
16 Metropolis Algorithm

Lab Objective: Understand the basic principles of the Metropolis algorithm and apply these ideas
to the Ising Model.

The Metropolis Algorithm
Sampling from a given probability distribution is an important task in many different applications
found throughout the sciences. When these distributions are complicated, as is often the case when
modeling real-world problems, direct sampling methods can become difficult, as they might involve
computing high-dimensional integrals. The Metropolis algorithm is an effective method to sample
from many distributions, requiring only that we be able to evaluate the probability density function
up to a constant of proportionality. In particular, the Metropolis algorithm does not require us
to compute difficult high-dimensional integrals, such as those that are found in the denominator of
Bayesian posterior distributions.

The Metropolis algorithm is an MCMC sampling method which generates a sequence of random
variables, similar to Gibbs sampling. These random variables form a Markov Chain whose invariant
distribution is equal to the distribution from which we wish to sample. Suppose that h : Rn → R is
the probability density function of distribution, and suppose that f(θ) = c · h(θ) for some nonzero
constant c (in practice, we assume that f is an easy function to evaluate, while h is difficult). Let
Q : Rn ×Rn → R be a symmetric proposal function (so that Q(·,y) is a probability density function
for all y ∈ Rn, and Q(x,y) = Q(y,x) for all x,y ∈ Rn) and let A : Rn × Rn → R be an acceptance
function defined by

A(x,y) = min

(
1,
f(x)

f(y)

)
.

We can combine these functions in such a way so as to sample from the aforementioned Markov
Chain by following Algorithm 16.1. The Metropolis algorithm can be interpreted as follows: given
our current state y, we propose a new state according to the distribution Q(·,y). We then accept or
reject it according to A. We continue by repeating the process. So long as Q defines an irreducible,
aperiodic, and non-null recurrent Markov chain, we will have a Markov chain whose unique invariant
distribution will have density h. Furthermore, given any initial state, the chain will converge to this
invariant distribution. Note that for numerical reasons, it is often wise to make calculations of the
acceptance functions in log space:

logA(x,y) = min(0, log f(x)− log f(y)).

1

2 Lab 16. Metropolis Algorithm

Algorithm 16.1 Metropolis Algorithm
1: procedure Metropolis Algorithm
2: Choose initial point x0.
3: for t = 1, 2, . . . do
4: Draw x′ ∼ Q(·,xt−1)

5: Draw a ∼ unif(0, 1)

6: if a ≤ A(x′,xt−1) then
7: xt = x′

8: else
9: xt = xt−1

10: Return x1,x2,x3, . . .

Let’s apply the Metropolis algorithm to a simple example of Bayesian analysis. Consider
the problem of computing the posterior distribution over the mean µ and variance σ2 of a nor-
mal distribution for which we have N data points y1, . . . , yN . For concreteness, we use the data in
examscores.csv and we assume the prior distributions

µ ∼ N(µ0 = 80, σ2
0 = 16)

σ2 ∼ IG(α = 3, β = 50).

In this situation, we wish to sample from the posterior distribution

p(µ, σ2 | y1, . . . , yN) =
p(µ)p(σ2)

∏N
i=1N(yi |µ, σ2)∫∞

−∞
∫∞

0
p(µ)p(σ2)

∏N
i=1N(yi |µ, σ2) dσ2dµ

.

However, we can conveniently calculate only the numerator of this expression. Since the denominator
is simply a constant with respect to µ and σ2, the numerator can serve as the function f in the
Metropolis algorithm, and the denominator can serve as the constant c. We choose our proposal
function to be based on a bivariate Normal distribution:

Q(x, y) = N(x | y, sI),

where I is the 2× 2 identity matrix and s is some positive scalar.

>>> import numpy as np
>>> from scipy import stats
>>> from math import sqrt, exp, log
>>> from matplotlib import pyplot as plt

Load in the data and initialize hyperparameters.
>>> scores = np.load("examscores.npy")
>>> alpha = 3
>>> beta = 50
>>> mu0 = 80
>>> sig20 = 16

Initialize the prior distributions.
>>> muprior = stats.norm(loc=mu0, scale=sqrt(sig20))
>>> sig2prior = stats.invgamma(alpha, scale=beta)

3

>>> def proposal(y, s):
... """The proposal function Q(x,y) = N(x|y,sI)."""
... return stats.multivariate_normal.rvs(mean=y, cov=s*np.eye(len(y)))
...
>>> def propLogDensity(x):
... """Calculate the log of the proportional density."""
... logprob = muprior.logpdf(x[0]) + sig2prior.logpdf(x[1])
... logprob += stats.norm.logpdf(scores, loc=x[0], scale=sqrt(x[1])).sum()
... return logprob # ^this is where the scores are used.
...
>>> def acceptance(x, y):
... return min(0, propLogDensity(x) - propLogDensity(y))
...

We are now ready to code up the Metropolis algorithm using these functions. We will keep track of
the samples generated by the algorithm, along with the proportional log densities of the samples and
the proportion of proposed samples that were accepted.

def metropolis(x0, s, n_samples):
"""Use the Metropolis algorithm to sample from posterior.

