Policy Function
Iteration

Lab Objective: Learn how iterative methods can be used to solve dynamic optimization problems.
Implement value iteration and policy iteration in a pseudo-infinite setting where finite value iteration
is intractable.

Iterative methods can be powerful ways to solve dynamic optimization problems without com-
puting the exact solution. Often we can iterate very quickly to the true solution, or at least within
some ¢ error of the solution. These methods are significantly faster than computing the exact so-
lution using dynamic programming. We demonstrate two iterative methods to solve the dynamic
cake-eating problem: infinite value function iteration, often just known as value iteration (VI), and
infinite policy function iteration, also called policy iteration (PI).

Infinite Value Iteration

Recall that in finite dynamic optimization we are trying to optimize problems of the form

T

t

ma; u(c
Ctxgﬁ (t)
T
subject to Z ¢t = Whae

t=0

Ct Z 0.

However, there are certain problems where T is unknown or extremely large. When T is large,
B must be close to 1, otherwise 8¢ will rapidly approach zero. For example, in 100 time steps,
(0.9)19° ~ 2.65¢-5, whereas 8 = 0.999 does not get that low until around ¢ = 10500. Thus even if T
is large, we are usually constrained by our choice of 3, because eventually 3¢ — 0. In the previous
lab, we defined the value function V(W) to be the maximum utility that comes from having W cake.
By Bellman’s equation we express the value function as follows.

V(w;) = max u(c)+ V(w; — c) (19.1)
c€[0,w;]

It is common to make the substitution w; = w; — ¢ in (19.1) to obtain the following.

V(w;)) = max u(w; —w))+ BV (w)). (19.2)

w €[0,w;]

2 Lab 19. Policy Function Iteration

Note that (19.1) requires finding ¢, how much cake to consume in each period. The variable ¢ is
commonly described as the action to take when we have w; cake. On the other hand, (19.2) requires
finding wj, or how much cake to choose to save for later. The variable w} is often described as the
state we will be in at the next period.

A function f that is a contraction mapping has a fixed point p such that f(p) = p. Blackwell’s
contraction theorem can be used to show that Bellman’s equation is a “fixed point” (it actually acts
more like a fixed function in this case) for an operator T': L>°(X;R) — L*(X;R) where L>®(X;R)
is the set of all bounded functions:

[T(H(w) = max u(w—w')+ Bf(w'). (19.3)
w’ €[0,w)
It can be shown that (19.2) is the "fixed point" of our operator 7. A result of contraction mappings
is that there exists a unique solution to (19.3).

A powerful property of contraction mappings is that the fixed point can be found by applying
the function repeatedly to some initial point in our domain. That is, if f : X — X is our contraction
mapping, with fixed point p € X, we can find p by randomly choosing = € X and repeatedly applying
the function f to our point. This can be expressed as

fMa)y=fof of(x)=p

for some M. Here M is dependent on both the initial guess z and the discount factor of the contraction
mapping, which correspond to V) and £ in dynamic optimization.

In the case of dynamic optimization, this implies that we can converge to the true value function
V*(w) by using the following equation:

Vip1(wi) = [T(Vi)](w;) = max u(w; —w') + BVi(w') Vw;, (19.4)

w’ €[0,w;]

where an initial guess for Vp(w) is used. As k — o0, it is guaranteed that Vi(w) — V*(w).
Because of the contraction mapping, if V41 (w) = Vi (w) Vw, we have found the true value function,
V*(w). Using this information, we define the value iteration algorithm to find V*:

1. Discretize the space into N equal sized pieces: w = [wp,ws, ..., wx], where wy = 0, wy =
Winaz- w; is the value when there are i pieces of cake remaining.

2. Choose an initial vector to represent Vpy: [Vo(wo), Vo(wy), ..., Vo(wy)] A common initial choice
for V() is Vo(wz) = U(UJZ)

3. For k=1,2,..., max_iter:

(a) For each w; € w: Calculate Vii1(w;) = maxXyyew | w <w, w(w; —w') + BVi(w').

(b) If |Vit1 — V|| < €, terminate early.

