
15 CVXOPT

Lab Objective: Introduce some of the basic optimization functions available in the CVXOPT
package

Achtung!

CVXOPT is not part of the standard library, and it is only included in the Anaconda distribution
for Python 3.6 for Linux and Mac. We recommend avoiding Windows machines for this lab.

To install CVXOPT, use conda install cvxopt or pip install cvxopt.

Linear Programs
CVXOPT is a package of Python functions and classes designed for the purpose of convex optimiza-
tion. In this lab we will focus on linear and quadratic programming. A linear program is a linear
constrained optimization problem. Such a problem can be stated in several different forms, one of
which is

minimize cTx

subject to Gx+ s = h

Ax = b

s � 0.

This is the formulation used by CVXOPT. In this formulation, we require that the matrix A has full
row rank, and that the block matrix [G A]T has full column rank.

Note that the constraint Gx + s = h includes the term s, which is not part of the objective
function, and is known as the slack variable. Since s � 0, the constraint Gx+ s = h is equivalent to
Gx � h.

1

2 Lab 15. CVXOPT

Consider the following example:

minimize − 4x1 − 5x2

subject to x1 + 2x2 ≤ 3

2x1 + x2 ≤ 3

x1, x2 ≥ 0

The final two constraints, x1, x2 ≥ 0, need to be adjusted to be ≤ constraints. This is easily done by
multiplying by −1, resulting in the constraints −x1,−x2 ≤ 0. If we define

G =

1 2

2 1

−1 0

0 −1

 and h =

3

3

0

0

 ,

then we can express the constraints compactly as

Gx ≤ h, where x =

[
x1

x2

]
.

By adding a slack variable s, we can write our constraints as

Gx+ s = h,

which matches the form discussed above. In the case of this particular example, we ignore the extra
constraint

Ax = b,

since we were given no equality constraints.
Now we proceed to solve the problem using CVXOPT. We need to initialize the arrays c, G,

and h, then pass them to the appropriate function. CVXOPT uses its own data type for an array
or matrix, and while similar to the NumPy array, it does have a few differences, especially when it
comes to initialization. Below, we initialize CVXOPT matrices for c, G, and h.

>>> from cvxopt import matrix
>>> c = matrix([-4., -5.])
>>> G = matrix([[1., 2., -1., 0.],[2., 1., 0., -1.]])
>>> h = matrix([3., 3., 0., 0.])

Achtung!

CVXOPT matrices are initialized column-wise rather than row-wise (as in the case of NumPy).
Alternatively, we can initialize the arrays first in NumPy (a process with which you should

be familiar), and then simply convert them to the CVXOPT matrix data type:

>>> import numpy as np

>>> c = np.array([-4., -5.])
>>> G = np.array([[1., 2.],[2., 1.],[-1., 0.],[0., -1]])
>>> h = np.array([3., 3., 0., 0.])

3

Convert the arrays to the CVXOPT matrix type.
>>> c = matrix(c)
>>> G = matrix(G)
>>> h = matrix(h)

In this lab, we will initialize non-trivial matrices first as NumPy arrays for consistency.
Finally, be sure the entries in the matrices are floats!

Having initialized the necessary objects, we are now ready to solve the problem. We will use
the CVXOPT function for linear programming solvers.lp(), and we simply need to pass in c, G,
and h as arguments.

>>> from cvxopt import solvers
>>> sol = solvers.lp(c, G, h)

pcost dcost gap pres dres k/t
0: -8.1000e+00 -1.8300e+01 4e+00 0e+00 8e-01 1e+00
1: -8.8055e+00 -9.4357e+00 2e-01 1e-16 4e-02 3e-02
2: -8.9981e+00 -9.0049e+00 2e-03 1e-16 5e-04 4e-04
3: -9.0000e+00 -9.0000e+00 2e-05 1e-16 5e-06 4e-06
4: -9.0000e+00 -9.0000e+00 2e-07 1e-16 5e-08 4e-08

Optimal solution found.
>>> print(sol['x'])
[1.00e+00]
[1.00e+00]
>>> print(sol['primal objective'])
-8.99999981141
>>> print(type(sol['x']))
<type 'cvxopt.base.matrix'>

Note

Although it is often helpful to see the progress of each iteration of the algorithm, you may
suppress this output by first running,

solvers.options['show_progress'] = False

The function solvers.lp returns a dictionary containing useful information. For the time
being, we will only focus on the values of x and the primal objective value (i.e. the minimum value
achieved by the objective function).

