
10 Pandas IV: Time
Series

Lab Objective: Many real world data sets—stock market measurements, ocean tide levels, website
traffic, seismograph data, audio signals, fluid simulations, quarterly dividends, and so on—are time
series, meaning they come with time-based labels. There is no universal format for such labels, and
indexing by time is often difficult with raw data. Fortunately, pandas has tools for cleaning and
analyzing time series. In this lab we use pandas to clean and manipulate time-stamped data and
introduce some basic tools for time series analysis.

Working with Dates and Times
The datetime module in the standard library provides a few tools for representing and operating
on dates and times. The datetime.datetime object represents a time stamp: a specific time of day
on a certain day. Its constructor accepts a four-digit year, a month (starting at 1 for January), a
day, and, optionally, an hour, minute, second, and microsecond. Each of these arguments must be
an integer, with the hour ranging from 0 to 23 (military time).

>>> from datetime import datetime

Represent November 18th, 1991, at 2:01 PM.
>>> bday = datetime(1991, 11, 18, 14, 1)
>>> print(bday)
1991-11-18 14:01:00

Find the number of days between 11/18/1991 and 11/9/2017.
>>> dt = datetime(2017, 11, 9) - bday
>>> dt.days
9487

The datetime.datetime object has a parser method, strptime(), that converts a string into
a new datetime.datetime object. The parser is flexible because the user must specify the format
that the dates are in. For example, if the dates are in the format "Month/Day//Year::Hour", specify
format="%m/%d//%Y::%H" to parse the string appropriately. See Table 10.1 for formatting options.

1

2 Lab 10. Pandas IV: Time Series

Pattern Description
%Y 4-digit year
%y 2-digit year
%m 1- or 2-digit month
%d 1- or 2-digit day
%H Hour (24-hour)
%I Hour (12-hour)
%M 2-digit minute
%S 2-digit second

Table 10.1: Formats recognized by datetime.strptime()

>>> print(datetime.strptime("1991-11-18 / 14:01", "%Y-%m-%d / %H:%M"),
... datetime.strptime("1/22/1996", "%m/%d/%Y"),
... datetime.strptime("19-8, 1998", "%d-%m, %Y"), sep='\n')
1991-11-18 14:01:00 # The date formats are now standardized.
1996-01-22 00:00:00 # If no hour/minute/seconds data is given,
1998-08-19 00:00:00 # the default is midnight.

Converting Dates to an Index

The TimeStamp class is the pandas equivalent to a datetime.datetime object. An pandas index for
composed of TimeStamp objects is a DatetimeIndex, and a Series or DataFrame with such an index
is called a time series. The function pd.to_datetime() converts a collection of dates in a parsable
format to a DatetimeIndex. The format of the dates is inferred if possible, but it can be specified
explicitly with the same syntax as datetime.strptime().

>>> import pandas as pd

Convert some dates (as strings) into a DatetimeIndex.
>>> dates = ["2010-1-1", "2010-2-1", "2012-1-1", "2012-1-2"]
>>> pd.to_datetime(dates)
DatetimeIndex(['2010-01-01', '2010-02-01', '2012-01-01', '2012-01-02'],

dtype='datetime64[ns]', freq=None)

Create a time series, specifying the format for the dates.
>>> dates = ["1/1, 2010", "1/2, 2010", "1/1, 2012", "1/2, 2012"]
>>> date_index = pd.to_datetime(dates, format="%m/%d, %Y")
>>> pd.Series([x**2 for x in range(4)], index=date_index)
2010-01-01 0
2010-01-02 1
2012-01-01 4
2012-01-02 9
dtype: int64

3

Problem 1. The file DJIA.csv contains daily closing values of the Dow Jones Industrial Aver-
age from 2006–2016. Read the data into a Series or DataFrame with a DatetimeIndex as the
index. Drop rows with missing values, cast the "VALUES" column to floats, then plot the data.
(Hint: Use lw=.5 to make the line thin enough for the data.)

Generating Time-based Indices
Some time series datasets come without explicit labels, but still have instructions for deriving times-
tamps. For example, a list of bank account balances might have records from the beginning of every
month, or heart rate readings could be recorded by an app every 10 minutes. Use pd.date_range()
to generate a DatetimeIndex where the timestamps are equally spaced. The function is analogous
to np.arange() and has the following parameters.

Parameter Description
start Starting date

end End date
periods Number of dates to include

freq Amount of time between consecutive dates
normalize Whether or not to trim the time to midnight

Table 10.2: Parameters for pd.date_range().

Exactly two of the parameters start, end, and periods must be specified to generate a range
of dates. The freq parameter accepts a variety of string representations, referred to as offset aliases.
See Table 10.3 for a sampling of some of the options. For a complete list of the options, see http:
//pandas.pydata.org/pandas-docs/stable/timeseries.html#offset-aliases.

