Pandas |: Introduction

Lab Objective: Though NumPy and SciPy are powerful tools for numerical computing, they lack
some of the high-level functionality necessary for many data science applications. Python’s pandas
library, built on NumPy, is designed specifically for data management and analysis. In this lab,
we introduce pandas data structures, syntax, and explore its capabilities for quickly analyzing and
presenting data.

Series

A pandas Series is generalization of a one-dimensional NumPy array. Like a NumPy array, every
Series has a data type (dtype), and the entries of the Series are all of that type. Unlike a NumPy
array, every Series has an index that labels each entry, and a Series object can also be given a
name to label the entire data set.

>>> import numpy as np
>>> import pandas as pd

# Initialize a Series of random entries with an index of letters.
>>> pd.Series(np.random.random(4), index=['a', 'b', 'c', 'd'])

a 0.474170

b 0.106878

c 0.420631

d 0.279713

dtype: float64

# The default index is integers from O to the length of the data.
>>> pd.Series(np.random.random(4), name="uniform draws")

0 0.767501

1 0.614208

2 0.470877

3 0.335885

Name: uniform draws, dtype: float64
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The index in a Series is a pandas object of type Index and is stored as the index attribute
of the Series. The plain entries in the Series are stored as a NumPy array and can be accessed as
such via the values attribute.

>>> s1 = pd.Series([1, 2, 3, 4], index=['a', 'b', 'c', 'd'], name="some ints")

>>> sl.values # Get the entries as a NumPy array.
array([1, 2, 3, 4]1)

>>> print(sl.name, sl.dtype, sep=", ") # Get the name and dtype.
some ints, int64

>>> sl.index # Get the pd.Index object.
Index(['a', 'b', 'c', 'd'], dtype='object')

The elements of a Series can be accessed by either the regular position-based integer index,
or by the corresponding label in the index. New entries can be added dynamically as long as a valid
index label is provided, similar to adding a new key-value pair to a dictionary. A Series can also be
initialize from a dictionary: the keys become the index labels, and the values become the entries.

>>> s2 = pd.Series([10, 20, 30], index=["apple", "banana", "carrot"])
>>> g2

apple 10
banana 20
carrot 30

dtype: int64

# s2[0] and s2["apple"] refer to the same entry.
>>> print(s2[0], s2["apple"]l, s2["carrot"])

10 10 30

>>> s2[0] += 5 # Change the value of the first entry.
>>> s2["dewberry"] = 0 # Add a new value with label 'dewberry'.
>>> g2

apple 15

banana 20

carrot 30

dewberry 0

dtype: int64

# Initialize a Series from a dictionary.

>>> pd.Series({"eggplant":3, "fig":5, "grape":7}, name="more foods")
eggplant 3

fig 5

grape 7

Name: more foods, dtype: int64

Slicing and fancy indexing also work the same way in Series as in NumPy arrays. In addition,
multiple entries of a Series can be selected by indexing a list of labels in the index.



>>> s3 = pd.Series({"lions":2, "tigers":1, "bears":3}, name="oh my")
>>> 83

bears &
lions 2
tigers 1

Name: oh my, dtype: int64

# Get a subset of the data by regular slicing.

>>> s3[1:]
lions 2
tigers 1

Name: oh my, dtype: int64

# Get a subset of the data with fancy indexing.

>>> s3[np.array([len(i) == 5 for i in s3.index])]
bears 3
lions 2

Name: oh my, dtype: int64

# Get a subset of the data by providing several index labels.

>>> s3[ ["tigers", "bears"] ]

tigers 1 # Note that the entries are reordered,
bears 3 # and the name stays the same.

Name: oh my, dtype: int64

Problem 1. Create a pandas Series where the index labels are the even integers 0, 2, . .., 50,
and the entries are n? — 1, where n is the entry’s label. Set all of the entries equal to zero whose
labels are divisible by 3.

