.random.randint(-32767, 32767, 30000)
>>> samplerate = 44100
>>> wavfile.write('my_sound.wav', samplerate, wave)

In order for the wavfile.write() function to accurately write an array of samples to a file,
the samples must be of an appropriate type. There are four types of sample values that the function
will accept: 32-bit floating point, 32-bit integers, 16-bit integers, and 8-bit unsigned integers. If a
different type of samples are passed into the function, it’s possible that the function will write to a
file, but the sound will likely be distorted in some way. This lab works with only 16-bit integer types,
unless otherwise specified.

The type of the elements of an array is stored in an attribute called dtype.
>>> x = np.array([1, 2, 3])
>>> y = np.array([1.0, 2.0, 3.0])
>>> print(x.dtype)
dtype('int64')
>>> print(y.dtype)
dtype('float64')

A 16-bit integer is an integer between −32767 and 32767. If an array of samples does not
already have all of its elements as 16-bit integers, it will need to be scaled in such a way so that is
does before it can be written to a file. In addition, it is ideal to scale the samples so that they cover
as much of the 16-bit integer range as possible. This will ensure the most accurate representation of
the sound.

Generate random samples between -0.5 and 0.5.
>>> samples = np.random.random(30000)-.5
>>> print(samples.dtype)
dtype('float64')
Scale the wave so that the samples are between -32767 and 32767.
>>> samples *= 32767*2
Cast the samples as 16-bit integers.
>>> samples = np.int16(samples)
>>> print(samples.dtype)
dtype('int16')

In the above example, the original samples are all less than 0.5 in absolute value. Multiplying
the original samples by 32767 and 2 scales the samples appropriately. In general, to get the scaled
samples from the original, multiply by 32767 and divide by the greatest magnitude present in the
original sample. Note also that for various reasons, samples may sometimes contain complex values.
In this case, scale and export only the real part.

4 Lab 6. The Discrete Fourier Transform

Problem 2. Add a method to the SoundWave class called export() that accepts a file name and
generates a .wav file of that name from the sample rate and the array of samples. If the array of
samples is not already in int16 format, scale it appropriately before writing to the output file.
Use your method to create a differently named file that contains the same sound as tada.wav.
Display the two sounds to make sure the method works correctly.

Note

To display a sound in a Jupyter Notebook, first import IPython, then use IPython.
display.Audio(). This function can accept either the name of a .wav file present in the
same directory, or the keyword arguments rate and data, which represent the sample
rate and the array of samples, respectively. The function will generate a music player that
can be played within the Jupyter Notebook.

Creating Sounds in Python
In order to generate a sound in Python, sample the corresponding sinusoidal wave. The example
below generates a sound with a frequency of 500 Hertz for 10 seconds.

>>> samplerate = 44100
>>> frequency = 500.0
>>> duration = 10.0 # Length in seconds of the desired sound.

Recall the the function sin(x) has a period of 2π. To create sounds, however, the desired period
of a wave is 1, corresponding to 1 second. Thus, sample from the function

sin(2πxk)

where k is the desired frequency.

The lambda keyword is a shortcut for creating a one-line function.
>>> wave_function = lambda x: np.sin(2*np.pi*x*frequency)

To generate a sound wave, use the following three steps: First, generate the points at which to
sample the wave. Next, sample the wave by passing the sample points into wave_function(). Then,
use the SoundWave class to plot the sound wave or write it to a file.

Calculate the sample points and the sample values.
>>> sample_points = np.linspace(0, duration, int(samplerate*duration))
>>> samples = wave_function(sample_points)

Use the SoundWave class to write the sound to a file.
>>> sound = SoundWave(samplerate, samples)
>>> sound.export("example.wav")

5

Problem 3. Write a function that accepts a frequency and a duration. Follow the pattern
above to generate and return an instance of the SoundWave class with the given frequency and
duration. Use a sample rate of 44100.

The following table shows some frequencies that correspond to common notes. Octaves
of these notes are obtained by doubling or halving these frequencies.

Note Frequency
A 440
B 493.88
C 523.25
D 587.33
E 659.25
F 698.46
G 783.99
A 880

The “A” note occurs at a frequency of 440 Hertz. Use your function to generate and
display an “A” note being played for 2 seconds.

Problem 4.

1. A chord is a conjunction of several notes played together. You can create a chord in
Python by adding several sound waves together. Write the __add__() magic method in
the SoundWave so that it adds together the samples of two SoundWave objects and returns
the resulting SoundWave object. Note this is only valid if the two sample arrays are the
same length. Raise a ValueError if the arrays are not the same length.