Parameter Description
"D" calendar daily (default)
"B" business daily
"H" hourly
"T" minutely
"S" secondly

"MS" first day of the month
"BMS" first weekday of the month

"W-MON" every Monday
"WOM-3FRI" every 3rd Friday of the month

Table 10.3: Options for the freq parameter to pd.date_range().

5 consecutive days staring with September 28, 2016.
>>> pd.date_range(start='9/28/2016 16:00', periods=5)
DatetimeIndex(['2016-09-28 16:00:00', '2016-09-29 16:00:00',

'2016-09-30 16:00:00', '2016-10-01 16:00:00',
'2016-10-02 16:00:00'],

http://pandas.pydata.org/pandas-docs/stable/timeseries.html#offset-aliases
http://pandas.pydata.org/pandas-docs/stable/timeseries.html#offset-aliases

4 Lab 10. Pandas IV: Time Series

dtype='datetime64[ns]', freq='D')

The first weekday of every other month in 2016.
>>> pd.date_range(start='1/1/2016', end='1/1/2017', freq="2BMS")
DatetimeIndex(['2016-01-01', '2016-03-01', '2016-05-02', '2016-07-01',

'2016-09-01', '2016-11-01'],
dtype='datetime64[ns]', freq='2BMS')

10 minute intervals between 4:00 PM and 4:30 PM on September 9, 2016.
>>> pd.date_range(start='9/28/2016 16:00',

end='9/28/2016 16:30', freq="10T")
DatetimeIndex(['2016-09-28 16:00:00', '2016-09-28 16:10:00',

'2016-09-28 16:20:00', '2016-09-28 16:30:00'],
dtype='datetime64[ns]', freq='10T')

The freq parameter also supports more flexible string representations.

>>> pd.date_range(start='9/28/2016 16:30', periods=5, freq="2h30min")
DatetimeIndex(['2016-09-28 16:30:00', '2016-09-28 19:00:00',

'2016-09-28 21:30:00', '2016-09-29 00:00:00',
'2016-09-29 02:30:00'],

dtype='datetime64[ns]', freq='150T')

Problem 2. The file paychecks.csv contains values of an hourly employee’s last 93 paychecks.
He started working March 13, 2008. This company hands out paychecks on the first and third
Fridays of the month.

Read in the data, using pd.date_range() to generate the DatetimeIndex. Plot the data.
(Hint: use the union() method of DatetimeIndex class.)

Periods
The pandas Timestamp object represents a precise moment in time on a given day. Some data,
however, is recorded over a time interval, and it wouldn’t make sense to place an exact timestamp on
any of the measurements. For example, a record of the number of steps walked in a day, box office
earnings per week, quarterly earnings, and so on. This kind of data is better represented with the
pandas Period object and the corresponding PeriodIndex.

The constructor of the Period accepts a value and a freq. The value parameter indicates the
label for a given Period. This label is tied to the end of the defined Period. The freq indicates the
length of the Period and also (in some cases) indicates the offset of the Period. The freq parameter
accepts the majority, but not all, of frequencies listed in Table 10.3.

The default value for 'freq' is "M" for months.
>>> p1 = pd.Period("2016-10")
>>> p1.start_time # The start and end times of the period
Timestamp('2016-10-01 00:00:00') # are recorded as Timestamps.

5

>>> p1.end_time
Timestamp('2016-10-31 23:59:59.999999999')

Represent the annual period ending in December that includes 10/03/2016.
>>> p2 = pd.Period("2016-10-03", freq="A-DEC")
>>> p2.start_time
Timestamp('2007-01-01 00:00:00')
>>> p2.end_time
Timestamp('2007-12-31 23:59:59.999999999')

Get the weekly period ending on a Saturday that includes 10/03/2016.
>>> print(pd.Period("2016-10-03", freq="W-SAT"))
2016-10-02/2016-10-08

Like the pd.date_range() method, the pd.period_range() method is useful for generating a
PeriodIndex for unindexed data. The syntax is essentially identical to that of pd.date_range().
When using pd.period_range(), remember that the freq parameter marks the end of the period.

Represent quarters from 2008 to 2010, with Q4 ending in December.
>>> pd.period_range(start="2008", end="2010-12", freq="Q-DEC")
PeriodIndex(['2008Q1', '2008Q2', '2008Q3', '2008Q4', '2009Q1', '2009Q2',

'2009Q3', '2009Q4', '2010Q1', '2010Q2', '2010Q3', '2010Q4'],
dtype='period[Q-DEC]', freq='Q-DEC')

After creating a PeriodIndex, the freq parameter can be changed via the asfreq() method.

