
7 The Finite Difference
Method

A finite difference for a function f(x) is an expression of the form f(x + s) − f(x + t). Finite
differences can give a good approximation of derivatives.

Suppose we have a function u(x), defined on an interval [a, b]. Let a = x−1, x0, x1, . . . xn−1 = b

be a grid of n+ 1 evenly spaced points, with xi = a+ (i+ 1)h, h = (b− a)/n.
You are used to seeing the derivative u′(x) which can be written as

u′(x) = lim
h→∞

u(x+ h)− u(x)
h

= lim
h→∞

u(x+ h)− u(x− h)
2h

.

Since we are interested in the derivative at certain fixed points xi, we can consider the approximation
of u′(x) using finite differences. We first write the Taylor polynomial expansion of u(x+h) and u(x−h)
centered at x. This gives

u(x+ h) = u(x) + u′(x)h+
1

2
u′′(x)h2 +

1

6
u′′′(x)h3 +O(h4) (7.1)

u(x− h) = u(x)− u′(x)h+
1

2
u′′(x)h2 − 1

6
u′′′(x)h3 +O(h4) (7.2)

Subtracting (7.2) from (7.1) and rearranging gives

u′(x) =
u(x+ h)− u(x− h)

2h
+O(h2).

From the Taylor expansion, this term has error E(h) = O(h2). In terms of our grid points {xi}, we
can rewrite u′(x) as u′(xi) and

u′(xi) =
u(xi + h)− u(xi − h)

2h
=
u(xi+1)− u(xi−1)

2h
.

We won’t worry about the derivative at the endpoints, u′(x−1) and u′(xn−1). This allows us to write
the set of points {u′(xi)} as the solution to a system of equations

1

2h

−1 0 1

−1 0 1
.

−1 0 1

−1 0 1

(n−1)×(n+1)

·

u(x−1)

u(x0)
...

u(xn−2)

u(xn−1)

(n+1)×1

=

u′(x0)

u′(x1)
...

u′(xn−3)

u′(xn−2)

(n−1)×1

. (7.3)

1

2 Lab 7. The Finite Difference Method

This can be rewritten with an (N − 1)× (N − 1) tridiagonal matrix on the left.

1

2h

0 1

−1 0 1
.

−1 0 1

−1 0

(n−1)×(n−1)

·

u(x0)

u(x1)
...

u(xn−3)

u(xn−2)

(n−1)×1

+

−u(x−1)/(2h)

0
...
0

u(xn−1)/(2h)

(n−1)×1

=

u′(x0)

u′(x1)
...

u′(xn−3)

u′(xn−2)

(n−1)×1

. (7.4)

Next we will consider the matrix representation for u′′(x). If we let

u′(x) =
u(x+ h

2)− u(x−
h
2)

h

then

u′′(x) =
u′(x+ h

2)− u
′(x− h

2)

h
=

u((x+h
2)+

h
2)−u((x+

h
2)−

h
2)

h − u((x−h
2)+

h
2)−u((x−

h
2)−

h
2)

h

h

=
u(x+ h)− 2u(x) + u(x− h)

h2
,

with error E(h) = O(h3). You can achieve the same result by again consider the Taylor polynomial
expansion and adding (7.1) and (7.2) and rearranging. Thus

u′′(xi) =
u(xi + h)− 2u(xi) + u(xi − h)

h2
=
u(xi+1)− 2u(xi) + u(xi−1)

h2
, i = 0, . . . , n− 2.

Again ignoring the second derivative at the endpoints, this can be written in matrix form as

1

h2

1 −2 1

1 −2 1
.

1 −2 1

1 −2 1

(n−1)×(n+1)

·

u(x−1)

u(x0)
...

u(xn−2)

u(xn−1)

(n+1)×1

=

u′′(x0)

u′′(x1)
...

u′′(xn−3)

u′′(xn−2)

(n−1)×1

. (7.5)

This can also be written as an (N − 1)× (N − 1) tridiagonal matrix on the left.

1

h2

−2 1

1 −2 1
.

1 −2 1

1 −2

(n−1)×(n−1)

·

u(x0)

u(x1)
...

u(xn−3)

u(xn−2)

(n−1)×1

+

u(x−1)/h

2

0
...
0

u(xn−1)/h
2

(n−1)×1

=

u′′(x0)

u′′(x1)
...

u′′(xn−3)

u′′(xn−2)

(n−1)×1

(7.6)

Problem 1. Let u(x) = sin((x + π)2 − 1). Use (7.3) - (7.6) to approximate 1
2u
′′ − u′ at the

grid points where a = 0, b = 1, and n = 10. Graph the result.

Suppose that instead of knowing the function u(x), we know that 1
2u
′′ − u′ = f , where the

function f(x) is given. How do we solve for u at the grid points?

3

Finite Difference Methods
Numerical methods for differential equations seek to approximate the exact solution u(x) at some
finite collection of points in the domain of the problem. Instead of analytically solving the original
differential equation, defined over an infinite-dimensional function space, they use a simpler finite
system of algebraic equations to approximate the original problem.