2. Generate and display a minor chord (made up of the “A”, “C”, and “E” notes).

3. Add a method called append() to the SoundWave class that accepts a SoundWave object
and appends the additional samples from the new object to the end of the samples from
the current object. Note this only makes sense if the sample rates of the two objects are
the same. Raise a ValueError if the sample rates of the two objects are not equal.

4. Finally, generate and display a sound that changes over time.

Discrete Fourier Transform
Under the right conditions, a continuous periodic function may be represented as a sum of sine waves:

f(x) =

∞∑
k=−∞

ck sin kx

where the constants ck are called the Fourier coefficients.
Such a transform also exists for discrete periodic functions. Whereas the frequencies present

in the continuous case are multiples of a sine wave with a period of 1, the discrete case is somewhat

6 Lab 6. The Discrete Fourier Transform

different. The Fourier coefficients in the discrete case represent the amplitudes of sine waves whose
periods are multiples of a “fundamental frequency”. The fundamental frequency is a sine wave with
a period length equal to the amount of time of the sound wave.

The kth coefficient of a sound wave {x0, .., xN−1} is calculated with the following formula:

ck =

N−1∑
n=0

xne
−2πikn
N (6.1)

where i is the square root of −1. This process is done for each k from 0 to N − 1, where N is
the number of sample points. Thus, there are just as many Fourier coefficients as samples from the
original signal. The discrete Fourier transform (DFT) is particularly useful when dealing with sound
waves. The applications will be discussed further later on in the lab.

Problem 5. Write a function called naive_DFT() that accepts a NumPy array and computes
the discrete Fourier transform of the array using Equation 6.1. Return the array of calculated
coefficients.

SciPy has several methods for calculating the DFT of an array. Use scipy.fft() or
scipy.fftpack.fft() to check your implementation by using your method and the SciPy
method to calculate the DFT and comparing the results using np.allclose(). The naive
method is significantly slower than SciPy’s implementation, so test your function only on small
arrays. When you have your method working, try to optimize it so that you can calculate each
coefficient ck in just one line of code.

Fast Fourier Transform
Calculating the DFT of a large set of samples using only (6.1) can be incredibly slow. Fortunately,
when the size of the samples is a power of 2, the DFT can be implemented as a recursive algorithm
by separating the computation of the DFT into its even and odd indices. This method of calculating
the DFT is called the Fast Fourier Transform (FFT) due to its remarkably improved run time. The
following algorithm is a simple implementation of the FFT.

Algorithm 6.1
1: procedure FFT(x)
2: N ← size(x)

3: if N = 1 then
4: return DFT(x) . Use the DFT function you wrote for Problem 5.
5: else
6: even← FFT(x::2)
7: odd← FFT(x1::2)
8: k ← arange(N) . Use np.arange.
9: factor ← exp(−2πik/N)

10: . Note ∗ is component-wise multiplication.
11: return concatenate((even+ factor:N/2 ∗ odd, even+ factorN/2: ∗ odd))

This algorithm performs significantly better than the naive implementation using only (6.1).
However, this simplified version will only work if the size of the input samples is exactly a power of 2.

7

0

50
00

10
00

0

15
00

0

20
00

0

25
00

0

30
00

0

35
00

0

40
00

0

Frequency (Hz)

0

10000

20000

30000

40000

(a) The DFT of the “A” note (with
symmetries).

0

50
00

10
00

0

15
00

0

20
00

0

Frequency (Hz)

0

10000

20000

30000

40000

(b) The DFT of the “A” note (without
symmetries).

Figure 6.2: Plots of the DFT (with and without symmetries). Notice that the x-axis of the symmet-
rical plot goes up to 44100, or the sample rate of the sound wave being plotted, while the x-axis of
the other plot goes up to half of that. Also notice that the spikes occur at 440.0 Hz and 43660.0 Hz
(which is 44100.0− 440.0).

SciPy’s FFT functions manage to get around this by padding the sample array with zeros until the
size is a power of 2, then executing the remainder of the algorithm from there. In addition, SciPy’s
functions use various other tricks to speed up the algorithm even further.

Problem 6. Write a function that accepts a NumPy array and computes the discrete Fourier
transform of the array using Algorithm 6.1. Return the array of calculated coefficients.