Get every three months form March 2010 to the start of 2011.
>>> p = pd.period_range("2010-03", "2011", freq="3M")
>>> p
PeriodIndex(['2010-03', '2010-06', '2010-09', '2010-12'],

dtype='period[3M]', freq='3M')

Change frequency to be quarterly.
>>> p.asfreq("Q-DEC")
PeriodIndex(['2010Q2', '2010Q3', '2010Q4', '2011Q1'],

dtype='period[Q-DEC]', freq='Q-DEC')

Say you have created a PeriodIndex, but the bounds are not exactly where you expected they
would be. You can actually shift PeriodIndex obejcts by adding or subtracting an integer, n. The
resulting PeriodIndex will be shifted by n × freq.

Shift index by 1
>>> p -= 1
>>> p
PeriodIndex(['2010Q1', '2010Q2', '2010Q3', '2010Q4'],

dtype='int64', freq='Q-DEC')

If for any reason you need to switch from periods to timestamps, pandas provides a very simple
method to do so.

6 Lab 10. Pandas IV: Time Series

Convert to timestamp (last day of each quarter)
>>> p = p.to_timestamp(how='end')
>>> p
DatetimeIndex(['2010-03-31', '2010-06-30', '2010-09-30', '2010-12-31'],

dtype='datetime64[ns]', freq='Q-DEC')

Similarly, you can switch from timestamps to periods.

>>> p.to_period("Q-DEC")
PeriodIndex(['2010Q1', '2010Q2', '2010Q3', '2010Q4'],

dtype='int64', freq='Q-DEC')

Problem 3. The file finances.csv contains a list of simulated quarterly earnings and expense
totals from a fictional company. Load the data into a Series or DataFrame with a PeriodIndex
with a quarterly frequency. Assume the fiscal year starts at the beginning of September and
that the data begins in September 1978. Plot the data.

Operations on Time Series
There are certain operations only available to Series and DataFrames that have a DatetimeIndex.
A sampling of this functionality is described throughout the remainder of this lab.

Slicing
Slicing is much more flexible in pandas for time series. We can slice by year, by month, or even use
traditional slicing syntax to select a range of dates.

Select all rows in a given year
>>> df["2010"]

0 1
2010-01-01 0.566694 1.093125
2010-02-01 -0.219856 0.852917
2010-03-01 1.511347 -1.324036

Select all rows in a given month of a given year
>>> df["2012-01"]

0 1
2012-01-01 0.212141 0.859555
2012-01-02 1.483123 -0.520873
2012-01-03 1.436843 0.596143

Select a range of dates using traditional slicing syntax
>>> df["2010-1-2":"2011-12-31"]

0 1
2010-02-01 -0.219856 0.852917

7

2010-03-01 1.511347 -1.324036
2011-01-01 0.300766 0.934895

Resampling
Imagine you have a dataset that does not have datapoints at a fixed frequency. For example, a dataset
of website traffic would take on this form. Because the datapoints occur at irregular intervals, it may
be more difficult to procure any meaningful insight. In situations like these, resampling your data is
worth considering.

The two main forms of resampling are downsampling (aggregating data into fewer intervals)
and upsampling (adding more intervals).

To downsample, use the resample() method of the Series or DataFrame. This method is sim-
ilar to groupby() in that it groups different entries o together, and requires some kind of aggregation
to produce a new data set. The first parameter to resample() is an offset string from Table 10.3:
"D" for daily, "H" for hourly, and so on.

>>> import numpy as np

Get random data for every day from 2000 to 2010.
>>> dates = pd.date_range(start="2000-1-1", end='2009-12-31', freq='D')
>>> df = pd.Series(np.random.random(len(days)), index=dates)
>>> df
2000-01-01 0.559
2000-01-02 0.874
2000-01-03 0.774

...
2009-12-29 0.837
2009-12-30 0.472
2009-12-31 0.211
Freq: D, Length: 3653, dtype: float64

Group the data by year.
>>> years = df.resample("A") # 'A' for 'annual'.
>>> years.agg(len) # Number of entries per year.
2000-12-31 366.0
2001-12-31 365.0
2002-12-31 365.0

...
2007-12-31 365.0
2008-12-31 366.0
2009-12-31 365.0
Freq: A-DEC, dtype: float64

>>> years.mean() # Average entry by year.
2000-12-31 0.491
2001-12-31 0.514
2002-12-31 0.484

...

8 Lab 10. Pandas IV: Time Series

2007-12-31 0.508
2008-12-31 0.521
2009-12-31 0.523
Freq: A-DEC, dtype: float64

Group the data by month.
>>> months = df.resample("M")
>>> len(months.mean()) # 12 months x 10 years = 120 months.
120

Problem 4. The file website_traffic.csv contains records for different visits to a fictitious
website. Read in the data, calculate the duration of each visit (in seconds), and convert the
index to a DatetimeIndex. Use downsampling to calculate the average visit duration by minute,
and the average visit duration by hour. Plot both results on the same graph.