Operations with Series

A Series object has all of the advantages of a NumPy array, including entry-wise arithmetic, plus a
few additional features (see Table 7.1). Operations between a Series S; with index I; and a Series
So with index I results in a new Series with index Iy U Is. In other words, the index dictates how
two Series can interact with each other.

>>> s4 = pd.Series([1, 2, 4], index=['a', 'c', 'd'])

>>> sb = pd.Series([10, 20, 40], index=['a', 'b', 'd'])

>>> 2xs4 + sb

a 12.0

b NaN # s4 doesn't have an entry for b, and

c NaN # sb doesn't have an entry for c, so

d 48.0 # the combination is Nan (np.nan / None).

dtype: float64
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Method | Returns
abs() | Object with absolute values taken (of numerical data)
argmax() | The index label of the maximum value
argmin() | The index label of the minimum value
count () | The number of non-null entries
cumprod() | The cumulative product over an axis
cumsum() | The cumulative sum over an axis
max () | The maximum of the entries
mean() | The average of the entries
median() | The median of the entries
min() | The minimum of the entries
mode() | The most common element(s)
prod() | The product of the elements
sum() | The sum of the elements
var () | The variance of the elements

Table 7.1: Numerical methods of the Series and DataFrame pandas classes.

Many Series are more useful than NumPy arrays primarily because of their index. For example,
a Series can be indexed by time with a pandas DatetimeIndex, an index with date and/or time
values. The usual way to create this kind of index is with pd.date_range().

# Make an index of the first three days in July 2000.

>>> pd.date_range("7/1/2000", "7/3/2000", freq='D"')

DatetimeIndex(['2000-07-01', '2000-07-02', '2000-07-03'],
dtype='datetime64[ns]', freq='D')

Problem 2. Suppose you make an investment of d dollars in a particularly volatile stock. Every
day the value of your stock goes up by $1 with probability p, or down by $1 with probability
1 — p (this is an example of a random walk).

Write a function that accepts a probability parameter p and an initial amount of money
d, defaulting to 100. Use pd.date_range() to create an index of the days from 1 January
2000 to 31 December 2000. Simulate the daily change of the stock by making one draw from a
Bernoulli distribution with parameter p (a binomial distribution with one draw) for each day.
Store the draws in a pandas Series with the date index and set the first draw to the initial
amount d. Sum the entries cumulatively to get the stock value by day. Set any negative values
to 0, then plot the series using the plot () method of the Series object.

Call your function with a few different values of p and d to observe the different possible
kinds of behavior.

NOTE

The Series in Problem 2 is an example of a time series, since it is indexed by time. Time
series show up often in data science; we will explore them in more depth in another lab.




Method | Description
append() | Concatenate two or more Series.

drop() | Remove the entries with the specified label or labels

drop_duplicates() | Remove duplicate values
dropna() | Drop null entries
fillna() | Replace null entries with a specified value or strategy
reindex () | Replace the index

sample() | Draw a random entry

shift () | Shift the index
unique () | Return unique values

Table 7.2: Methods for managing or modifying data in a pandas Series or DataFrame.

Data Frames

A DataFrame is a collection of Series that share the same index, and is therefore a two-dimensional
generalization of a NumPy array. The row labels are collectively called the index, and the column
labels are collectively called the columns. An individual column in a DataFrame object is one Series.

out of a dictionary of Series.

>>>
>>>
>>>
>>>

X
y
df1
df1

There are many ways to initialize a DataFrame. In the following code, we build a DataFrame

pd.Series(np.random.randn(4), ['a', 'b', 'c', 'd'])

pd.Series(np.random.randn(5), ['a', 'b', 'd’',

el, 'f'])

= pd.DataFrame({"series 1": x, "series 2": y})

series 1 series 2

a -0.365542 1.227960

>>> df1["series1"].dropna()

a
b
C
d

0.080133 0.683523
0.737970 NaN
0.097878 -1.102835
NaN 1.345004
NaN 0.217523

Note that the index of this DataFrame is the union of the index of Series x and that of Series
y. The columns are given by the keys of the dictionary d. Since x doesn’t have a label e, the value
in row e, column 1 is NaN. This same reasoning explains the other missing values as well. Note that
if we take the first column of the DataFrame and drop the missing values, we recover the Series x:

-0.365542
0.080133
0.737970
0.097878

Name: series 1, dtype: float64
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ACHTUNG!

