
15 Parallel Programming
with MPI

Lab Objective: In the world of parallel computing, MPI is the most widespread and standardized
message passing library. As such, it is used in the majority of parallel computing programs. In this
lab, we explore and practice the basic principles and commands of MPI to further recognize when and
how parallelization can occur.

MPI: the Message Passing Interface
At its most basic, the Message Passing Interface (MPI) provides functions for sending and receiving
messages between different processes. MPI was developed to provide a standard framework for
parallel computing in any language. It specifies a library of functions — the syntax and semantics of
message passing routines — that can be called from programming languages such as Fortran and C.

MPI can be thought of as “the assembly language of parallel computing,” because of this gen-
erality.1 MPI is important because it was the first portable and universally available standard for
programming parallel systems and continues to be the de facto standard today.

Note

Most modern personal computers now have multicore processors. Programs that are designed
for these multicore processors are “parallel” programs and are typically written using OpenMP
or POSIX threads. MPI, on the other hand, is designed for any general architecture.

Why MPI for Python?
In general, programming in parallel is more difficult than programming in serial because it requires
managing multiple processors and their interactions. Python, however, is an excellent language
for simplifying algorithm design because it allows for problem solving without too much detail.
Unfortunately, Python is not designed for high performance computing and is a notably slower
scripted language. It is best practice to prototype in Python and then to write production code in
fast compiled languages such as C or Fortran.

1Parallel Programming with MPI, by Peter S. Pacheco, pg. 7.

1

2 Lab 15. Parallel Programming with MPI

In this lab, we will explore the Python library mpi4py which retains most of the functionality
of C implementations of MPI and is a good learning tool. If you do not have the MPI library and
mpi4py installed on your machine, please refer to the Additional Material at the end of this lab.
There are three main differences to keep in mind between mpi4py and MPI in C:

• Python is array-based while C is not.

• mpi4py is object oriented but MPI in C is not.

• mpi4py supports two methods of communication to implement each of the basic MPI com-
mands. They are the upper and lower case commands (e.g. Bcast(...) and bcast(...)). The
uppercase implementations use traditional MPI datatypes while the lower case use Python’s
pickling method. Pickling offers extra convenience to using mpi4py, but the traditional method
is faster. In these labs, we will only use the uppercase functions.

Using MPI
We will start with a Hello World program.

1 #hello.py
2 from mpi4py import MPI

4 COMM = MPI.COMM_WORLD
RANK = COMM.Get_rank()

6

print("Hello world! I'm process number {}.".format(RANK))

hello.py

Save this program as hello.py and execute it from the command line as follows:

$ mpiexec -n 5 python hello.py

The program should output something like this:

Hello world! I'm process number 3.
Hello world! I'm process number 2.
Hello world! I'm process number 0.
Hello world! I'm process number 4.
Hello world! I'm process number 1.

Notice that when you try this on your own, the lines will not necessarily print in order. This is
because there will be five separate processes running autonomously, and we cannot know beforehand
which one will execute its print() statement first.

Achtung!

It is usually bad practice to perform I/O (e.g., call print()) from any process besides the root

3

process (rank 0), though it can be a useful tool for debugging.

How does this program work? First, the mpiexec program is launched. This is the program
which starts MPI, a wrapper around whatever program you to pass into it. The -n 5 option specifies
the desired number of processes. In our case, 5 processes are run, with each one being an instance of
the program “python”. To each of the 5 instances of python, we pass the argument hello.py which
is the name of our program’s text file, located in the current directory. Each of the five instances of
python then opens the hello.py file and runs the same program. The difference in each process’s
execution environment is that the processes are given different ranks in the communicator. Because
of this, each process prints a different number when it executes.

MPI and Python combine to make succinct source code. In the above program, the line
from mpi4py import MPI loads the MPI module from the mpi4py package. The line COMM = MPI
.COMM_WORLD accesses a static communicator object, which represents a group of processes which
can communicate with each other via MPI commands. The next line, RANK = COMM.Get_rank(),
accesses the processes rank number. A rank is the process’s unique ID within a communicator, and
they are essential to learning about other processes. When the program mpiexec is first executed,
it creates a global communicator and stores it in the variable MPI.COMM_WORLD. One of the main
purposes of this communicator is to give each of the five processes a unique identifier, or rank. When
each process calls COMM.Get_rank(), the communicator returns the rank of that process. RANK points
to a local variable, which is unique for every calling process because each process has its own separate
copy of local variables. This gives us a way to distinguish different processes while writing all of the
source code for the five processes in a single file.

