
12 Newton and
Quasi-Newton
Methods

Lab Objective: Newton’s method is the basis of several iterative methods for optimization. Though
it converges quickly, it is often very computationally expensive. Variants on Newton’s method, in-
cluding BFGS, remedy the problem somewhat by numerically approximating Hessian matrices. In
this lab we implement Newton’s method, BFGS, and the Gauss-Newton method for nonlinear least
squares problems.

Newton’s Method
For g : R→ R, Newton’s method finds a root x̄ of the equation g(x) = 0 with the following rule.

xk+1 = xk −
g(xk)

g′(xk)
(12.1)

Let f : R→ R. Substituting g = f ′ into (12.1) yields an iterative method for locating a critical point
x∗ of f satisfying f ′(x∗) = 0.

xk+1 = xk −
f ′(xk)

f ′′(xk)
(12.2)

This technique generalizes to higher dimensions. For g : Rn → Rn, the following iterative
technique finds x̄ such that g(x̄) = 0.

xk+1 = xk −Dg(xk)−1g(xk) (12.3)

Now let f : Rn → R. To calculate an optimal value x∗ of f satisfying Df(x∗) = 0, plug g = Df into
(12.3) to get the following equation.

xk+1 = xk −D2f(xk)−1Df(xk)T (12.4)

Here the first derivative Df : Rn → Rn evaluates to the row vector Df(x) = [D1f(x) . . . Dnf(x)],
and the second derivative D2f : Rn → Rn×n evaluates to the n× n Hessian matrix

D2f(x) =


D1D1f(x) . . . DnD1f(x)

D1D2f(x) . . . DnD2f(x)
...

...
D1Dnf(x) . . . DnDnf(x)

 =


∂2f

∂x1∂x1
· · · ∂2f

∂xn∂x1

...
. . .

...
∂2f

∂x1∂xn
· · · ∂2f

∂xn∂xn

 .
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Problem 1. Write a function that accepts functions Df : Rn → Rn and D2f : Rn → Rn×n,
a starting point x0 ∈ Rn, an integer maxiter, and a stopping tolerance tol. Use Newton’s
method in (12.4) to optimize f . Return the final estimate xk, whether or not the method
converged (True or False), and the number of iterations computed.

Your implementation should include the following items.

• Iterate until either ‖Df(xk)‖∞ < tol or k > maxiter. The criteria ‖xk − xk−1‖ < tol
is also common, but making sure Df is near zero works better in many circumstances.

• Instead of inverting D2f(xk) at each step, solve the equation D2f(xk)zk = Df(xk)T and
compute xk+1 = xk − zk. In other words, use la.solve() instead of la.inv().

• Avoid recomputing values by only computing Df(xk) and D2f(xk) once for each k.

The Rosenbrock function is a common test function for optimization methods.

f(x, y) = 100(y − x2)2 + (1− x)2

The minimizer is x∗ = (1, 1) with minimum value f(1, 1) = 0. Test your function by minimizing
the Rosenbrock function using an initial guess x0 = (−2, 2). The function and its derivatives
are implemented as rosen(), rosen_der(), and rosen_hess() in scipy.optimize. Compare
your results to scipy.optimize.fmin_bfgs().

>>> from scipy import optimize as opt

>>> f = opt.rosen # The Rosenbrock function.
>>> df = opt.rosen_der # The first derivative.
>>> d2f = opt.rosen_hess # The second derivative (Hessian).
>>> opt.fmin_bfgs(f=f, x0=[-2,2], fprime=df, maxiter=50)
Optimization terminated successfully.

Current function value: 0.000000
Iterations: 35
Function evaluations: 42
Gradient evaluations: 42

array([ 1.00000021, 1.00000045])

BFGS
Newton’s method enjoys quadratic convergence when the initial guess is good enough. However,
computing and inverting the Hessian matrix at each step of (12.4) is often prohibitively expensive.
The idea behind quasi-Newton methods is to numerically approximate the inverse of the Hessian
at each step. These methods sacrifice some convergence properties in exchange for becoming less
computationally expensive. They also make it possible to optimize functions where D2f is unknown.

Broyden’s method is a high-dimensional generalization of the secant method. Just as the secant
method approximates the second derivative of f in (12.2) by using the first derivative at nearby
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points, Broyden’s method uses the first derivative to update an approximated Hessian matrix.

xk+1 = xk −A−1k Df(xk)T, Ak+1 = Ak +
yk −Aksk
‖sk‖2

sTk , (12.5)

where sk = xk+1 − xk and yk = Df(xk+1)T −Df(xk)T.
Though this method no longer explicitly calculates the Hessian D2f(xk), it still involves a

matrix inversion. The Sherman-Morrison-Woodbury formula translates the update rule for Ak in
(12.5) into the following update rule for A−1k .