A pandas DataFrame cannot be sliced in exactly the same way as a NumPy array. Notice how
we just used df1["series 1"] to access a column of the the DataFrame df1. We will discuss
this in more detail later on.

We can also initialize a DataFrame using a NumPy array, creating custom row and column
labels.

>>> data = np.random.random((3, 4))
>>> pd.DataFrame(data, index=['A', 'B', 'C'], columns=np.arange(l, 5))

1 2 3 4
A 0.065646 0.968593 0.593394 0.750110
B 0.803829 0.662237 0.200592 0.137713
C 0.288801 0.956662 0.817915 0.951016
3 rows 4 columns

As with Series, if we don’t specify the index or columns, the default is np.arange (n), where n
is either the number of rows or columns.

Viewing and Accessing Data

In this section we will explore some elementary accessing and querying techniques that enable us to
maneuver through and gain insight into our data. Try using the describe() and head() methods
for quick data summaries.

Basic Data Access
We can slice the rows of a DataFrame much as with a NumPy array.

>>> df = pd.DataFrame(np.random.randn(4, 2), index=['a', 'b', 'c', 'd'],
columns = ['I', 'II'])
>>> df[:2]

I II
a 0.758867 1.231330
b 0.402484 -0.955039

[2 rows x 2 columns]

More generally, we can select subsets of the data using the iloc and loc indexers. The loc
index selects rows and columns based on their labels, while the iloc method selects them based on
their integer position. Accessing Series and DataFrame objects using these indexing operations is
more efficient than using bracket indexing, because the bracket indexing has to check many cases
before it can determine how to slice the data structure. Using loc/iloc explicitly, bypasses the extra
checks.



>>> # select rows a and c, column IT
>>> df.loc[['a','c'], 'II']

a 1.231330
c 0.556121
Name: II, dtype: float64

>>> # select last two rows, first column
>>> df.iloc[-2:, 0]

c -0.475952
d -0.518989
Name: I, dtype: float64

Finally, a column of a DataFrame may be accessed using simple square brackets and the name
of the column, or alternatively by treating the label as an object:

>>> # get second column of df

>>> df['II'] # or, equivalently, df.II
a 1.231330
b -0.955039
c 0.556121
d 0.173165

Name: II, dtype: float64

All of these techniques for getting subsets of the data may also be used to set subsets of the

>>> # set second columns to zeros
>>> df['II'] = 0

>>> df['I1']
a 0
b 0
c 0
d 0

Name: II, dtype: int64

>>> # add additional column of ones
>>> df['III'] = 1

>>> df

I II III
a -0.460457 O 1
b 0.973422 O 1
C -0.475952 O 1
d -0.518989 0 1
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SQL Operations in pandas

The DataFrame, being a tabular data structure, bears an obvious resemblance to a typical relational
database table. SQL is the standard for working with relational databases, and in this section we
will explore how pandas accomplishes some of the same tasks as SQL. The SQL-like functionality of
pandas is one of its biggest advantages, since it can eliminate the need to switch between programming
languages for different tasks. Within pandas we can handle both the querying and data analysis.