Parameters:
x0 ((2,) ndarray): The first entry is mu, the second entry is sigma^2.
s (float): The standard deviation parameter for the proposal function.
n_samples (int): The number of samples to generate.

Returns:
draws ((n_samples, 2) ndarray): The MCMC samples.
logprobs ((n_samples,) ndarray): The log density of the samples.
accept_rate (float): The proportion of accepted proposed samples.

"""
accept_counter = 0
draws = np.empty((n_samples,2))
logprob = np.empty(n_samples)
x = x0.copy()
for i in range(n_samples):

xprime = proposal(x,s)
a = np.random.uniform()
if log(a) <= acceptance(xprime, x):

accept_counter += 1
x = xprime

draws[i] = x
logprob[i] = propLogDensity(x)

return draws, logprob, accept_counter/n_samples

Now let’s sample from the posterior. We take initial guesses µ = 40 and σ2 = 10 and set s = 20.

Draw 10,000 samples.

4 Lab 16. Metropolis Algorithm

>>> draws, lprobs, rate = metropolis(np.array([40., 10.]), 20., 10000)
>>> print("Acceptance Rate:", rate)
Acceptance Rate: 0.3531

We can evaluate the quality of our results by plotting the log probabilities, the µ samples, the
σ2 samples, and kernel density estimators for the marginal posterior distributions of µ and σ2.

Plot the first 500 log probabilities.
>>> plt.plot(lprobs[:500])
>>> plt.show()

>>> fig, axes = plt.subplots(2, 2)
Plot the mu samples.
>>> axes[0,0].plot(draws[:,0])
>>> axes[0,0].set_title(r"μ samples")

Plot the sigma2 samples.
>>> axes[1,0].plot(draws[:,1])
>>> axes[1,0].set_title(r"σ^2 samples")

Build and plot KDE for posterior mu.
>>> mu_kernel = stats.gaussian_kde(draws[50:,0])
>>> x_min = draws[50:,0].min() - 1
>>> x_max = draws[50:,0].max() + 1
>>> x = np.linspace(x_min, x_max, 200)
>>> axes[0,1].plot(x, mu_kernel(x))
>>> axes[0,1].set_title(r"μ posterior")

Build and plot KDE for posterior sigma2.
>>> sig_kernel = stats.gaussian_kde(draws[50:,1])
>>> x_min, x_max = 20, 200
>>> x = np.linspace(x_min, x_max, 200)
>>> axes[1,1].plot(x, sig_kernel(x))
>>> axes[1,1].set_title(r"σ^2 posterior")
>>> plt.show()

The results should be similar to Figures 16.2 and 16.1.

5

0 100 200 300 400 500

1750

1500

1250

1000

750

500

250

Figure 16.1: Log densities of the first 500 Metropolis samples.

0 2000 4000 6000 8000 10000
40

50

60

70

80

90

 samples

80 82 84 86 88 90 92
0.00

0.05

0.10

0.15

0.20

0.25

 posterior

0 2000 4000 6000 8000 10000

20

40

60

80

100

120

2 samples

25 50 75 100 125 150 175 200
0.000

0.005

0.010

0.015

0.020

0.025

2 posterior

Figure 16.2: Metropolis samples and KDEs for the marginal posterior distribution of µ (top row)
and σ2 (bottom row).

6 Lab 16. Metropolis Algorithm

The Ising Model
In statistical mechanics, the Ising model describes how atoms interact in ferromagnetic material.
Assume we have some lattice Λ of sites. We say i ∼ j if i and j are adjacent sites. Each site i in
our lattice is assigned an associated spin σi ∈ {±1}. A state in our Ising model is a particular spin
configuration σ = (σk)k∈Λ. If L = |Λ|, then there are 2L possible states in our model. If L is large,
the state space becomes huge, which is why MCMC sampling methods (in particular the Metropolis
algorithm) are so useful in calculating model estimations.

With any spin configuration σ, there is an associated energy

H(σ) = −J
∑
i∼j

σiσj

where J > 0 for ferromagnetic materials, and J < 0 for antiferromagnetic materials. Throughout
this lab, we will assume J = 1, leaving the energy equation to be H(σ) = −

∑
i∼j σiσj where the

interaction from each pair is added only once.
We will consider a lattice that is a 100 × 100 square grid. The adjacent sites for a given site

are those directly above, below, to the left, and to the right of the site, so to speak. For sites on the
edge of the grid, we assume it wraps around. In other words, a site at the farthest left side of the
grid is adjacent to the corresponding site on the farthest right side. Thus, a single spin configuration
can be represented as a 100× 100 array, with entries of ±1.

Problem 1. Write a function that accepts an integer n and returns a random spin configuration
for an n× n lattice (as an n× n NumPy array of 1s and −1s).
(Hint: np.random.binomial() or scipy.stats.bernoulli() may be helpful.)

Test your function with n = 100, plotting the spin configuration via plt.imshow() with
cmap="gray". It should look fairly random, as in Figure 16.3.