Achtung!

Note that the minimizer of the solvers.lp() function returns a cvxopt.base.matrix object.

4 Lab 15. CVXOPT

In order to use the minimzer again in other algebraic expressions, you need to convert it first
to a flattened numpy array, which can be done quickly with np.ravel(). Please return all
minimizers in this lab as flattened numpy arrays.

Problem 1. Solve the following convex optimization problem:

minimize 2x1 + x2 + 3x3

subject to x1 + 2x2 ≥ 3

2x1 + 10x2 + 3x3 ≥ 10

x1 ≥ 0

x2 ≥ 0

x3 ≥ 0

Report the values for x and the objective value that you obtain. Remember to make the
necessary adjustments so that all inequality constraints are ≤ rather than ≥.

The l1 minimization problem is to

minimize ‖x‖1
subject to Ax = b.

This problem can be converted into a linear program by introducing an additional vector u of
length n, and then solving:

minimize
[
1T 0T

] [u
x

]
subject to

[
−I I

−I −I

] [
u

x

]
�
[
0

0

]
,

[
0 A

] [u
x

]
= b.

Of course, solving this gives values for the optimal u and the optimal x, but we only care about the
optimal x.

Problem 2. Write a function called l1Min() that takes a matrix A and vector b as inputs, and
solves the l1 optimization problem. Report the values for x and the objective value. Remember
to first discard the unneccesary u values from the minimizer.

The Transportation Problem
Consider the following transportation problem: A piano company needs to transport thirteen pianos
from their three supply centers (denoted by 1, 2, 3) to two demand centers (4, 5). Transporting a
piano from a supply center to a demand center incurs a cost, listed in Table 15.3. The company

5

Supply Center Number of pianos available
1 7
2 2
3 4

Table 15.1: Number of pianos available at each supply center

Demand Center Number of pianos needed
4 5
5 8

Table 15.2: Number of pianos needed at each demand center

wants to minimize shipping costs for the pianos while meeting the demand. How many pianos should
each supply center send to each demand center?

The variables p, q, r, s, t, and u must be nonnegative and satisfy the following three supply
constraints and two demand constraints:

p+ q = 7

r + s = 2

t+ u = 4

p+ r + t = 5

q + s+ u = 8

The objective function is the number of pianos shipped from each location multiplied by the
respective cost:

4p+ 7q + 6r + 8s+ 8t+ 9u.

There a several ways to solve this linear program. We want our answers to be integers, and this
added constraint in general turns out to be an NP-hard problem. There is a whole field devoted to
dealing with integer constraints, called integer linear programming, which is beyond the scope of this
lab. Fortunately, we can treat this particular problem as a standard linear program and still obtain
integer solutions.

Here, G and h constrain the variables to be non-negative. Because CVXOPT uses the format
Gx � h, we see that G must be a 6 × 6 identity matrix multiplied by −1, and h is just a column
vector of zeros. Here A and b represent the supply and demand constraints, since these are equality
constraints. Try initializing these arrays and solving the linear program by entering the code below.
(Notice that we pass more arguments to solvers.lp() since we have equality constraints.)

>>> c = matrix([4., 7., 6., 8., 8., 9])
>>> G = matrix(-1*np.eye(6))
>>> h = matrix(np.zeros(6))
>>> A = matrix(np.array([[1.,1.,0.,0.,0.,0.],

[0.,0.,1.,1.,0.,0.],
[0.,0.,0.,0.,1.,1.],
[1.,0.,1.,0.,1.,0.],
[0.,1.,0.,1.,0.,1.]]))

