
1 Weight Change and
Predator-Prey Models

Lab Objective: We use IVP methods to study two dynamical systems. The first system is a weight
change model based on thermodynamics and kinematics. The second model looks at the relationship
between a predator and its prey.

ODE solvers
Inital Value Problems, or IVPs, are a system of one or more ordinary differential equations (ODEs)
with initial values. In more basic math courses, these problems could be solved by hand, but in real
life that is very much not the case. For more complicated IVPs, numerical solvers are required. We
will introduce the basic ode method in scipy.integrate and work through an example so you can
understand how ODE solvers work to solve IVP problems. At the end of this lab you will see a
similar method, odeint, in the same package.

The ode method can use many numerical approximations to solve. We will use the dopri5
method, which runs the RK4 (Runge-Kutta method of order 4) iterative ODE solver.

Below you will see sample code for solving a differential equation.

Predator-Prey Model
One common problem to solve is the predator-prey model which involves two species, where one
species (the prey) is the food source of the other species (the predator). For this example we will
consider the predator to be wolves and the prey to be rabbits in Yellowstone National Park. Let
t represent time, r(t) represents the rabbit population at time t, and w(t) represents the wolf
population at time t.

We need to make a few assumptions in this model:

• In the absence of wolves,the rabbit population grows at a positive rate proportional to the
current population. Thus dr/dt = ar(t) when w(t) = 0, where a > 0.

• In the absence of rabbits, the wolves die out. Thusdw/dt = −cw(t) when r(t) = 0, where c > 0.

• The number of encounters between rabbits and wolves is proportional to the product of their
populations. Encounters encourage the growth of the wolf population and a decrease in the
rabbit population. The growth rate of rabbits is decreased by some −αr(t)w(t) and the growth
rate of wolves is increased by γr(t)w(t)

1



2 Lab 1. Weight change and Predator-Prey Models

This leads us to the following system of ODEs (for simplicity we will drop off the dependence
on t:

dr/dt = ar − αrw = r(a− αw)

dw/dt = −cw + γrw = w(−c+ γr)
(1.1)

Now we will run through this example. Start with the necessary imports.

from scipy.integrate import ode
import numpy as np
import matplotlib.pyplot as plt

Establish our initial conditions

r0 = 5 # Initial rabbit population
w0 = 3 # Initial wolf population

# Define rabbit growth paramters
a = 1.0
alpha = 0.5

# Define wolf growth parameters
c = 0.75
gamma = 0.25

t_f = 20 # How long we want to run the model
y0 = [r0, w0]

# Initialize time and output arrays needed for the ode solver
t = np.linspace(0, t_f, 5*t_f)
y = np.zeros((len(t), len(y0)))
y[0,:] = y0

Problem 1. Finish the following code box. You will create the function that takes as input
the time, current r and w values, and all growth parameters.

def predator_prey(t, y, a, alpha, c, gamma):
'''
Parameters:
--------------
t: time variable.
y: a tuple of length len(y0) representing current wolf and rabbit ←↩

populations at time t.
a, alpha, c, gamma: growth parameters. These are keyword arguments and←↩

can be of any length.

Return:
--------
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Return a tuple corresponding to the Predator-Prey model.
'''
pass

We need to set up our ODE solver to use the RK4 numerical integrator and give it the correct
initial values. Also note that the predator_prey function above must be turned into a lambda
function.

predator_prey_ode = lambda t, y:predator_prey(t, y, a, alpha, c, gamma)
p_p_solver = ode(predator_prey_ode).set_integrator('dopri5') # set the ←↩

numerical integrator
p_p_solver.set_initial_value(y0, 0) # Set the initial values. The second ←↩

argument is the initial time, which we set to 0

The ode solver has an integrate method which solves one time step at a time. Iterate through
the time array and update the y values at each step.

for j in range(1, len(t)):
y[j,:] = p_p_solver.integrate((t[j]))

The following code can be used to graph the resulting system. See Figure 1.1.

plt.plot(t, y[:,0], label='rabbit')
plt.plot(t, y[:,1], label='wolf')
plt.legend()
plt.xlabel('Time')
plt.ylabel('Population')
plt.show()

A weight change model
The main idea behind weight change is simple. If a person’s energy intake is more than their energy
expended, then they gain weight. If their intake is less, then they lose weight. Let the energy balance
EB be the difference between energy intake EI and energy expenditure EE, so that

EB = EI − EE. (1.2)

When the energy intake is greater than the energy expended, the balance is positive and weight is
gained. Similarly, the balance is negative and weight is lost if the energy intake is less than the
energy expended.

