
6 Web Scraping II:
Advanced Web
Scraping Techniques

Lab Objective: Gathering data from the internet often requires information from several web pages.
In this lab, we present two methods for crawling through multiple web pages without violating copyright
laws or straining the load a server. We also demonstrate how to scrape data from asynchronously
loaded web pages, and how to interact programmatically with web pages when needed.

Scraping Etiquette
There are two main ways that web scraping can be problematic for a website owner. First, if the
scraper doesn’t respect the website’s terms and conditions or gathers private or proprietary data.
Second, if the scraper imposes too much extra server load by making requests too often or in quick
succession. These are extremely important considerations in any web scraping program.

Achtung!

Scraping copyrighted information without the consent of the copyright owner can have severe
legal consequences. Many websites, in their terms and conditions, prohibit scraping parts or all
of the site. Websites that do allow scraping usually have a file called robots.txt (for example,
www.google.com/robots.txt) that specifies which parts of the website are off-limits and how
often requests can be made according to the robots exclusion standard.a

Be careful and considerate when doing any sort of scraping, and take care when writing
and testing code to avoid unintended behavior. It is up to the programmer to create a scraper
that respects the rules found in the terms and conditions and in robots.txt.b

aSee www.robotstxt.org/orig.html and en.wikipedia.org/wiki/Robots_exclusion_standard.
bPython provides a parsing library called urllib.robotparser for reading robot.txt files. For more infor-

mation, see https://docs.python.org/3/library/urllib.robotparser.html.

The standard way to get the HTML source code of a website using Python is via the requests
library.1 Calling requests.get() sends an HTTP GET request to a specified website; the result is
an object with a response code to indicate whether or not the request was responded to, and access
to the website source code.

1Though requests is not part of the standard library, it is recognized as a standard tool in the data science
community. See http://docs.python-requests.org/.

1

www.google.com/robots.txt
http://www.robotstxt.org/orig.html
https://en.wikipedia.org/wiki/Robots_exclusion_standard
https://docs.python.org/3/library/urllib.robotparser.html
http://docs.python-requests.org/

2 Lab 6. Advanced Web Scraping Techniques

>>> import requests

Make a request and check the result. A status code of 200 is good.
>>> response = requests.get("http://www.example.com")
>>> print(response.status_code, response.ok, response.reason)
200 True OK

The HTML of the website is stored in the 'text' attribute.
>>> print(response.text)
<!doctype html>
<html>
<head>

<title>Example Domain</title>

<meta charset="utf-8" />
<meta http-equiv="Content-type" content="text/html; charset=utf-8" />

...

Achtung!

Consecutive GET requests without pauses can strain a website’s server and provoke retaliation.
Most servers are designed to identify such scrapers, block their access, and sometimes even
blacklist the user. This is especially common in smaller websites that aren’t built to handle
enormous amounts of traffic. To briefly pause the program between requests, use time.sleep().

>>> import time
>>> time.sleep(3) # Pause execution for 3 seconds.

The amount of necessary wait time depends on the website. Sometimes, robots.txt
contains a Request-rate directive which gives a ratio of the form <requests>/<seconds>. If
this doesn’t exist, pausing for a half-second to a second between requests is typically sufficient.
An email to the site’s webmaster is always the safest approach, and may be necessary for large
scraping operations.

Crawling Through Multiple Pages
While web scraping refers to the actual gathering of web-based data, web crawling refers to the
navigation of a program between webpages. Web crawling allows a program to gather related data
from multiple web pages and websites.

Consider www.wunderground.com, a site that records weather data in various cities. The page
https://www.wunderground.com/history/airport/KSAN/2012/7/1/DailyHistory.html records
the weather in San Diego on July 1, 2012. Data for previous or subsequent days can be accessed
by clicking on the Previous Day and Next Day links, so gathering data for an entire month or year
requires crawling through several pages. The following example gathers temperature data for July 1
through July 4 of 2012.

https://www.wunderground.com
https://www.wunderground.com/history/airport/KSAN/2012/7/1/DailyHistory.html

3

import re
import requests
from bs4 import BeautifulSoup

def wunder_temp(day="/history/airport/KSAN/2012/7/1/DailyHistory.html"):
"""Crawl through Weather Underground and extract temperature data."""

Initialize variables, including a regex for finding the 'Next Day' link.
actual_mean_temp = []
next_day_finder = re.compile(r"Next Day")
base_url = "https://www.wunderground.com" # Web page base URL.
page = base_url + day # Complete page URL.
current = None

for _ in range(4):
while current is None: # Try downloading until it works.