Here is the syntax for Get_size() and Get_rank(), where Comm is a communicator object:

Comm.Get_size() Returns the number of processes in the communicator. It will return the same
number to every process. Parameters:

Return value - the number of processes in the communicator

Return type - integer

Example:

1 #Get_size_example.py
2 from mpi4py import MPI
SIZE = MPI.COMM_WORLD.Get_size()

4 print("The number of processes is {}.".format(SIZE))

Get_size_example.py

Comm.Get_rank() Determines the rank of the calling process in the communicator. Parameters:

Return value - rank of the calling process in the communicator

Return type - integer

Example:

1 #Get_rank_example.py
2 from mpi4py import MPI
RANK = MPI.COMM_WORLD.Get_rank()

4 print("My rank is {}.".format(RANK))

4 Lab 15. Parallel Programming with MPI

Get_rank_example.py

The Communicator
A communicator is a logical unit that defines which processes are allowed to send and receive mes-
sages. In most of our programs we will only deal with the MPI.COMM_WORLD communicator, which
contains all of the running processes. In more advanced MPI programs, you can create custom com-
municators to group only a small subset of the processes together. This allows processes to be part
of multiple communicators at any given time. By organizing processes this way, MPI can physically
rearrange which processes are assigned to which CPUs and optimize your program for speed. Note
that within two different communicators, the same process will most likely have a different rank.

Note that one of the main differences between mpi4py and MPI in C or Fortran, besides being
array-based, is that mpi4py is largely object oriented. Because of this, there are some minor changes
between the mpi4py implementation of MPI and the official MPI specification.

For instance, the MPI Communicator in mpi4py is a Python class and MPI functions like
Get_size() or Get_rank() are instance methods of the communicator class. Throughout these MPI
labs, you will see functions like Get_rank() presented as Comm.Get_rank() where it is implied that
Comm is a communicator object.

Separate Codes in One File
When an MPI program is run, each process receives the same code. However, each process is assigned
a different rank, allowing us to specify separate behaviors for each process. In the following code,
the three processes perform different operations on the same pair of numbers.

1 #separateCode.py
2 from mpi4py import MPI
RANK = MPI.COMM_WORLD.Get_rank()

4

a = 2
6 b = 3
if RANK == 0:

8 print a + b
elif RANK == 1:

10 print a*b
elif RANK == 2:

12 print max(a, b)

separateCode.py

Problem 1. Write a program in which processes with an even rank print “Hello” and pro-
cess with an odd rank print “Goodbye.” Print the process number along with the “Hello” or
“Goodbye” (for example, “Goodbye from process 3”).

5

Message Passing between Processes
Let us begin by demonstrating a program designed for two processes. One will draw a random number
and then send it to the other. We will do this using the routines Comm.Send() and Comm.Recv().

1 #passValue.py
2 import numpy as np
from mpi4py import MPI

4

COMM = MPI.COMM_WORLD
6 RANK = COMM.Get_rank()

8 if RANK == 1: # This process chooses and sends a random value
num_buffer = np.random.rand(1)

10 print("Process 1: Sending: {} to process 0.".format(num_buffer))
COMM.Send(num_buffer, dest=0)

12 print("Process 1: Message sent.")
if RANK == 0: # This process recieves a value from process 1

14 num_buffer = np.zeros(1)
print("Process 0: Waiting for the message... current num_buffer={}.".format←↩

(num_buffer))
16 COMM.Recv(num_buffer, source=1)

print("Process 0: Message recieved! num_buffer={}.".format(num_buffer))

passValue.py

To illustrate simple message passing, we have one process choose a random number and then
pass it to the other. Inside the receiving process, we have it print out the value of the variable
num_buffer before it calls Recv() to prove that it really is receiving the variable through the message
passing interface.

Here is the syntax for Send() and Recv(), where Comm is a communicator object:

Comm.Send(buf, dest=0, tag=0) Performs a basic send from one process to another. Parame-
ters:

buf (array-like) : data to send

dest (integer) : rank of destination

tag (integer) : message tag

The buf object is not as simple as it appears. It must contain a pointer to a Numpy array.
It cannot, for example, simply pass a string. The string would have to be packaged inside an array
first.