For the following examples, we will use the following data:

>>> #build toy data for SQL operations

>>> name = ['Mylan', 'Regan', 'Justin', 'Jess', 'Jason', 'Remi', 'Matt', '<«
Alexander', 'JeanMarie']

>>> gex = ['M', 'F', 'M', 'F', 'M', 'F', 'M', 'M', 'F']

>>> age = [20, 21, 18, 22, 19, 20, 20, 19, 20]

>>> rank = ['Sp', 'Se', 'Fr', 'Se', 'Sp', 'J', 'J', 'J', 'Se'l

>>> ID = range(9)

>>> aid = ['y', 'n', 'n', 'y', 'n', 'n', 'n', 'y', 'n'l]

>>> GPA = [3.8, 3.5, 3.0, 3.9, 2.8, 2.9, 3.8, 3.4, 3.7]

>>> mathID = [0, 1, 5, 6, 3]

>>> mathGd = [4.0, 3.0, 3.5, 3.0, 4.0]

>>> major = ['y', 'n', 'y', '

>>> studentInfo = pd.DataFrame({'ID': ID, 'Name': name, 'Sex': sex, 'Age': age,+

'Class': rank})

>>> otherInfo = pd.DataFrame({'ID': ID, 'GPA': GPA, 'Financial_Aid': aid})

>>> mathInfo = pd.DataFrame({'ID': mathID, 'Grade': mathGd, 'Math_Major': major¢
1))

nl’ Inl:l

Before querying our data, it is important to know some of its basic properties, such as number
of columns, number of rows, and the datatypes of the columns. This can be done by simply calling
the info () method on the desired DataFrame:

>>> mathInfo.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 5 entries, 0 to 4

Data columns (total 3 columns):

Grade 5 non-null float64

ID 5 non-null int64
Math_Major 5 non-null object

dtypes: float64(1), int64(1), object(1)

We can also get some basic information about the structure of the DataFrame using the head ()
or tail() methods.

>>> mathInfo.head()
Grade ID Math_Major ID Age GPA

0 4.0 O y O 20 3.8
1 3.0 1 n 2 18 3.0
2 3.5 b y 4 19 2.8
3 3.0 6 n 6 20 3.8



4 4.0 3 n 7 19 3.4

The method isin() is a useful way to find certain values in a DataFrame. It compares the
input (a list, dictionary, or Series) to the DataFrame and returns a boolean Series showing whether
or not the values match. You can then use this boolean array to select appropriate locations. Now
let’s look at the pandas equivalent of some SQL SELECT statements.

>>> # SELECT ID, Age FROM studentInfo
>>> studentInfo[['ID', 'Age']]

>>> # SELECT ID, GPA FROM otherInfo WHERE Financial_Aid = 'y'
>>> otherInfo[otherInfo['Financial Aid']=='y'][['ID', 'GPA']]

>>> # SELECT Name FROM studentInfo WHERE Class = 'J' OR Class = 'Sp'
>>> studentInfo[studentInfo['Class'].isin(['J','Sp'])] ['Name']

Problem 3. The example above shows how to implement a simple WHERE condition, and it
is easy to have a more complex expression. Simply enclose each condition by parentheses, and
use the standard boolean operators & (AND), | (OR), and ~ (NOT) to connect the conditions
appropriately. Use pandas to execute the following query:

SELECT ID, Name from studentInfo WHERE Age > 19 AND Sex = 'M'

Next, let’s look at JOIN statements. In pandas, this is done with the merge function, which
takes as arguments the two DataFrame objects to join, as well as keyword arguments specifying the
column on which to join, along with the type (left, right, inner, outer).

>>> # SELECT * FROM studentInfo INNER JOIN mathInfo ON studentInfo.ID = <
mathInfo.ID

>>> pd.merge(studentInfo, mathInfo, on='ID') # INNER JOIN is the default
Age Class 1ID Name Sex Grade Math_Major

0 20 Sp O Mylan M 4.0 y
1 21 Se 1 Regan F 3.0 n
2 22 Se 3 Jess F 4.0 n
3 20 J B Remi F 3.5 y
4 20 J 6 Matt M 3.0 n

[5 rows x 7 columns]

>>> # SELECT GPA, Grade FROM otherInfo FULL OUTER JOIN mathInfo ON otherInfo.ID<—
= mathInfo.ID
>>> pd.merge (otherInfo, mathInfo, on='ID', how='outer') [['GPA', 'Grade'l]

GPA Grade
0O 3.8 4.0
1 3.5 3.0
2 3.0 NaN
3 3.9 4.0
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4 2.8 NaN
5 2.9 3.5
6 3.8 3.0
7T 3.4 NaN
8 3.7 NaN

[9 rows x 2 columns]

Problem 4. Using a join operation, create a DataFrame containing the ID, age, and GPA of
all male individuals. You ought to be able to accomplish this in one line of code.

