
1 The Shooting Method
for Boundary Value
Problems

Consider a boundary value problem of the form

y′′ = f(x, y, y′), a ≤ x ≤ b,
y(a) = α, y(b) = β.

(1.1)

One natural way to approach this problem is to study the initial value problem (IVP) associated
with this differential equation:

y′′ = f(x, y, y′), a ≤ x ≤ b,
y(a) = α, y′(a) = t.

(1.2)

Achtung!

Here, do not mistake t as an independent time variable. It is a parameter for the boundary con-
dition. The prime ′ notation represents the derivative with respect to x, which is an important
distinction later in this section.

The goal is to determine an appropriate value t for the initial slope, so that the solution of the IVP
is also a solution of the boundary value problem.

Let y(x, t) be the solution of (1.2). We can rewrite the initial value conditions as

y(a, t) = α, y′(a, t) = t (1.3)

We wish to find a value of t so that y(b, t) − β = 0. Applying Newton’s method to the function
h(t) = y(b, t)− β, we obtain the iterative method

tn+1 = tn −
h(tn)

h′(tn)
,

= tn −
y(b, tn)− β
d
dt y(b, t)|tn

, n = 0, 1, . . . .

We recall that Newton’s method requires a good initial guess t0; a plausible initial guess would
be the average rate of change of the solution across the entire interval, so that t0 = (β − α)/(b− a).
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If this initial guess is not sufficient, the initial guess may be refined by looking at the solution y(x, t0)
of the initial value problem.

This method requires us to evaluate or approximate the function d
dt y(b, t)|tn . This term may

be approximated with a finite difference, giving us the iterative method

tn+1 = tn −
(y(b, tn)− β)(tn − tn−1)
y(b, tn)− y(b, tn−1)

, n = 1, 2, . . .

This variation of the shooting algorithm is called the secant method, and requires two initial values
instead of one. Notice that finding y(b, tn) requires solving the initial value problem using RK4 or
some other method.

For example, consider the boundary value problem

y′′ = −4y − 9 sin(x), x ∈ [0, 3π/4],

y(0) = 1,

y(3π/4) = −1 + 3
√
2

2
.

(1.4)

The following code implements the secant method to solve (1.4). Notice that odeint is the solver
used for the initial value problems.

1 import numpy as np
2 from scipy.integrate import odeint
from matplotlib import pyplot as plt

4

# y'' +4y = -9sin(x), y(0) = 1., y(3*pi/4.) = -(1.+3*sqrt(2))/2., y'(0) = -2
6 # Exact Solution: y(x) = cos(2x) + (1/2)sin(2x) - 3sin(x)

8 def find_t(f,a,b,alpha,beta,t0,t1,maxI):
sol1 = 0

10 i = 0
while abs(sol1-beta) > 10**-8 and i < maxI:

12 sol0 = odeint(f, np.array([alpha,t0]), [a,b], atol=1e-10)[1,0]
sol1 = odeint(f, np.array([alpha,t1]), [a,b], atol=1e-10)[1,0]

14 t2 = t1 - (sol1 - beta)*(t1-t0)/(sol1-sol0)
t0 = t1

16 t1 = t2
i = i+1

18 if i == maxI:
print "t not found"

20 return t2

22

def solveSecant(f,X,a,b,alpha,beta,t0,t1,maxI):
24 t = find_t(f,a,b,alpha,beta,t0,t1,maxI)

sol = odeint(f,np.array([alpha,t]), X,atol=1e-10)[:,0]
26 return sol

28

def ode(y,x):
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30 return np.array([y[1], -4*y[0]-9*np.sin(x)])

32 X = np.linspace(0,3*np.pi/4,100)
Y = solveSecant(ode,X,0,3*np.pi/4,1,-(1.+3*np.sqrt(2)) /2,

34 (1+(1.+3*np.sqrt(2)) /2)/(-3*np.pi/4)←↩
,-1,40)

36 plt.plot(X,Y,'-k',linewidth=2)
plt.show()

secant_method.py

Problem 1. Appropriately defined initial value problems will usually have a unique solution.
Boundary value problems are not so straightforward; they may have no solution or they may
have several. You may have to determine which solution is physically interesting. The following
bvp has at least two solutions. Using the secant method, find both numerical solutions and
their initial slopes. (Their plots are given in Figure 1.1.) What initial values t0, t1 did you use
to find them?

y′′ = −4y − 9 sin(x), x ∈ [0, π],

y(0) = 1,

y(π) = 1.
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Figure 1.1: Two solutions of y′′ = −4y − 9 sin(x), both satisfying the boundary conditions
y(0) = y(π) = 1.

Let us consider how to solve for d
dty(b, t). We will assume that the function y(x, t) can be

differentiated with respect to x and t in any order, and let z(x, t) = d
dty(x, t). Using the chain rule,

we obtain

z′′ =
d

dt
y′′(x, t) =

∂f

∂y
(x, y(x, t), y′(x, t)) · dy

dt
(x, t),

+
∂f

∂y′
(x, y(x, t), y′(x, t)) · dy

′

dt
(x, t),

Using the initial conditions associated with y(x, t) and noting that z(x, t) = d
dty(x, t) and z

′(x, t) =
d
dty
′(x, t), we obtain the following initial value problem for z(x, t):

z′′ =
∂f

∂y
(x, y, y′)z +

∂f

∂y′
(x, y, y′)z′, a ≤ x ≤ b,

z(a, t) = 0, z′(a, t) = 1.