>>> b = matrix([7., 2., 4., 5., 8.])
>>> sol = solvers.lp(c, G, h, A, b)

6 Lab 15. CVXOPT

Supply Center Demand Center Cost of transportation Number of pianos
1 4 4 p
1 5 7 q
2 4 6 r
2 5 8 s
3 4 8 t
3 5 9 u

Table 15.3: Cost of transporting one piano from a supply center to a demand center

pcost dcost gap pres dres k/t
0: 8.9500e+01 8.9500e+01 2e+01 4e-17 2e-01 1e+00

Terminated (singular KKT matrix).
>>> print(sol['x'])
[3.00e+00]
[4.00e+00]
[5.00e-01]
[1.50e+00]
[1.50e+00]
[2.50e+00]
>>> print(sol['primal objective'])
89.5

Notice that some problems occurred. First, CVXOPT alerted us to the fact that the algorithm
terminated prematurely (due to a singular matrix). Further, the solution that was obtained does not
consist of integer entries.

So what went wrong? Recall that the matrix A is required to have full row rank, but we can
easily see that the rows of A are linearly dependent. We rectify this by converting the last row of
the equality constraints into inequality constraints, so that the remaining equality constraints define
a new matrix A with linearly independent rows.

This is done as follows:
Suppose we have the equality constraint

x+ 2y − 3z = 4.

This is equivalent to the pair of inequality constraints

x+ 2y − 3z ≤ 4,

x+ 2y − 3z ≥ 4.

Of course, we require only ≤ constraints, so we obtain the pair of constraints

x+ 2y − 3z ≤ 4,

−x− 2y + 3z ≤ −4.

Apply this process to the last equality constraint. You will obtain a new matrix G with several
additional rows (to account for the new inequality constraints); a new vector h, also with more
entries; a smaller matrix A; a smaller vector b.

7

Problem 3. Solve the problem by converting the last equality constraint into an inequality
constraint. Report the optimal values for x and the objective function.

Quadratic Programming
Quadratic programming is similar to linear programming, one exception being that the objective
function is quadratic rather than linear. The constraints, if there are any, are still of the same form.
Thus G,h, A, and b are optional. The formulation that we will use is

minimize
1

2
xTPx+ qTx

subject to Gx � h

Ax = b,

where P is a positive semidefinite symmetric matrix. In this formulation, we require again that A

has full row rank, and that the block matrix [P G A]T has full column rank.
As an example, consider the quadratic function

f(y, z) = 2y2 + 2yz + z2 + y − z.

Note that there are no constraints, so we only need to initialize the matrix P and the vector q. To
find these, we first rewrite our function to match the formulation given above. Note that if we let

P =

[
a b

b c

]
, q =

[
d

e

]
, and x =

[
y

z

]
,

then

1

2
xTPx+ qTx =

1

2

[
y

z

]T [
a b

b c

] [
y

z

]
+

[
d

e

]T [
y

z

]
=

1

2
ay2 + byz +

1

2
cz2 + dy + ez

Thus, we see that the proper values to initialize our matrix P and vector q are:

a = 4 d = 1

b = 2 e = −1
c = 2

Now that we have the matrix P and vector q, we are ready to use the CVXOPT function for quadratic
programming solvers.qp().

>>> P = matrix(np.array([[4., 2.], [2., 2.]]))
>>> q = matrix([1., -1.])
>>> sol=solvers.qp(P, q)
>>> print(sol['x'])
[-1.00e+00]
[1.50e+00]
>>> print sol['primal objective']
-1.25

8 Lab 15. CVXOPT

Problem 4. Find the minimizer and minimum of

g(x, y, z) =
3

2
x2 + 2xy + xz + 2y2 + 2yz +

3

2
z2 + 3x+ z

Problem 5. The l2 minimization problem is to

minimize ‖x‖2
subject to Ax = b.