Body weight at time t is the sum of the weight of fat and lean tissue; that is, BW (t) =

F (t) + L(t). These quantities can be described by the compartmental model

ρF
dF (t)

dt
= (1− p(t))EB(t),

ρL
dL(t)

dt
= p(t)EB(t),

(1.3)
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Figure 1.1: The solution to the system found in 1.1

where p(t) and 1 − p(t) represent the proportion of the energy balance (EB(t)) that results in a
change in the quantity of lean or fatty tissue, respectively. Constants ρL and ρF represent the energy
density of lean and fatty tissue (about 1800 and 9400 kcal/kg).

Next we need to find expressions for p(t) and EB(t) in terms of L and F (the dependent
variables), PAL and EI (possibly varying parameters), and other constant parameters.

The proportion p(t) will vary with F and L; from Forbes’ Law 1 we have that

dF

dL
=

F

10.4
. (1.4)

Hence,

F

10.4
=
dF

dL
=
dF/dt

dL/dt
=

(1− p(t))EB(t)

ρF
p(t)EB(t)

ρL

=
ρL
ρF

1− p(t)
p(t)

.

Solving for p(t) gives Forbes’ equation

p(t) =
C

C + F (t)
where C = 10.4

ρL
ρF
. (1.5)

We will use two expressions for energy expenditure (EE). First, we have the formula

EE = PAL×RMR, (1.6)
1Lean body mass-body fat interrelationships in humans, Forbes, G.B.; Nutrition reviews, pgs 225-231, 1987.
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where PAL is your physical activity level and RMR your resting metabolic rate. Your resting
metabolic rate can be determined by using the Mifflin equation. This equation is an estimate based
on a population study and is widely used in the literature. It takes into account your gender, age
(A) in years, and height (H) in meters:

RMR =

{
9.99W + 625H + 5A+ 5 if male
9.99W + 625H + 5A− 161 if female.

(1.7)

Your physical activity level can be determined by using the table below.

1.40–1.69 People who are sedentary and do not exercise regularly, spend
most of their time sitting, standing, with little body displacement

1.70–1.99 People who are active, with frequent body displacement throughout
the day or who exercise frequently

2.00–2.40 People who engage regularly in strenuous work or exercise for
several hours each day

Table 1.1: This is a rough guide for physical activity level (PAL).

The second expression for energy expenditure comes from decomposing more precisely the
different ways that energy is expended:

EE = δBW︸ ︷︷ ︸
physical

activity

+βtefEI︸ ︷︷ ︸
thermic

effect of

eating

+βatEI + γFF + γLL+ ηF
dF

dt
+ ηL

dL

dt
+K︸ ︷︷ ︸

resting metabolic rate (RMR)

, (1.8)

where γF = 22 kcal/kg/d, γL = 3.2 kcal/kg/d, ηF = 180 kcal/kg, and ηL = 230 kcal/kg 2 3. Further,
we let βtef = 0.10 and βat = 0.14 denote the coefficients for the thermic effect of feeding and adaptive
thermogenesis, respectively. The parameter δ is the coefficient representing the amount of energy
expended from physical activity per kilogram of body mass. Notice that γL is significantly larger
than γF . This means that lean tissue metabolizes energy much faster than fatty tissue. As a result,
there are instances where one may want to increase their lean body mass through resistance training
so that they are better able to support a higher caloric intake without significant weight gain. Finally,
we remark that the constant K can be tuned to an individual’s body type directly through RMR
and fat measurement, and is assumed to remain constant over time.

Thus, since the input EI is assumed to be known, we can use (1.8) and (1.5) to write (1.3) in
terms of F and L, thus allowing us to close the system of ordinary differential equations (ODEs).