Be aware that other types of SQL-like operations are also possible, such as UNION. When
you find yourself unsure of how to carry out a more involved SQL-like operation, the online pandas
documentation will be of great service.

Analyzing Data

Although pandas does not provide built-in support for heavy-duty statistical analysis of data, there
are nevertheless many features and functions that facilitate basic data manipulation and computation,
even when the data is in a somewhat messy state. We will now explore some of these features.

Basic Data Manipulation

Because the primary pandas data structures are subclasses of the ndarray, they are valid input
to most NumPy functions, and can often be treated simply as NumPy arrays. For example, basic
vectorized operations work just fine:

>>> x = pd.Series(np.random.randn(4), index=['a', 'b', 'c', 'd'])
>>> y = pd.Series(np.random.randn(5), index=['a', 'b', 'd', 'e', 'f'])
S>> x*%2
a 1.710289
b 0.157482
c 0.540136
d 0.202580
dtype: float64
>>>z=x+y
>>> z
0.123877
0.278435
NaN
-1.318713
NaN
NaN
dtype: float64
>>> np.log(z)
a -2.088469
b -1.278570

H 0 Q& 0 T WP
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I

NaN
NaN
NaN
NaN

dtype: float64

Notice that pandas automatically aligns the indexes when adding two Series (or DataFrames), so
that the the index of the output is simply the union of the indexes of the two inputs. The default
missing value NaN is given for labels that are not shared by both inputs.

It may also be useful to transpose DataFrames, re-order the columns or rows, or sort according

to a given column. Here we demonstrate these capabilities:

>>>

>>>

a
b
C
d

df = pd.DataFrame(np.random.randn(4,2), index=['a', 'b', 'c', 'd'], columns¢
=['1', 'I1'])
df

I II

-0.154878 -1.097156
-0.948226 0.585780

0.433197 -0.493048

-0.168612 0.999194

[4 rows x 2 columns]

>>> df .transpose()

I

a b [¢] d
-0.154878 -0.948226 0.433197 -0.168612

IT -1.097156 0.585780 -0.493048 0.999194

[2 rows x 4 columns]

>>> # switch order of columns, keep only rows 'a' and 'c'
>>> df.reindex(index=['a', 'c'], columns=['II', 'I'])

a

II I

-1.097156 -0.154878

c -0.493048 0.433197

[2 rows x 2 columns]

>>> # sort descending according to column 'II'

>>> df.sort_values('II', ascending=False)

d
b
®
a

I IT

-0.168612 0.999194
-0.948226 0.585780

0.433197 -0.493048

-0.154878 -1.097156

[4 rows x 2 columns]
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Dealing with Missing Data

Missing data is a ubiquitous problem in data science. Fortunately, pandas is particularly well-suited
to handling missing and anomalous data. As we have already seen, the pandas default for a missing
value is NaN. In basic arithmetic operations, if one of the operands is NaN, then the output is also
NaN. The following example illustrates this concept:

>>> x = pd.Series(np.arange(5))
>>> y = pd.Series(np.random.randn(5))
>>> x.iloc[3] = np.nan

>>> x +y
0 0.731521
1 0.623651
2 2.396344
3 NaN
4 3.351182

dtype: float64

If we are not interested in the missing values, we can simply drop them from the data altogether:

>>> (x + y).dropna()
0 0.731521
1 0.623651
2 2.396344
4 3.351182
dtype: float64

This is not always the desired behavior, however. It may well be the case that missing data
actually corresponds to some default value, such as zero. In this case, we can replace all instances of
NaN with a specified value:

>>> # fill missing data with 0, add
>>> x.fillna(0) + y

.731521

.623651

.396344

.829400

.351182

dtype: float64

> w NN e, O
W = N O O

Other functions, such as sum() and mean() ignore NaN values in the computation. When
dealing with missing data, make sure you are aware of the behavior of the pandas functions you are
using.