Most iterative algorithms have a max_iter parameter that will terminate the algorithm after
max_iter iterations regardless of whether or not it has converged. This is because even though
we have guaranteed convergence, we might have a convergence rate that is too slow to be useful.
However, generally this algorithm will converge much faster than computing the true value function
using dynamic programming as in Finite Value Iteration.

ACHTUNG!

Here w’ represents how much cake to leave for the next period, not a derivative of w. Also
note that w’ < w;, because we can never have more cake at a later period; cake can only be
consumed, not created.

Problem 1. Write a function called value_iteration() that will accept a numpy array rep-
resenting the initial vector Vp, a discount factor 8 € (0, 1), the number of states to split w into
N, the amount of initial cake W,,,., & utility function u(z), the tolerance amount &, and the
maximum number of iterations max_iter. Perform value iteration until |V — Vi| < € or
k > max_iter. Return the final vector representing V*.

It is useful for our function to accept Vj as a parameter instead of calculating an initial
guess inside our function, so that we can try different initial states for Vj.

Test your function with the parameters N = 400, 8 = .995, u(z) = /o, Winae = 1. Try
different values for V; and see if you get the same value for V*(W,,4.) (The value should be
approximately 9.4988). How do different initial guesses for Vg affect the number of iterations
required for convergence?

The value function V*(w;) that we found describes how much utility w; will yield over time,
thus V*(Wypq2) is the optimal value for our problem:

T
V*Winae) = rr}iix; ﬂtu(ct),
T
subject to Z ¢t = Winaz,
t=0
Ct 2 0.

Although V*(W,,4.) is the solution, it is usually more important to know which sequence of (c;)Z_,
yields the solution. This sequence is known as the policy vector ¢ = [cg, c1, ..., cr| that corresponds
to eating ¢; cake at time t = 1.

If this were a truly infinite problem, ¢ would be impossible to calculate, there would be an
infinite number of time periods. Fortunately, in the cake-eating problem, we will never have more
than N time periods. This happens because it is never optimal to eat 0 pieces of cake in a single time
period. The discount factor 5 means at least 1 piece must be eaten at each step. It is important to
note that the length of ¢ changes depending on what 5 is. When § = 0, for example, only the first
time period matters because all the rest will yield zero utility. So when 8 = 0, T'= 0 and the length
of c is 1. As the value of 8 gets closer to 1, T increases as well.

The policy vector, ¢, is found by using the policy function: 7 : R — R which has the constraint
0 < m(w;) < w; Vi. w(w;) is the amount of cake to save for the next period, given we started with w;
cake. Because m(w;) is the amount of cake saved until next period, we can use V*(W) and modify
the Bellman equation to find 7:

T(w;i) = ArGMAX vy | <o U(Wi — w;) + BV (wyp) Vi. (19.5)

For our purposes, the policy function will be represented as a vector w. This is convenient because
in practice it is infeasible to code a functional representation for 7. 7; dictates how many pieces of

4 Lab 19. Policy Function Iteration

cake to save for the next period if we currently have i pieces of cake. For example, if 71(Wi,02) = wa,
we would represent this by having #[N] = 4. Then we use w4 to get the actual value for wy.

Once we have a vectorized representation of the policy function, 7, we can use it to calculate
the policy vector c using the relationship:

e = w® — 7(w®)),
where w) = 7 (w®),

and w© = W, 00

ACHTUNG!

w® represents a time index, how much cake we have at time ¢, not to be confused with w;, the
numeric value of having i pieces.

Problem 2. Write a helper function called extract_policy_vector() that will accept an
array of discretized values w, and a vector representing a policy function 7. Return the policy
vector ¢ that determines how much cake should be eaten at each time step.

Test your function with w = [0,.1,.2,...,1] and # = [0,0,1,2,2,3,3,4,4,5,5]. The
resulting policy vector should be ¢ = [0.5,0.2,0.1,0.1,0.1].

Problem 3. Modify value_iteration() to return the true value function V4, and the cor-
responding policy vector c.