2Modeling weight-loss maintenance to help prevent body weight regain; Hall, K.D. and Jordan, P.N.; The American
journal of clinical nutrition, pg 1495, 2008

3Quantification of the effect of energy imbalance on bodyweight ; Hall, K.D. et al.; The Lancet, pgs 826-837, 2011
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Specifically, we have

RMR(t) =
EE

PAL
= K + γFF (t) + γLL(t) + ηF

dF

dt
+ ηL

dL

dt
+ βatEI

1

PAL
(EE − EI + EI) = K + γFF (t) + γLL(t)

+

(
ηF
ρF

(1− p(t)) +
ηL
ρL
p(t)

)
EB(t) + βatEI.(

1

PAL
− βat

)
EI = K + γFF (t) + γLL(t)

+

(
ηF
ρF

(1− p(t)) +
ηL
ρL
p(t) +

1

PAL

)
EB(t).

Solving for EB(t) in the last equation yields

EB(t) =

(
1

PAL
− βat

)
EI −K − γFF (t)− γLL(t)

ηF
ρF

(1− p(t)) +
ηL
ρL
p(t) +

1

PAL

. (1.9)

In equilibrium (EB = 0), this gives us

K =

(
1

PAL
− βat

)
EI − γFF − γLL. (1.10)

Thus, for a subject who has maintained the same weight for a while, one can determine K by using
(1.10), if they know their average caloric intake and amount of fat (assume L = BW − F ). The
function weight_odesystem in the following code implements (1.3).

from math import log
# Fixed Constants:
rho_F = 9400.
rho_L = 1800.
gamma_F = 3.2
gamma_L = 22.
eta_F = 180.
eta_L = 230.
C = 10.4 # Forbes constant
beta_AT = 0.14 # Adaptive Thermogenesis
beta_TEF = 0.1 # Thermic Effect of Feeding
K = 0

def forbes(F):
C1 = C * rho_L / rho_F
return C1 / (C1 + F)

def energy_balance(F, L, EI, PAL):
p = forbes(F)
a1 = (1. / PAL - beta_AT) * EI - K - gamma_F * F - gamma_L * L
a2 = (1 - p) * eta_F / rho_F + p * eta_L / rho_L + 1. / PAL
return a1 / a2
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def weight_odesystem(t, y, EI, PAL):
F, L = y[0], y[1]
p, EB = forbes(F), energy_balance(F, L, EI, PAL)
return np.array([(1 - p) * EB / rho_F , p * EB / rho_L])

def fat_mass(BW, age, H, sex):
BMI = BW / H**2.
if sex == 'male':

return BW * (-103.91 + 37.31 * log(BMI) + 0.14 * age) / 100
else:

return BW * (-102.01 + 39.96 * log(BMI) + 0.14 * age) / 100

Problem 2. Consider the initial value problem

ρF
dF (t)

dt
= (1− p(t))EB(t),

ρL
dL(t)

dt
= p(t)EB(t),

F (0) = F0,

L(0) = L0.

(1.11)

The ode is given above by the function weight_odesystem. To solve this IVP for a specific
individual we need initial conditions F0 and L0. The function fat_mass given earlier calculates
F0 based on an individual’s body weight (kg), age, height (meters), and gender. L0 is then
given by L0 = BW − F0.

Suppose a 38 year old female, standing 5’8” and weighing 160 lbs, reduces her intake
from 2143 to 2025 calories/day, and increases her physical activity from little to no exercise
(PAL=1.4) to exercising to 2-3 days per week (PAL=1.5). Using scipy.integrate.ode, find
and graph the solution curve for this single-stage weightloss intervention over a period of 5
years.

Note the provided code requires quantities in metric units (kilograms, meters, days) while
our graph is converted to units of pounds and days.

Problem 3. Modify the preceding problem to handle a two stage weightloss intervention: Sup-
pose for the first 16 weeks intake is reduced from 2143 to 1600 calories/day and physical ac-
tivity is increased from little to no exercise (PAL=1.4) to an hour of exercise 5 days per week
(PAL=1.7). The following 16 weeks intake is increased from 1600 to 2025 calories/day, and
exercise is limited to only 2-3 days per week (PAL=1.5).

Find and graph the solution curve over a period of 32 weeks.
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Figure 1.2: The solution of the weight change model for problem 1.

Two Predator-Prey Models
The Lotka-Volterra model
The Lotka-Volterra predator-prey model is a well-known system of ODEs given by

du

dt
= au− buv,

dv

dt
= −cv + duv.

u and v represent the prey and predator populations, respectively. Here a represents the rate of
growth of the prey, and bu the amount of prey being eaten. Similarly, c represents the rate of natural
predator death, and du the growth of the predator population due to the quantity of prey eaten.