To verify your method works, generate an array of random samples of a size that is a
power of 2 (preferably size 1024 or larger) and use np.allclose() as in the previous problem
to make sure the outputs are the same. Then, compare the runtimes of your DFT method,
your FFT method, and one of the SciPy methods and print the results.

Hint: Concatenating vectors can be done with np.concatenate.

Plotting the DFT
The graph of the Fourier transform of a sound file is useful in a variety of applications. While the
graph of the sound in the time domain gives information about the amplitude of a sound wave at
a given time, the graph of the discrete Fourier transform shows which frequencies are present in
the signal. Plotting a sound’s DFT is referred to as plotting in the frequency domain. Often, this
information is of greater importance.

Frequencies present in the sound have non-zero coefficients. The magnitude of these coefficients
corresponds to how influential the frequency is in the signal. For example, in the case of the “A” note
in Problem 3 the sound contained only one frequency. The graph of the DFT of this sound is Figure
6.2a. Note that in this plot, there are two spikes, despite there being only one frequency present in
the sound. This is due to symmetries inherent in the DFT. For the purposes of this lab, ignore the
second half of the plot. From now on, show plots of only the first half of the DFT, as in Figure 6.2b.

On the other hand, the DFT of a more complicated sound wave will have many frequencies
present. Some of these frequencies correspond to the different tones present in the signal. See Figure
6.3 for an example.

8 Lab 6. The Discrete Fourier Transform

0

50
00

10
00

0

Frequency (Hz)

0.0

0.2

0.4

0.6

0.8
1e7

Figure 6.3: The discrete Fourier transform of tada.wav. Each spike in the graph corresponds to a
frequency present in the signal. Since the sample rate of tada.wav is only 22050 instead of the usual
44100, the plot of its DFT without symmetries will only go up to 11025, half of its sample rate.

Fixing the x-axis

Plotting the DFT of a signal without any other considerations results in an x-axis that corresponds to
the index of the coefficients in the DFT, not their frequencies. As mentioned earlier, the “fundamental
frequency” for the DFT corresponds to a sine wave whose period is the same as the length of the signal.
Thus, if unchanged, the x-axis gives the number of times a particular sine wave cycles throughout
the whole signal. To label the x-axis with the frequencies measured in Hertz, or cycles per second,
the units must be converted. Fortunately, the bitrate is measured in samples per second. Therefore,
dividing the frequency (given by the index) by the number of samples and multiplying by the sample
rate, results in cycles per second, or Hertz.

cycles
samples ×

samples
second =

cycles
second

Calculate the DFT and the x-values that correspond to the coefficients. Then
convert the x-values so that they measure frequencies in Hertz.
>>> dft = abs(sp.fft(samples)) # Ignore the complex part.
>>> N = dft.shape[0]
>>> x_vals = np.linspace(1, N, N)
>>> x_vals = x_vals * samplerate / N # Convert x_vals to frequencies

9

Problem 7. Write a method in the SoundWave class called plot_dft() that plots the fre-
quencies present in a sound wave on the x-axis and the magnitude of those frequencies on the
y-axis. Only display the first half of the plot (as in Figure 6.2b). Use one of SciPy’s FFT
implementations to calculate the DFT.

Display the DFT plots of the ‘A’ note and of the minor chord.

0

50
00

10
00

0

15
00

0

20
00

0
Frequency (Hz)

0

10000

20000

30000

40000

Figure 6.4: The DFT of the minor chord.

Conclusion
If the frequencies present in a sound are already known before plotting its DFT, the plot may be
interesting, but little new information is actually revealed. Thus, the main applications of the DFT
involve sounds in which the frequencies present are unknown. One application in particular is sound
filtering, which has many uses, and will be explored in greater detail in a subsequent lab. The first
step in filtering a sound is determining the frequencies present in that sound by taking its DFT.

Consider the minor chord as an example. The plot of its DFT looks like Figure 6.4. This graph
shows that there are three main frequencies present in the sound. It remains to determine what
exactly those frequencies are. There are many valid ways to do this. One possibility is to determine
which indices of the array of DFT coefficients have the largest values, then scale these indices the
same as the x-axis of the plot to determine to which frequencies these values correspond. This task
is explored further in the next problem.

10 Lab 6. The Discrete Fourier Transform

Problem 8. The file mystery_sound.wav contains an unknown chord. Use what you have
learned about the DFT to determine the individual notes present in the sound.

Hints: The function np.argmax() may be useful. Also, remember that the DFT is sym-
metric, meaning the last half of the array of DFT coefficients will need to be ignored.

	The Discrete Fourier Transform

