
24 ARMA Models

Lab Objective: Fit and forecast ARMA models.

An ARMA(p, q) model is a covariance-stationary discrete stochastic process {zt} that satisfies

zt − µ =

(
p∑

i=1

φi(zt−i − µ)

)
+ at +

 q∑
j=1

θjat−j

 (24.1)

where µ = E[zt] and at are identically-distributed Gaussian variables with variance σ2
a. We note that

the assumption that {zt} is covariance-stationary is eqivalent to the condition that the roots of the
polynomial in B

φ(B) = 1−
p∑

i=1

φiB
i (24.2)

lie outside of the unit circle.

The first sum on the right hand side of 24.1 is interpreted as an “autoregression” since it is a
linear combination of previously observed values of zt. The second sum is interpreted as a “moving
average” of the current and previous error terms; though formally similar to an average, note that
the θj need not be positive nor sum to one. We say that an ARMA(p, q) model is an “autoregressive
moving-average model of order p, q”.

Likelihood via Kalman Filter
In a general ARMA(p, q) model, the likelihood is a function of the unobserved error terms at and
is not trivial to compute. Simple approximations can be made, but these may be inaccurate under
certain circumstances. Explicit derivations of the likelihood are possible, but tedious. However, when
the ARMA model is placed in state-space, the Kalman filter affords a straightforward, recursive way
to compute the likelihood.

We demonstrate a state-space representation of an ARMA(p, q) model. If r = max(p, q + 1),

1

2 Lab 24. ARMA Models

we write

F =

φ1 φ2 · · · φr−1 φr
1 0 · · · 0 0

0 1 · · · 0 0
...

... · · ·
...

...
0 0 · · · 1 0

 (24.3)

H =
[
1 θ1 θ2 · · · θr−1

]
(24.4)

Q =

σ2
a 0 · · · 0

0 0 · · · 0
...

... · · ·
...

0 0 · · · 0

 (24.5)

wt ∼ MVN(0, Q), (24.6)

where φi = 0 for i > p, and θj = 0 for j > q. Then the linear stochastic dynamical system

xt+1 = Fxt + wt (24.7)
zt = Hxt + µ (24.8)

describes the same process as the original ARMA model. Note that the equation for zt involves a
deterministic component, namely µ. The Kalman filter theory developed in the previous lab, however,
assumed no deterministic component for the observations zt, so you should subtract off the mean µ
from the time series observations zt when using them in the predict and update steps.

Let Θ = {φi, θj , µ, σ2
a} be the set of parameters for an ARMA(p, q) model. Suppose we have a

set of observations z1, z2, . . . , zn, denoted collectively by {zt}. Using the chain rule, we can factorize
the likelihood of the model under these data as

p({zt}|Θ) =

n∏
t=1

p(zt|zt−1, . . . , z1,Θ) (24.9)

Since we have assumed that the error terms are Gaussian, each conditional distribution in 24.9 is
also Gaussian, and is completely characterized by its mean and variance. But these two quantities
are easily found via the Kalman filter, namely

mean Hx̂t|t−1 + µ (24.10)

variance HPt|t−1H
T (24.11)

where x̂t|t−1 and Pt|t−1 are found during the Predict step. The likelihood becomes

p({zt}|Θ) =

n∏
t=1

N(zt; Hx̂t|t−1 + µ, HPt|t−1H
T) (24.12)

We begin the recursion by letting

x̂1|0 = E(x1) = 0 (24.13)

vec(P1|0) = E
[
(x1 − Ex1)(x1 − Ex1)T

]
= [Ir2 − (F ⊗ F)]

−1 · vec(Q) (24.14)

where vec flattens a matrix and ⊗ is the Kronecker product (numpy.kron).

3

Problem 1. Write a function that computes the log-likelihood of an ARMA(p, q) model, given
a time series zt.

def arma_likelihood(time_series, phis=array([]), thetas=array([]), mu=0.,
sigma=1.):

"""
Return the log-likelihood of the ARMA model parameters, given the time
series.

Parameters

time_series : ndarray of shape (n,1)

The time series in question, z_t
phis : ndarray of shape (p,)

The phi parameters
thetas : ndarray of shape (q,)

The theta parameters
mu : float

The parameter mu
sigma : float

The standard deviation of the a_t random variables

Returns

log_likelihood : float

The log-likelihood of the model
"""
pass

When done correctly, your function should match the following output:

>>> arma_likelihood(time_series_a, phis=array([0.9]), mu=17., sigma=0.4)
-77.6035

Identification and Fitting
When modeling a data set with an ARMA(p, q) model, the order of the model must be determined,
as well as the other parameters. The process of choosing p and q is called model identification.
Different methods have been used; for example, Box and Jenkins propose a methodology that involves
examining the estimated autocorrelation and partial-autocorrelation functions of the data. We will
choose p and q that minimize the Akaike information criterion with a correction (AICc), given by

2k

(
1 +

k + 1

n− k

)
− 2`(Θ) (24.15)

4 Lab 24. ARMA Models

where n is the sample size, k = p+ q + 2 is the number of parameters in the model, and `(Θ) is the
maximum likelihood for the model class.