Let us look at the dynamics of this system. First we note that there are exactly two equilibria
(fixed points): either (u, v) = (0, 0) corresponding to the extinction of both species, or (u, v) = ( c

d ,
a
b ).

Furthermore, from the ODEs we can see that if v = 0 (there is an absence of any predators) then
the population of prey will grow exponentially.

To get a better idea of the dynamics of this system we will graph its phase portrait. We begin
by nondimensionalizing the system to reduce the number of parameters: Let U = d

cu, V = b
av,
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Figure 1.3: The solution of the nondimensionalized Lotka-Volterra predator-prey equations with
parameter α = 1/3. This solution has initial conditions (U, V ) = (3/4, 3/4).

t̄ = at, and α = d
a . Substituting into the original ODEs we obtain the nondimensional system of

equations

dU

dt̄
= U(1− V ),

dV

dt̄
= αV (U − 1).

(1.12)

In the following code we plot the phase portrait of (1.12) along with a example trajectory, see
Figures 1.3 and 1.4. To plot the direction field for the equations we use numpy’s meshgrid function
and matplotlib’s quiver function.

from scipy.integrate import odeint
a, b = 0., 13. # (Nondimensional) Time interval for one '←↩

period'
alpha = 1. / 3 # Nondimensional parameter
dim = 2 # dimension of the system
y0 = np.array([1 / 2., 1 / 3.]) # initial conditions

# Note: swapping order of arguments to match the calling convention
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# used in the built in IVP solver.
def Lotka_Volterra(y, x):

return np.array([y[0] * (1. - y[1]), alpha * y[1] * (y[0] - 1.)])

subintervals = 200
# Using the built in ode solver
Y = odeint(Lotka_Volterra, y0, np.linspace(a, b, subintervals))

# Plot the direction field
Y1, Y2 = np.meshgrid(np.arange(0, 4.5, .2), np.arange(0, 4.5, .2), sparse=True,←↩

copy=False)
U, V = Lotka_Volterra((Y1, Y2), 0)
Q = plt.quiver(Y1[::3, ::3], Y2[::3, ::3], U[::3, ::3], V[::3, ::3], pivot='←↩

mid', color='b', units='dots',width=3.)
# Plot the 2 Equilibrium points
plt.plot(1, 1, 'ok', markersize=8)
plt.plot(0, 0, 'ok', markersize=8)
# Plot the solution in phase space
plt.plot(Y[:,0], Y[:,1], '-k', linewidth=2.0)
plt.plot(Y[::10,0], Y[::10,1], '*b')

plt.axis([-.5, 4.5, -.5, 4.5])
plt.title("Phase Portrait of the Lotka-Volterra Predator-Prey Model")
plt.xlabel('Prey',fontsize=15)
plt.ylabel('Predators',fontsize=15)
plt.show()

Problem 4. Compute the solutions (U, V ) of (1.12) for initial conditions (1/2, 3/4), (1/16, 3/4),
and (1/40, 3/4). Add these solutions to the phase portrait of the Lotka-Volterra model. Can
you see any limitations of this model?

The Logistic model
We have already noticed that in the absence of predators, the Lotka-Volterra equations predict
that the prey population will grow exponentially. The logistic predator-prey equations change this
dynamic by adding a term to give the prey population a carrying capacity K:

du

dt
= au

(
1− u

K

)
− buv,

dv

dt
= −cv + duv.

Let U = u
K , V = b

av, t̄ = at, α = dK
a , and β = c

dK . Then the nondimensional logistic equations are

dU

dt̄
= U(1− U − V ),

dV

dt̄
= αV (U − β).

(1.13)
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Figure 1.4: The phase portrait for the nondimensionalized Lotka-Volterra predator-prey equations
with parameters α = 1/3. The portrait includes the direction field, the two equilibrium points, and
the graph of the solution with initial conditions (U, V ) = (3/4, 3/4).

Problem 5. Compute the solutions (U, V ) of (1.13) for initial conditions (1/3, 1/3) and (1/2, 1/5).
Do this for parameter values α, β = 1, .3 and also for values α, β = 1, 1.1. Create a phase por-
trait for the logistic equations using both sets of parameter values. Remember to plot the
direction field, all equilibrium points, and the orbits of the solutions.
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