Data I/0

Being able to import and export data is a fundamental skill in data science. Unfortunately, with the
multitude of data formats and conventions, importing data can often be a painful task. The pandas
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library seeks to reduce some of the difficulty by providing file readers for various types of formats,
including CSV, Excel, HDF5, SQL, JSON, HTML, and pickle files.

Method | Description
describe() | Return a Series describing the data structure

head() | Return the first n rows, defaulting to 5
tail() | Return the last n rows, defaulting to 5

to_csv() | Write the index and entries to a CSV file

to_json() | Convert the object to a JSON string
to_pickle() | Serialize the object and store it in an external file
to_sql() | Write the object data to an open SQL database

Table 7.3: Methods for viewing or exporting data in a pandas Series or DataFrame.

The CSV (comma separated values) format is a simple way of storing tabular data in plain
text. Because CSV files are one of the most popular file formats for exchanging data, we will explore
the read_csv() function in more detail. To learn to read other types of file formats, see the online
pandas documentation. To read a CSV data file into a DataFrame, call the read_csv() function
with the path to the CSV file, along with the appropriate keyword arguments. Below we list some
of the most important keyword arguments:

e delimiter: This argument specifies the character that separates data fields, often a comma or
a whitespace character.

e header: The row number (starting at 0) in the CSV file that contains the column names.

e index_col: If you want to use one of the columns in the CSV file as the index for the DataFrame,
set this argument to the desired column number.

e skiprows: If an integer n, skip the first n rows of the file, and then start reading in the data.
If a list of integers, skip the specified rows.

e names: If the CSV file does not contain the column names, or you wish to use other column
names, specify them in a list assigned to this argument.

There are several other keyword arguments, but this should be enough to get you started.

When you need to save your data, pandas allows you to write to several different file formats. A
typical example is the to_csv() function method attached to Series and DataFrame objects, which
writes the data to a CSV file. Keyword arguments allow you to specify the separator character, omit
writing the columns names or index, and specify many other options. The code below demonstrates
its typical usage:

>>> df.to_csv("my_df.csv")

Problem 5. The file crime_data.csv contains data on types of crimes committed in the
United States from 1960 to 2016.

e Load the data into a pandas DataFrame, using the column names in the file and the
column titled “Year” as the index. Make sure to skip lines that don’t contain data.
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e Insert a new column into the data frame that contains the crime rate by year (the ratio
of “Total” column to the “Population” column).

e Plot the crime rate as a function of the year.
e List the 5 years with the highest crime rate in descending order.

e Calculate the average number of total crimes as well as burglary crimes between 1960 and
2012.

e Find the years for which the total number of crimes was below average, but the number
of burglaries was above average.

e Plot the number of murders as a function of the population.

e Select the Population, Violent, and Robbery columns for all years in the 1980s, and save
this smaller data frame to a CSV file crime_subset.csv.

Problem 6. In 1912 the RMS Titanic sank after colliding with an iceberg. The file titanic.csv
contains data on the incident. Each row represents a different passenger, and the columns de-
scribe various features of the passengers (age, sex, whether or not they survived, etc.)

Start by cleaning the data.

Read the data into a DataFrame. Use the first row of the file as the column labels, but
do not use any of the columns as the index.

e Drop the columns "Sibsp", "Parch", "Cabin", "Boat", "Body", and "home.dest".

e Drop any entries without data in the "Survived" column, then change the remaining
entries to True or False (they start as 1 or 0).

Replace null entries in the "Age" column with the average age.
e Save the new DataFrame as titanic_clean.csv.
Next, answer the following questions.
e How many people survived? What percentage of passengers survived?
e What was the average price of a ticket? How much did the most expensive ticket cost?

e How old was the oldest survivor? How young was the youngest survivor? What about
non-survivors?
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