To compute the maximum likelihood for a model class, we need to optimize 24.12 over the space
of parameters Θ. We can do so by using the function from Problem 1 along with some optimization
routine, such as scipy.optimize.fmin.

Problem 2. Write a function that accepts a time series {zt} and returns the parameters of
the model that minimize the AICc, given the constraint that p ≤ 3, q ≤ 3.

def arma_fit(time_series):
"""
Return the ARMA model that minimizes AICc for the given time series,
subject to p,q <= 3.

Parameters

time_series : ndarray of shape (n,1)

The time series in question, z_t

Returns

phis : ndarray of shape (p,)

The phi parameters
thetas : ndarray of shape (q,)

The theta parameters
mu : float

The parameter mu
sigma : float

The standard deviation of the a_t random variables
"""
pass

Here’s a hint for performing the optimization at each step, using
scipy.optimize.fmin.

>>> # assume p, q, and time_series are defined
>>> def f(x): # x contains the phis, thetas, mu, and sigma
>>> return -1*arma_likelihood(time_series, phis=x[:p], thetas=x[p:p+q←↩

], mu=x[-2],sigma=x[-1])
>>> # create initial point
>>> x0 = np.zeros(p+q+2)
>>> x0[-2] = time_series.mean()
>>> x0[-1] = time_series.std()
>>> sol = op.fmin(f,x0,maxiter=10000, maxfun=10000)

5

The variable sol is a flat array of length p+ q+ 2, whose first p entries give the optimal values
for the φ polynomial, the next q entries give the optimal values for the θ polynomial, and the
last two entries give the optimal values for µ and σa, respectively. Notice that we defined a
wrapper function f to feed into the scipy.optimize.fmin routine. This wrapper function
returns the negative of the log likelihood, since the optimization routine we are calling finds the
minimum of a function, and we are interested in the maximum of the log likelihood.

Your code should produce the following output, where the input data is found in time_series_a.txt
(it may take a minute or so to run):

>>> arma_fit(time_series_a)
(array([0.9087]), array([-0.5759]), 17.0652..., 0.3125...)

Problem 3. Use your solution from Problem 2 to fit models to the data found in time_series_a.txt,
time_series_b.txt, time_series_c.txt. Report the fitted parameters p, q,Θ.

Forecasting
The Kalman filter provides a straightforward way to predict future states, by giving the mean and
variance of the conditional distribution of future observations.

zt+k|z1, · · · , zt ∼ N(zt+k; Hx̂t+k|t + µ, HPt+k|tH
T) (24.16)

Recall the relations

x̂t+k|t = Fx̂t+k−1|t (24.17)

Pt+k|t = FPt+k−1|tF
T +Q (24.18)

Problem 4. Forecast each data set ahead 20 intervals using the parameters discovered from
Problem 3, and plot their expected values along with the original data set. Also plot the ex-
pected values plus and minus σt+k, and plus and minus 2σt+k to demonstrate credible intervals.

Note that we need the values of x̂n|n and Pn|n to get started. As usual, these estimates
can be found using the Predict and Update recursions. Initialize x̂1|0 and P1|0 as before, run
the recursions until you obtain x̂n|n and Pn|n, and then calculate the future estimates x̂t+k|t
and Pt+k|t. Use these to calculate the expected value and standard deviation for forecasted

values (given by Hx̂t+k|t + µ and
√
HPt+k|tHT , respectively).

def arma_forecast(time_series, phis=array([]), thetas=array([]), mu=0.,
sigma=1., future_periods=20):

"""
Return forecasts for a time series modeled with the given ARMA model.

Parameters

6 Lab 24. ARMA Models

time_series : ndarray of shape (n,1)
The time series in question, z_t

phis : ndarray of shape (p,)
The phi parameters

thetas : ndarray of shape (q,)
The theta parameters

mu : float
The parameter mu

sigma : float
The standard deviation of the a_t random variables

future_periods : int
The number of future periods to return

Returns

e_vals : ndarray of shape (future_periods,)

The expected values of z for times n+1, ..., n+future_periods
sigs : ndarray of shape (future_periods,)

The standard deviations of z for times n+1, ..., n+future_periods
"""
pass

You should get the following result:

>>> arma_forecast(time_series_a, phis, thetas, mu, sigma, 4)
(array([17.3762, 17.3478, 17.322 , 17.2986]),
array([0.3125, 0.3294, 0.3427, 0.3533]))

Your results (when using twenty future periods) should match those in Figure 24.1.

7

Figure 24.1: Three time series along with expected value (green), ±σa credible interval (yellow), and
±2σa credible interval (cyan) of twenty forecasted values.

	ARMA Models