A−1k+1 = A−1k +
sk −A−1k yk

sTkA
−1
k yk

(sTkA
−1
k )

Unfortunately, even if D2f(xk) is positive definite (which is desirable for minimization), the
first-order approximation Ak is not guaranteed to be positive definite, so Broyden’s method is unre-
liable. The Broyden-Fletcher-Goldfarb-Shanno (BFGS) method remedies this problem by using the
following positive definite second-order approximation for the Hessian.

Ak+1 = Ak +
yky

T
k

yT
k sk
− Aksks

T
kAk

sTkAksk

The Sherman-Morrison-Woodbury formula can also be applied in this situation to yield a computa-
tionally efficient form of BFGS.

xk+1 = xk −A−1k Df(xk)T (12.6)

A−1k+1 = A−1k +
(sTkyk + yT

kA
−1
k yk)sks

T
k

(sTkyk)2
−
A−1k yks

T
k + sky

T
kA
−1
k

sTkyk
(12.7)

Here sk = xk+1 − xk and yk = Df(xk+1)T −Df(xk)T as before.

Problem 2. Write a function that accepts a function Df : Rn → Rn, a starting point x0 ∈ Rn,
an integer maxiter, and a stopping tolerance tol. Use BFGS as given in (12.6) and (12.7) to
optimize f , with A−10 = I (the n×n identity matrix) as the initial approximation to the inverse
of the Hessian. Return the final estimate xk, whether or not the method converged, and the
number of iterations computed.

This method is a little tricky and can have issues if x0 is chosen poorly. Consider the
following as you implement your function.

• Use the same stopping criteria as in Problem 1, iterating until either ‖Df(xk)‖∞ < tol
or k > maxiter. The usual criteria ‖xk − xk−1‖ < tol is not a good choice for BFGS.

• Avoid recomputing values by only calculating each Df(xk), sk, yk, and sTkyk once.

• Note that sksTk , yks
T
k , and sky

T
k are all outer products that result in n× n matrices. Use

np.outer() instead of np.dot() or the @ operator for these computations. Carefully
identify which parts of (12.7) are scalars and which parts are matrices.

• If (sTkyk)2 = 0, terminate the iteration early to avoid dividing by zero.

Test your function on the Rosenbrock function as in Problem 1.
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Note

The formula in (12.7) is not the only way to approximate the inverse Hessian. For example,
the Davidon-Fletcher-Powell (DFP) method uses the following updating scheme.

A−1k+1 = A−1k +
sks

T
k

sTkyk
−
A−1k yky

T
kA
−1
k

yT
kA
−1
k yk

This approximation works well for many problems, but BFGS is considered to be the superior
method in general.

Problem 3. Write a function that accepts an integer N and performs the following N times.

1. Sample a random initial guess x0 from the 2-D uniform distribution over [−3, 3]× [−3, 3].
(Hint: Use np.random.uniform() or np.random.random().)

2. Time (separately) your implementation of Newton’s method from Problem 1, your BFGS
routine from Problem 2, and scipy.optimize.bfgs_fmin() for minimizing the Rosen-
brock function with an initial guess of x0.

3. Record the number of iterations from each method. For scipy.optimize.fmin_bfgs(),
set disp=False to suppress printing the convergence message and retall=True to get
the list of xk at each iteration (to count the number of iterations).

Plot the computation times versus the number of iterations with a log-log scale, using
different colors for each method. For N = 100, your plot should resemble the following figure.
Note that Newton’s method consistently converges much faster than BFGS. In addition, SciPy’s
BFGS algorithm will likely converge faster than your BFGS implementation because it employs
a line search to choose an intelligent step size at each iteration.
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The Gauss-Newton Method
Non-linear Least Squares Problems
Least Squares problems aim to fit a line (or model parameters) to a given set of data points. These
problems arise in many scientific fields, including economics, physics, and statistics and represent
unconstrained optimization problems that minimize an objective function of the form

f(x) =
1

2

m∑
j=1

r2j (x),

where each ri : Rn → R is smooth and m ≥ n. This case of least squares problems can be solved
with a Newton-like method.

Specifically, with data points (t1, y1), (t2, y2), . . . , (tm, ym), where ti, yi ∈ R for i = 1, . . . ,m.
Let φ(x, t) be a possible model for this data set, where x is a vector of parameters of the model, and
t ∈ Rn. The error at the i-th data point, called the residual, is the value

ri(x) := φ(xi, ti)− yi.

Summing the squares of these errors gives the following non-linear least squares objective function.

f(x) =
1

2

m∑
j=1

r2j (x).