This problem is equivalent to a quadratic program, since ‖x‖2 = xTx. Write a function
called l2Min() that takes a matrix A and vector b as inputs and solves the l2 minimization
problem. Report the values for x and the objective value.

Allocation Models
Allocation models lead to simple linear programs. An allocation model seeks to allocate a valuable
resource among competing needs. Consider the following example is taken from “Optimization in
Operations Research" by Ronald L. Rardin.

The U.S. Forest service has used an allocation model to deal with the task of managing national
forests. The model begins by dividing the land into a set of analysis areas. Several land management
policies (also called prescriptions) are then proposed and evaluated for each area. An allocation is
how much land (in acreage) in each unique analysis area will be assigned to each of the possible
prescriptions. We seek to find the best possible allocation, subject to forest-wide restrictions on land
use.

The file ForestData.npy contains data for a fictional national forest (you can also find the data
in Table 15.4). There are 7 areas of analysis and 3 prescriptions for each of them.

Column 1: i, area of analysis
Column 2: si, size of the analysis area (in thousands of acres)
Column 3: j, prescription number
Column 4: pi,j , net present value (NPV) per acre of in area i under prescription j

Column 5: ti,j , protected timber yield per acre in area i under prescription j

Column 6: gi,j , protected grazing capability per acre for area i under prescription j

Column 7: wi,j , wilderness index rating (0 to 100) for area i under prescription j

Let xi,j be the amount of land in area i allocated to prescription j. Under this notation, an allocation
is just a vector consisting of the xi,j ’s. For this particular example, the allocation vector is of size
7 ·3 = 21. Our goal is to find the allocation vector that maximizes net present value, while producing
at least 40 million board-feet of timber, at least 5 thousand animal-unit months of grazing, and
keeping the average wilderness index at least 70.

Of course, the allocation vector is also constrained to be nonnegative, and all of the land must
be allocated precisely.

Note that since acres are in thousands, we will divide the constraints of timber and animal
months of grazing by 1000 in our problem setup, and compensate for this after we obtain a solution.

9

Forest Data
Analysis Acres Prescrip- NPV, Timber, Grazing, Wilderness
Area, (1000)’s tion (per acre) (per acre) (per acre) Index,

i si j pi,j ti,j gi,j wi,j

1 75 1 503 310 0.01 40
2 140 50 0.04 80
3 203 0 0 95

2 90 1 675 198 0.03 55
2 100 46 0.06 60
3 45 0 0 65

3 140 1 630 210 0.04 45
2 105 57 0.07 55
3 40 0 0 60

4 60 1 330 112 0.01 30
2 40 30 0.02 35
3 295 0 0 90

5 212 1 105 40 0.05 60
2 460 32 0.08 60
3 120 0 0 70

6 98 1 490 105 0.02 35
2 55 25 0.03 50
3 180 0 0 75

7 113 1 705 213 0.02 40
2 60 40 0.04 45
3 400 0 0 95

Table 15.4

We can summarize our problem as follows:

maximize
7∑

i=1

3∑
j=1

pi,jxi,j

subject to
3∑

j=1

xi,j = si for i = 1, .., 7

7∑
i=1

3∑
j=1

ti,jxi,j ≥ 40, 000

7∑
i=1

3∑
j=1

gi,jxi,j ≥ 5

1

788

7∑
i=1

3∑
j=1

wi,jxi,j ≥ 70

xi,j ≥ 0 for i = 1, ..., 7 and j = 1, 2, 3

10 Lab 15. CVXOPT

Problem 6. Solve the problem above. Return the minimizer x of xi,j ’s. Also return the max-
imum total net present value, which will be equal to the primal objective of the appropriately
minimized linear function, multiplied by -1000. (This final multiplication after we have ob-
tained a solution changes our answer to be a maximum, and compensates for the data being in
thousands of acres).

You can learn more about CVXOPT at http://cvxopt.org/index.html.

http://cvxopt.org/index.html

	CVXOPT