(Hint: Use (19.5) to find the policy function and then call extract_policy_vector() inside
of value_iteration()).

Policy Function Iteration

For infinite horizon dynamic programming problems, it can be shown that value function iteration
converges relative to the discount factor, 8. As [approaches 1, the number of iterations increases
dramatically. As mentioned earlier § is usually close to 1, which means this algorithm can converge
slowly. In Problem 1 you should have noticed that runtime was significantly longer to run for larger
N or (3 closer to 1.

In value iteration we used an initial guess to the value function, V and used (19.2) to iterate
towards the true value function. Once we achieved a good enough approximation for V*, we recovered
the true policy function 7. Unfortunately, as stated, this can have very slow convergence. Instead of
iterating on our value function, we can instead make an initial guess for the policy function, g, and
use this to iterate toward the true policy function. We do so by taking advantage of the definition of
the value function, where we assume that our policy function yields the most optimal result.

That is, given a specific policy function 7 (W), we can modify (19.2) by assuming that the

policy function is the optimal choice, that is:

Vilw) = mase oy = w) + BVi(wl) = uluw; — me) + BVi (mi(wr).

Because the value function is defined recursively, this implies:
Ve(W) = Y Blu(mi (W) — m " (W), (19.6)
t=0

where 7t (W) means applying 7 t times, and 79(W) = W. Recall that (19.6) will terminate in a
finite number of steps (because we will eventually run out of cake to eat). Fortunately, in cake-eating,
(19.6) can alternatively be calculated by using dynamic programming which defines the relationship
as:

V(W) = u(mh (W) — mpH (W) + BV (r ™ (). (19.7)

This happens because 7" (W) < W, with the initial condition that V}(0) = 0. Thus, given an
initial guess for our policy function, 7y, we calculate the corresponding value function using (19.6),
and then use (19.5) to improve our policy function. This process is known as policy iteration. The
algorithm for policy function iteration can be summarized as follows:

1. Discretize the space into N equal sized pieces: w = [wp,ws,...,wx] where wy = 0, wy =
Wmax~
2. Choose an initial vector to represent mo: [mo(wo), mo(w1), ..., mo(wn)] A common initial choice

for mq is mo(w;) = w;_1, meaning we save w;_1 pieces, and mo(wg) = 0.
3. For k=1,2,..., max_iter:

(a) For each w; € w compute the value function Vi (w;) using (19.7).
(b) For each w; € w calculate mg11(w;) = argmaxyy: v | w<uw, w(wi — W) + BV (W’).

(¢) If ||mry1 — || < €, terminate early.

Problem 4. Write a function called policy_iteration() that will accept a numpy array
representing the initial vector mg, a discount factor g € (0,1), the number of states to split
w into N, the initial amount of initial cake W4z, & utility function u(z), the convergence
tolerance €, and the maximum number of iterations max_iter. Perform Policy Iteration until
|mx+1 — Tklloo < € or n > max_iter. Return the final vector representing V; as well as the
policy vector c.

Test your policy iteration by calling value_iteration() and
policy_iteration() using the same values for 8, N, Wi, and u(x). The value functions
returned should be close to equal (use np.allclose()), and the policy vectors ¢ should be
identical.

Problem 5. Solve the cake eating problem with both value iteration and policy iteration for
various values of # and compare how long each method takes. Use N = 1000 as the number of
grid points for w and § = [.95,.975, .99, .995].

It is important to use feasible initial guesses in each case in order to make the results

Lab 19. Policy Function Iteration

comparable. A good initial guess greatly affects the number of iterations required for conver-
gence. Use Vp(w;) = u(w;) for value iteration, and mo(w;) = w;—1, with mo(wp) = 0 for policy
iteration.

(Hint: set max_iter high enough for each method so that the functions actually converge; large
values of 8 may require several hundred iterations for value iteration.)

Graph the results for each method with 8 on the x-axis and time on the y-axis. Compare
your results to the following figure.

3.0 1 =@= V| Time
=0=P| Time

Time (seconds)

e®

T T T T
0.950 0.975 0.990 0.995
B Values

	Policy Function Iteration