Figure 16.3: Spin configuration from random initialization.

7

Problem 2. Write a function that accepts a spin configuration σ for a lattice as a NumPy
array. Compute the energy H(σ) of the spin configuration. Be careful to not double count site
pair interactions!
(Hint: np.roll() may be helpful.)

Different spin configurations occur with different probabilities, depending on the energy of the
spin configuration and β > 0, a quantity inversely proportional to the temperature. More specifically,
for a given β, we have

Pβ(σ) =
e−βH(σ)

Zβ

where Zβ =
∑
σ e
−βH(σ). Because there are 2100·100 = 210000 possible spin configurations for our

particular lattice, computing this sum is infeasible. However, the numerator is quite simple, provided
we can efficiently compute the energy H(σ) of a spin configuration. Thus the ratio of the probability
densities of two spin configurations is simple:

Pβ(σ∗)

Pβ(σ)
=
e−βH(σ∗)

e−βH(σ)
= eβ(H(σ)−H(σ∗))

The simplicity of this ratio should lead us to think that a Metropolis algorithm might be an
appropriate way by which to sample from the spin configuration probability distribution, in which
case the acceptance probability would be

A(σ∗, σ) =

{
1 if H(σ∗) < H(σ)

eβ(H(σ)−H(σ∗)) otherwise.
(16.1)

By choosing our transition matrix Q cleverly, we can also make it easy to compute the energy for
any proposed spin configuration. We restrict our possible proposals to only those spin configurations
in which we have flipped the spin at exactly one lattice site, i.e. we choose a lattice site i and flip its
spin. Thus, there are only L possible proposal spin configurations σ∗ given σ, each being proposed
with probability 1

L , and such that σ∗j = σj for all j 6= i, and σ∗i = −σi. Note that we would never
actually write out this matrix (it would be 210000× 210000). Computing the proposed site’s energy is
simple: if the spin flip site is i, then we have

H(σ∗) = H(σ) + 2
∑
j:j∼i

σiσj . (16.2)

Problem 3. Write a function that accepts an integer n and chooses a pair of indices (i, j)

where 0 ≤ i, j ≤ n− 1. Each possible pair should have an equal probability 1
n2 of being chosen.

Problem 4. Write a function that accepts a spin configuration σ, its energy H(σ), and integer
indices i and j. Use (16.2) to compute the energy of the new spin configuration σ∗, which is
σ but with the spin flipped at the (i, j)th entry of the corresponding lattice. Do not explicitly
construct the new lattice for σ∗.

8 Lab 16. Metropolis Algorithm

Problem 5. Write a function that accepts a float β and spin configuration energies H(σ) and
H(σ∗). Using (16.1), calculate whether or not the new spin configuration σ∗ should be accepted
(return True or False). Consider doing the calculations in log space.

To track the convergence of the Markov chain, we would like to look at the probabilities of
each sample at each time. However, this would require us to compute the denominator Zβ , which
is generally the reason we have to use a Metropolis algorithm to begin with. We can get away with
examining only −βH(σ). We should see this value increase as the algorithm proceeds, and it should
converge once we are sampling from the correct distribution. Note that we don’t expect these values
to converge to a specific value, but rather to a restricted range of values.

Problem 6. Write a function that accepts a float β > 0 and integers n, n_samples, and
burn_in. Initialize an n × n lattice for a spin configuration σ using Problem 1. Use the
Metropolis algorithm to (potentially) update the lattice burn_in times.

1. Use Problem 3 to choose a site for possibly flipping the spin, thus defining a potential
new configuration σ∗.

2. Use Problem 4 to calculate the energy H(σ∗) of the proposed configuration.

3. Use Problem 5 to accept or reject the proposed configuration. If it is accepted, set σ = σ∗

by flipping the spin at the indicated site.

4. Track −βH(σ) at each iteration (independent of acceptance).

After the burn-in period, continue the iteration n_samples times, also recording every 100th
sample (to prevent memory failure). Return the samples, the sequence of weighted energies
−βH(σ), and the acceptance rate.

Test your sampler on a 100× 100 grid with 200000 total iterations, with n_samples large
enough so that you will keep 50 samples, for β = 0.2, 0.4, 1. Plot the proportional log proba-
bilities, as well as a late sample from each test. How does the ferromagnetic material behave
differently with differing temperatures? Recall that β is an inverse function of temperature.
You should see more structure with lower temperature, as illustrated in Figure 16.4.

9

0 25000 50000 75000 100000 125000 150000 175000 200000

0

200

400

600

800

(a) Proportional log probs when β = 0.2. (b) Spin configuration sample when β = 0.2.

0 25000 50000 75000 100000 125000 150000 175000 200000

0

1000

2000

3000

4000

(c) Proportional log probs when β = 0.4. (d) Spin configuration sample when β = 0.4.

0 25000 50000 75000 100000 125000 150000 175000 200000

0

2500

5000

7500

10000

12500

15000

17500

(e) Proportional log probs when β = 1. (f) Spin configuration sample when β = 1.

Figure 16.4

	Metropolis Algorithm