Download the page source and PAUSE before continuing.
page_source = requests.get(page).text
time.sleep(1) # PAUSE before continuing.
soup = BeautifulSoup(page_source, "html.parser")
current = soup.find(string="Mean Temperature")

Navigate to the relevant tag, then extract the temperature data.
temp_tag = current.parent.parent.next_sibling.next_sibling.span.span
actual_mean_temp.append(int(temp_tag.string))

Find the URL for the page with the next day's data.
new_day = soup.find(string=next_day_finder).parent["href"]
page = base_url + new_day # New complete page URL.
current = None

return actual_mean_temp

In this example, the for loop cycles through the days, and the while loop ensures that each
website page loads properly: if the downloaded page_source doesn’t have a tag whose string is
“Mean Temperature”, the request is sent again. Later, after locating and recording the Actual Mean
Temperature, the function locates the link to the next day’s page. This link is stored in the HTML
as a relative website path (/history/airport/...); the complete URL to the next day’s page is the
concatenation of the base URL https://www.wunderground.com with this relative link.

Problem 1. Modify wunder_temp() so that it gathers the Actual Mean Temperature, Actual
Max Temperature, and Actual Min Temperature for every day in July of 2012. Plot these three
measurements against time on the same plot.

Consider printing information at each iteration of the outer loop to keep track of the
program’s progress.

https://www.wunderground.com

4 Lab 6. Advanced Web Scraping Techniques

An alternative approach that is often useful is to first identify the links to relevant pages,
then scrape each of these page in succession. For example, the Federal Reserve releases quarterly
data on large banks in the United States at http://www.federalreserve.gov/releases/lbr. The
following function extracts the four measurements of total consolidated assets for JPMorgan Chase
during 2004.

def bank_data():
"""Crawl through the Federal Reserve site and extract bank data."""
Compile regular expressions for finding certain tags.
link_finder = re.compile(r"2004$")
chase_bank_finder = re.compile(r"^JPMORGAN CHASE BK")

Get the base page and find the URLs to all other relevant pages.
base_url="https://www.federalreserve.gov/releases/lbr/"
base_page_source = requests.get(base_url).text
base_soup = BeautifulSoup(base_page_source, "html.parser")
link_tags = base_soup.find_all(name='a', href=True, string=link_finder)
pages = [base_url + tag.attrs["href"] for tag in link_tags]

Crawl through the individual pages and record the data.
chase_assets = []
for page in pages:

time.sleep(1) # PAUSE, then request the page.
soup = BeautifulSoup(requests.get(page).text, "html.parser")

Find the tag corresponding to Chase Banks's consolidated assets.
temp_tag = soup.find(name="td", string=chase_bank_finder)
for _ in range(10):

temp_tag = temp_tag.next_sibling
Extract the data, removing commas.
chase_assets.append(int(temp_tag.string.replace(',', '')))

return chase_assets

Problem 2. Modify bank_data() so that it extracts the total consolidated assets (“Consol
Assets”) for JPMorgan Chase, Bank of America, and Wells Fargo recorded each December from
2004 to the present. In a single figure, plot each bank’s assets against time. Be careful to keep
the data sorted by date.

Problem 3. ESPN hosts data on NBA athletes at http://www.espn.go.com/nba/statistics.
Each player has their own page with detailed performance statistics. For each of the five of-
fensive leaders in points and each of the five defensive leaders in rebounds, extract the player’s
career minutes per game (MPG) and career points per game (PPG). Make a scatter plot of
MPG against PPG for these ten players.

http://www.federalreserve.gov/releases/lbr
http://www.espn.go.com/nba/statistics

5

Asynchronously Loaded Content and User Interaction
Web crawling with the methods presented in the previous section fails under a few circumstances.
First, many webpages use JavaScript, the standard client-side scripting language for the web, to
load portions of their content asynchronously. This means that at least some of the content isn’t
initially accessible through the page’s source code. Second, some pages require user interaction, such
as clicking buttons which aren’t links (<a> tags which contain a URL that can be loaded) or entering
text into form fields (like search bars).

The Selenium framework provides a solution to both of these problems. Originally developed
for writing unit tests for web applications, Selenium allows a program to open a web browser and
interact with it in the same way that a human user would, including clicking and typing. It also has
BeautifulSoup-esque tools for searching the HTML source of the current page.