Comm.Recv(buf, source=0, tag=0, Status status=None) Basic point-to-point receive of data.
Parameters:

buf (array-like) : initial address of receive buffer (choose receipt location)

source (integer) : rank of source

tag (integer) : message tag

status (Status) : status of object

6 Lab 15. Parallel Programming with MPI

Example:

1 #Send_example.py
2 from mpi4py import MPI
import numpy as np

4

RANK = MPI.COMM_WORLD.Get_rank()
6

a = np.zeros(1, dtype=int) # This must be an array.
8 if RANK == 0:

a[0] = 10110100
10 MPI.COMM_WORLD.Send(a, dest=1)

elif RANK == 1:
12 MPI.COMM_WORLD.Recv(a, source=0)

print(a[0])

Send_example.py

Problem 2. Write a script that runs on two processes and passes an n by 1 vector of ran-
dom values from one process to the other. Write it so that the user passes the value of n in
as a command-line argument. The following code demonstrates how to access command-line
arguments.

from sys import argv

Pass in the first command line argument as n.
n = int(argv[1])

Note

Send() and Recv() are referred to as blocking functions. That is, if a process calls Recv(), it
will sit idle until it has received a message from a corresponding Send() before it will proceed.
(However, in Python the process that calls Comm.Send will not necessarily block until the
message is received, though in C, MPI_Send does block) There are corresponding non-blocking
functions Isend() and Irecv() (The I stands for immediate). In essence, Irecv() will return
immediately. If a process calls Irecv() and doesn’t find a message ready to be picked up, it
will indicate to the system that it is expecting a message, proceed beyond the Irecv() to do
other useful work, and then check back later to see if the message has arrived. This can be used
to dramatically improve performance.

Problem 3. Write a script in which the process with rank i sends a random value to the
process with rank i + 1 in the global communicator. The process with the highest rank will

7

send its random value to the root process. Notice that we are communicating in a ring. For
communication, only use Send() and Recv(). The program should work for any number of
processes. Does the order in which Send() and Recv() are called matter?

Note

When calling Comm.Recv, you can allow the calling process to accept a message from any
process that happened to be sending to the receiving process. This is done by setting source
to a predefined MPI constant, source=ANY_SOURCE (note that you would first need to import
this with from mpi4py.MPI import ANY_SOURCE or use the syntax source=MPI.ANY_SOURCE).

Application: Monte Carlo Integration
Monte Carlo integration uses random sampling to approximate volumes (whereas most numerical
integration methods employ some sort of regular grid). It is a useful technique, especially when
working with higher-dimensional integrals. It is also well-suited to parallelization because it involves a
large number of independent operations. In fact, Monte Carlo algorithms can be made “embarassingly
parallel” — the processes don’t need to communicate with one another during execution, simply
reporting results to the root process upon completion.

In a simple example, the following code calculates the value of π by sampling random points
inside the square [−1, 1] × [−1, 1]. Since the volume of the unit circle is π and the volume of the
square is 4, the probability of a given point landing inside the unit circle is π/4, so the proportion of
samples that fall within the unit circle should also be π/4. The program samples N = 2000 points,
determines which samples are within the unit circle (say M are), and estimates π ≈ 4M/N .

1 # pi.py
2 import numpy as np
from scipy import linalg as la

4

6 # Get 2000 random points in the 2-D domain [-1,1]x[-1,1].
points = np.random.uniform(-1, 1, (2,2000))

8

Determine how many points are within the unit circle.
10 lengths = la.norm(points, axis=0)

num_within = np.count_nonzero(lengths < 1)
12

Estimate the circle's area.
14 print(4 * (num_within / 2000))

pi.py

$ python pi.py
3.166

8 Lab 15. Parallel Programming with MPI

Problem 4. The n-dimensional open unit ball is the set Un = {x ∈ Rn | ‖x‖2 < 1}. Write
a script that accepts integers n and N on the command line. Estimate the volume of Un
by drawing N points over the n-dimensional domain [−1, 1] × [−1, 1] × · · · × [−1, 1] on each
available process except the root process (for a total of (r− 1)N draws, where r is the number
of processes). Have the root process print the volume estimate.
(Hint: the volume of [−1, 1]× [−1, 1]× · · · × [−1, 1] is 2n.)

When n = 2, this is the same experiment outlined above so your function should return an
approximation of π. The volume of the U3 is 4

3π ≈ 4.18879, and the volume of U4 is π
2

2 ≈ 4.9348.
Try increasing the number of sample points N or processes r to see if your estimates improve.

Note

Good parallel code should pass as little data as possible between processes. Sending large or
frequent messages requires a level of synchronization and causes some processes to pause as they
wait to receive or send messages, negating the advantages of parallelism. It is also important
to divide work evenly between simultaneous processes, as a program can only be as fast as its
slowest process. This is called load balancing, and can be difficult in more complex algorithms.

Additional Material
Installing mpi4py

1. For All Systems: The easiest installation is using conda install mpi4py. You may also run
pip install mpi4py

	Parallel Programming with MPI