The first and second derivatives of this function can then be expressed as

Df(x) = J(x)Tr(x),

D2f(x) = J(x)TJ(x) +

m∑
j=1

rj(x)D2rj(x).

with r(x) = [r1(x), r2(x), . . . , rm(x)]T and

J(x) =


Dr1(x)

Dr2(x)
...

Drm(x)

 ∈ Rm×n.

The second term in the formula for D2f involves second derivatives and can be problematic to
compute. In practice, the second term in the formula for D2f is small, either because the residuals
themselves are small, or because they are nearly affine in a neighborhood of the solution. The simplest
method for solving the nonlinear least squares problem, known as the Gauss-Newton Method, exploits
this observation, simply ignoring the second term and making the approximation

D2f(x) ≈ J(x)TJ(x).

The method then proceeds in a manner similar to Newton’s method. Thus, at each iteration, we find
xk+1 as follows:

xk+1 = xk − (J(xk)TJ(xk))−1J(xk)Tr(xk). (12.8)

As an example, suppose we have data points generated from the function y = 3 sin(x/2) and
slightly perturbed by Gaussian noise. To fit the data to a model φ(x, ti) = φ(x0, x1, ti) = x0 sin(x1ti),
we must select values for x = [x0, x1]T (since we know how the data was generated, we expect to find
that x0 ≈ 3 and x1 ≈ 1/2). Begin by writing functions for the proposed model, the residual vector,
and the Jacobian of the residuals.
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>>> import numpy as np
>>> from matplotlib import pyplot as plt

# Generate random data for t = 0, 1, ..., 10.
>>> T = np.arange(10)
>>> y = 3*np.sin(0.5*T)+ 0.5*np.random.randn(10) # Perturbed data.

# Define the model function and the residual (based on the data).
>>> model = lambda x, t: x[0]*np.sin(x[1]*t) # phi(x,t)
>>> residual = lambda x: model(x, T) - y # r(x) = phi(x,t) - y

# Define the Jacobian of the residual function, computed by hand.
>>> jac = lambda x: np.column_stack((np.sin(x[1]*t), x[0]*t*np.cos(x[1]*t)))

By inspecting the data, an initial guess for the parameters could be x0 = (2.5, 0.6). A function
implementing Gauss Newton can then be used to find the least squares solution.

>>> x0 = np.array([2.5,.6])
>>> x, conv, niters = gauss_newton(jac, residual, x0, maxiter=10, tol=1e-3)

# Plot the fitted model with the observed data and the data-generating curve.
>>> dom = np.linspace(0, 10, 200)
>>> plt.plot(T, y, '*') # Observed data.
>>> plt.plot(dom, 3*np.sin(.5*dom), '--') # Data-generating curve.
>>> plt.plot(dom, model(x, dom)) # Fitted model.
>>> plt.show()

Problem 4. Write a function that accepts a function for the proposed model φ(x), the model
derivative Dφ(x), a function that returns the residual vector r(x), a callable function that
returns the Jacobian of the residual Dr(x) = J(x), a starting point x0, a max number of
iterations maxiter, and a stopping tolerance tol. This method should implement the Gauss-
Newton Method and return a list containing: the minimizing x value, the number of iterations
performed, and if the method converged as a boolean.

Test your function by using the Jacobian function, residual function, and starting point
given in the example above. Compare your results to scipy.optimize.leastsq().

>>> minx = opt.leastsq(func=residual, x0=np.array([2.5,.6]), Dfun=jac)

Application of Non-linear Least Squares

Non-linear least squares problems can be used to analyze trends in data or to predict future events
and are ubiquitous in many academic fields as well as in industrial applications and machine learning.
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Problem 5. The file population.npy contains census data from the United States every ten
years since 1790 for 16 decades. The first column (t) gives the number of decades since 1790
in the decade (0, 1, . . .) and the second column (y) gives the population count in millions of
people.

By plotting the data, and with a little knowledge about population growth, it is reasonable
to hypothesize an exponential model for the population:

φ(x1, x2, x3, t) = x1 exp(x2(t+ x3)).

Use the initial guess (1.5, .4, 2.5) for the parameters (x1, x2, x3) and your Gauss Newton function
or scipy.optimize.leastsq() to fit this model. Plot the resulting curve along with the actual
data points.

Unfortunately, the exponential model isn’t a very good fit for the data because the pop-
ulation grows exponentially for only the first 8 or so decades.a Instead, consider the following
logistic model.

φ(x1, x2, x3, t) =
x1

1 + exp(−x2(t+ x3))
.

A reasonable initial guess for the parameters (x1, x2, x3) is (150, .4,−15). Write functions for
the model and the corresponding residual vector, then fit the model. Plot the data against the
fitted curve (in the same plot as before). It should be a much better fit than the exponential
curve.

aFitting an exponential model to only the first 8 data points results in a good model for those points (but
not for later data).
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