Note

Selenium requires an executable driver file for each kind of browser. The following examples
use Google Chrome, but Selenium supports Firefox, Internet Explorer, Safari, Opera, and
PhantomJS (a special browser without a user interface). See https://seleniumhq.github.io/
selenium/docs/api/py or http://selenium-python.readthedocs.io/installation.html
for installation instructions.

To use Selenium, start up a browser using one of the drivers in selenium.webdriver. The
browser has a get() method for going to different web pages, a page_source attribute containing
the HTML source of the current page, and a close() method to exit the browser.

>>> from selenium import webdriver

Start up a browser and go to example.com.
>>> browser = webdriver.Chrome()
>>> browser.get("https://www.example.com")

Feed the HTML source code for the page into BeautifulSoup for processing.
>>> soup = BeautifulSoup(browser.page_source, "html.parser")
>>> print(soup.prettify())
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>
Example Domain

</title>
<meta charset="utf-8"/>
<meta content="text/html; charset=utf-8" http-equiv="Content-type"/>

...

>>> browser.close() # Close the browser.

Selenium can deliver the HTML page source to BeautifulSoup, but it also has its own tools for
finding tags in the HTML.

https://seleniumhq.github.io/selenium/docs/api/py
https://seleniumhq.github.io/selenium/docs/api/py
http://selenium-python.readthedocs.io/installation.html

6 Lab 6. Advanced Web Scraping Techniques

Method Returns
find_element_by_tag_name() The first tag with the given name
find_element_by_name() The first tag with the specified name attribute
find_element_by_class_name() The first tag with the given class attribute
find_element_by_id() The first tag with the given id attribute
find_element_by_link_text() The first tag with a matching href attribute
find_element_by_partial_link_text() The first tag with a partially matching href attribute

Table 6.1: Methods of the selenium.webdriver.Chrome class.

Each of the find_element_by_*() methods returns a single object representing a web element
(of type selenium.webdriver.remote.webelement.WebElement), much like a BeautifulSoup tag (of
type bs4.element.Tag). If no such element can be found, a Selenium NoSuchElementException is
raised. Each webdriver also has several find_elements_by_*() methods (elements, plural) that
return a list of all matching elements, or an empty list if there are no matches.

Web element objects have methods that allow the program to interact with them: click()
sends a click, send_keys() enters in text, and clear() deletes existing text. This functionality
makes it possible for Selenium to interact with a website in the same way that a human would. For
example, the following code opens up https://www.google.com, types “Python Selenium Docs” into
the search bar, and hits enter.

>>> from selenium.webdriver.common.keys import Keys
>>> from selenium.common.exceptions import NoSuchElementException

>>> browser = webdriver.Chrome()
>>> try:
... browser.get("https://www.google.com")
... try:
... # Get the search bar, type in some text, and press Enter.
... search_bar = browser.find_element_by_name('q')
... search_bar.clear() # Clear any pre-set text.
... search_bar.send_keys("Python Selenium Docs")
... search_bar.send_keys(Keys.RETURN) # Press Enter.
... except NoSuchElementException:
... print("Could not find the search bar!")
... raise
... finally:
... browser.close()
...

Problem 4. The arXiv (pronounced “archive”) is an online repository of scientific publications,
hosted by Cornell University. Write a function that accepts a string to serve as a search query.
Use Selenium to enter the query into the search bar of https://arxiv.org and press Enter.
The resulting page has up to 25 links to the PDFs of technical papers that match the query.
Gather these URLs, then continue to the next page (if there are more results) and continue
gathering links until obtaining at most 100 URLs. Return the list of URLs.

https://arxiv.org

7

Note

Using Selenium to access a page’s source code is typically much safer, though slower, than
using requests.get(), since Selenium waits for each web page to load before proceeding.
For instance, the arXiv is a somewhat defensive about scrapers (https://arxiv.org/help/
robots), but Selenium makes it possible to gather info from the website without offending the
administrators.

Problem 5. Project Euler (https://projecteuler.net) is a collection of mathematical com-
puting problems. Each problem is listed with an ID, a description/title, and the number of
users that have solved the problem.

Using Selenium, BeautifulSoup, or both, for each of the (at least) 600 problems in the
archive at https://projecteuler.net/archives, record the problem ID and the number of
people who have solved it. Return a list of IDs, sorted from largest to smallest by the number
of people who have solved them. That is, the first entry in the list should be the ID of the most
solved problem, and the last entry in the list should be the ID of the least solved problem.
(Hint: start by identifying the URLs to each archive page.)

https://arxiv.org/help/robots
https://arxiv.org/help/robots
https://projecteuler.net
https://projecteuler.net/archives

	Advanced Web Scraping Techniques