To use Newton’s method, the (coupled) IVPs for y and z must be solved simultaneously. The
iterative method then becomes

tn+1 = tn −
y(b, tn)− β
z(b, tn)

, n = 0, 1, . . .
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Problem 2. Use Newton’s method to solve the BVP

y′′ = 3 +
2y

x2
, x ∈ [1, e],

y(1) = 6,

y(e) = e2 + 6/e.

Plot your solution. (Compare with Figure 1.2.) What is an appropriate initial guess?
Hint: Update the ode() function from the previous problem to solve for y, y′, z, z′

simultaneously. This can be done by first rewriting the equations for y” and z” as a system of
first order differential equations.

Figure 1.2: The solution of y′′ = 3 + 2y/x2, satisfying the boundary conditions y(1) = 6,
y(e) = e2 + 6/e.

The Cannon Problem
Consider the problem of aiming a projectile at a given target. Here we will construct a differential
equation that describes the path of the projectile and takes into account air resistance. We will then
use the shooting method to determine the angle at which the projectile should be launched.
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Let the coordinates of the projectile be given by ~r(t) = 〈x(t), y(t)〉. If θ(t) represents the angle
of the velocity vector from the positive x-axis and v(t) represents the speed of the projectile (|~v(t)|),
then we have

ẋ = v cos θ,

ẏ = v sin θ.

Note that each of x, y, θ, and v are functions of t, so the dot denotes
d

dt
. The tangent vector to

the path traced by the projectile is the unit vector in the direction of the projectile’s velocity, so
~T (t) = 〈cos θ, sin θ〉. The unit normal vector ~N(t) is given by ~N(t) = 〈− sin θ, cos θ〉. Thus the
relationship between basis vectors ~i,~j, and ~T (t), ~N(t) is given by[

cos θ sin θ

− sin θ cos θ

] [
~i
~j

]
=

[
~T (t)
~N(t)

]
Let Fg represent the force on the projectile due to gravity, and Fd represent the force on the projectile
due to air resistance. (We assume the air is still.) From Newton’s law we have

m~̇v = Fg + Fd.

The drag equation from fluid dynamics says that the force on the projectile due to air resistance
is kv2 = (1/2)ρcDAv

2, where ρ is the mass density of air (about 1.225 kg/m3), v is the speed of
the projectile, and A is its cross-sectional area. The drag coefficient cD is a dimensionless quantity
that changes with respect to the shape of the object. (If we assume our projectile is spherical with
a diameter of .2 m, then its drag coefficient cD ≈ 0.47, its cross-sectional area is π/100 m2, and we
obtain k ≈ 0.009.)

Thus the total force on the shell is

m~̇v = −mg~j − kv2 ~T ,

= −mg(sin θ ~T + cos θ ~N)− kv2 ~T ,

= (−mg sin θ − kv2)~T −mg cos θ ~N. (1.5)

From the identity ~v = 〈ẋ, ẏ〉 = 〈v cos θ, v sin θ〉 we have

m~̇v = m〈v̇ cos θ − v sin θ · θ̇, v̇ sin θ + v cos θ · θ̇〉

= m(v̇ cos θ − v sin θ · θ̇)(cos θ ~T − sin θ ~N)

+m(v̇ sin θ + v cos θ · θ̇)(sin θ ~T + cos θ ~N),

= m(~T · v̇ + ~N · v · θ̇). (1.6)

From equations (1.5) and (1.6) we have

mv̇ = −mg sin θ − kv2,

mvθ̇ = −mg cos θ.

Thus we have the coupled system of differential equations

ẋ = v cos θ,

ẏ = v sin θ,

v̇ = −g sin θ − kv2/m,

θ̇ = −g cos θ/v.
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The independent variable t used above is unessential to our problem. If we assume that t is an
smooth invertible function of x (t = t(x)), then we obtain

dy

dx
=
dy

dt

dt

dx
,

=
dy

dt

1

v cos θ
,

=
v sin θ

v cos θ
= tan θ.

We find dv
dx and dθ

dx in a similar manner. Thus our system of differential equations becomes

dy

dx
= tan θ,

dv

dx
= −g sin θ + µv2

v cos θ
,

dθ

dx
= − g

v2
,

(1.7)

where µ = k/m. In the next problem we will assume that the projectile has a mass of about 60 kg,
so that µ ≈ .0003.

Problem 3. Suppose a projectile is fired from a cannon with velocity 45 m/s2. At what angle
θ(0) should it be fired to land at a distance of 195 m?

There should be two initial angles θ(0) that produce a solution for this bvp. Use the
secant method to numerically compute and then plot both trajectories.

dy

dx
= tan θ,

dv

dx
= −g sin θ + µv2

v cos θ
,

dθ

dx
= − g

v2
,

y(0) = y(195) = 0,

v(0) = 45 m/s2

(1.8)

(g = 9.8067 m/s2.) Find both solutions for this boundary value problem when µ = .0003.
Compare with the solutions when µ = 0. Their graphs are given in Figure 1.4.

Hint: This is a system of three first order differential equations, and so our secant method
requires a slight modification. Keeping in mind that the unknown initial condition is θ(0), not
y′(0), define an appropriate function h(t).
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Figure 1.3: Two solutions of the system of equations (1.7), both with initial conditions y(0) = 0 m,
v(0) = 45 m/s, and θ(0) = π/3. The black curve is the trajectory of a projectile immune to air
resistance (µ = 0). The red curve describes the trajectory of a more realistic projectile (µ = .0003).
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Figure 1.4: Two solutions of the boundary value problem (1.8) when the air resistance is described
by the parameter µ = .0003. Also both solutions when air resistance is not described in the model
(µ = 0).
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