Elementary Time Series Analysis
Shifting

DataFrame and Series objects have a shift() method that allows you to move data up or down
relative to the index. When dealing with time series data, we can also shift the DatetimeIndex
relative to a time offset.

>>> df = pd.DataFrame(dict(VALUE=np.random.rand(5)),
index=pd.date_range("2016-10-7", periods=5, freq='D'))

>>> df
VALUE

2016-10-07 0.127895
2016-10-08 0.811226
2016-10-09 0.656711
2016-10-10 0.351431
2016-10-11 0.608767

>>> df.shift(1)
VALUE

2016-10-07 NaN
2016-10-08 0.127895
2016-10-09 0.811226
2016-10-10 0.656711
2016-10-11 0.351431

>>> df.shift(-2)
VALUE

2016-10-07 0.656711
2016-10-08 0.351431
2016-10-09 0.608767

9

2016-10-10 NaN
2016-10-11 NaN

>>> df.shift(14, freq="D")
VALUE

2016-10-21 0.127895
2016-10-22 0.811226
2016-10-23 0.656711
2016-10-24 0.351431
2016-10-25 0.608767

Shifting data makes it easy to gather statistics about changes from one timestamp or period to
the next.

Find the changes from one period/timestamp to the next
>>> df - df.shift(1) # Equivalent to df.diff().

VALUE
2016-10-07 NaN
2016-10-08 0.683331
2016-10-09 -0.154516
2016-10-10 -0.305279
2016-10-11 0.257336

Problem 5. Compute the following information about the DJIA dataset from Problem 1.

• The single day with the largest gain.

• The single day with the largest loss.

• The month with the largest gain.

• The month with the largest loss.

For the monthly statistics, define the gain (or loss) to be the difference between the DJIA on
the last and first days of the month.

Rolling Functions and Exponentially-Weighted Moving Functions

Many time series are inherently noisy. To analyze general trends in data, we use rolling functions
and exponentally-weighted moving (EWM) functions.

Rolling functions, or moving window functions, perform some kind of calculation on just a
window of data. There are a few rolling functions that come standard with pandas.

Rolling Functions (Moving Window Functions)

One of the most commonly used rolling functions is the rolling average, which takes the average value
over a window of data.

10 Lab 10. Pandas IV: Time Series

Generate a time series using random walk from a uniform distribution.
N = 10000
bias = 0.01
s = np.zeros(N)
s[1:] = np.random.uniform(low=-1, high=1, size=N-1) + bias
s = pd.Series(s.cumsum(),

index=pd.date_range("2015-10-20", freq='H', periods=N))

Plot the original data together with a rolling average.
ax1 = plt.subplot(121)
s.plot(color="gray", lw=.3, ax=ax1)
s.rolling(window=200).mean().plot(color='r', lw=1, ax=ax1)
ax1.legend(["Actual", "Rolling"], loc="lower right")
ax1.set_title("Rolling Average")

The function call s.rolling(window=200) creates a pd.core.rolling.Window object that can
be aggregated with a function like mean(), std(), var(), min(), max(), and so on.

Exponentially-Weighted Moving (EWM) Functions

Whereas a moving window function gives equal weight to the whole window, an exponentially-weighted
moving function gives more weight to the most recent data points.

In the case of a exponentially-weighted moving average (EWMA), each data point is calculated
as follows.

zi = αx̄i + (1 − α)zi−1,

where zi is the value of the EWMA at time i, x̄i is the average for the i-th window, and α is the
decay factor that controls the importance of previous data points. Notice that α = 1 reduces to the
rolling average.

More commonly, the decay is expressed as a function of the window size. In fact, the span for
an EWMA is nearly analogous to window size for a rolling average.

Notice the syntax for EWM functions is very similar to that of rolling functions.

NovDec Jan
2016

FebMar AprMay Jun Jul AugSep Oct NovDec
60

40

20

0

20

40

Rolling Average

Actual
Rolling

(a)

NovDec Jan
2016

FebMar AprMay Jun Jul AugSep Oct NovDec
60

40

20

0

20

40

EWMA

Actual
EWMA

(b)

Figure 10.1: Rolling average and EWMA.

11

ax2 = plt.subplot(121)
s.plot(color="gray", lw=.3, ax=ax2)
s.ewm(span=200).mean().plot(color='g', lw=1, ax=ax2)
ax2.legend(["Actual", "EWMA"], loc="lower right")
ax2.set_title("EWMA")

Problem 6. Plot the following from the DJIA dataset with a window or span of 30, 120, and
365.

• The original data points.

• Rolling average.

• Exponential average.

• Minimum rolling values.

• Maximum rolling values.

Describe how varying the length of the window changes the approximation to the data.

	Pandas IV: Time Series