Consider the following differential equation:

εu′′(x)− u(x)′ = f(x), x ∈ (0, 1),

u(0) = α, u(1) = β.
(7.7)

Equation (7.7) can be written Du = f, where D = ε d2

dx2 − d
dx is a differential operator defined on the

infinite-dimensional space of functions that are twice continuously differentiable on [0, 1] and satisfy
u(0) = α, u(1) = β.

We look for an approximate solution {Ui}N−1i=−1, where

Ui = u(xi)

on an evenly spaced grid of N subintervals, a = x−1, x0, . . . , xN−1 = b with h = xi+1 − xi for each
i. Our finite difference method will replace the differential operator D = ε d2

dx2 − d
dx , defined on an

infinite-dimensional space of functions, with difference operators defined on a finite vector space (the
space of grid functions {Ui}N−1i=−1). To do this, we replace derivative terms in the differential equation
with appropriate difference expressions.

Recalling that

d2

dx2
u(xi) =

u(xi+1)− 2u(xi) + u(xi−1)

h2
+O(h2),

d

dx
u(xi) =

u(xi+1)− u(xi−1)
2h

+O(h2).

we define the finite difference operator Dh by

DhUi = ε
1

h2
(Ui+1 − 2Ui + Ui−1)−

1

2h
(Ui+1 − Ui−1) . (7.8)

Thus we discretize equation (7.7) using the equations

ε

h2
(Ui+1 − 2Ui + Ui−1)−

1

2h
(Ui+1 − Ui−1) = f(xi), i = 0, . . . , N − 2,

along with boundary conditions U−1 = α, UN−1 = β.

This gives N + 1 equations and N + 1 unknowns, and can be written in matrix form as

1

h2

h2 0 0 . . . 0

(ε+ h/2) −2ε (ε− h/2) . . . 0
...

. . .
...

0 . . . (ε+ h/2) −2ε (ε− h/2)
0 . . . 0 h2

(N+1)×(N+1)

·

U−1
U0

...
UN−2
UN−1

(N+1)×1

=

U−1
f(x0)

...
f(xN−2)

UN−1

(N+1)×1

.

4 Lab 7. The Finite Difference Method

We can further modify the system to obtain an (N − 1)× (N − 1) tridiagonal matrix on the left:

1

h2

−2ε (ε− h/2) 0 . . . 0

(ε+ h/2) −2ε (ε− h/2) . . . 0
...

. . .
...

0 . . . (ε+ h/2) −2ε (ε− h/2)
0 . . . (ε+ h/2) −2ε

(N−1)×(N−1)

·

U0

U1

...
UN−3
UN−2

(N−1)×1

=

f(x0)− U−1(ε+ h/2)/h2

f(x1)
...

f(xN−3)

f(xN−2)− Un−1(ε− h/2)/h2

(N−1)×1

.

(7.9)

Problem 2. Use equation (7.9) to solve the singularly perturbed BVP (7.7) with ε = 1/10,
f(x) = −1, α = 1, and β = 3. Graph the solution. This BVP is called singularly perturbed
because of the location of the parameter ε. For ε = 0 the ODE has a drastically different
character - it then becomes first order, and can no longer support two boundary conditions.

0.0 0.2 0.4 0.6 0.8 1.0

x

1.0

1.5

2.0

2.5

3.0

y

Figure 7.1: The solution to Problem 2. The solution gets steeper near x = 1 as ε gets small.

A heuristic test for convergence
The finite differences used above are second order approximations of the first and second derivatives
of a function. It seems reasonable to expect that the numerical solution would converge at a rate of
about O(h2). How can we check that a numerical approximation is reasonable?

5

10-4 10-3 10-2 10-1 100

h

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

E(h)

h 2

Figure 7.2: Demonstration of second order convergence for the finite difference approximation (7.8)
of the BVP given in (7.7) with ε = .5.

Suppose a finite difference method is O(hp) accurate. This means that the error E(h) ≈ Chp

for some constant C as h→ 0 (in other words, for h > 0 small enough).
So compute the approximation yk for each stepsize hk, h1 > h2 > . . . > hm. ym should be

the most accurate approximation, and will be thought of as the true solution. Then the error of the
approximation for stepsize hk, k < m, is

E(hk) = max(|yk − ym|) ≈ Chpk,
log(E(hk)) = log(C) + p log(hk).

Thus on a log-log plot of E(h) vs. h, these values should be on a straight line with slope p when
h is small enough to start getting convergence. We should note that demonstrating second-order
convergence does NOT imply that the numerical approximation is converging to the correct solution.

Problem 3. Return to problem 2. How many subintervals are needed to obtain 4 digits of
accuracy?

This is a question about the convergence of your solution. The following code generates the
log-log plot in Figure 7.2, and demonstrates second-order convergence for our finite difference
approximation of (7.7). Use this code to determine what h (and hence what N) is needed for
the error to be less than 10−4. You don’t need to return the value of h, but make sure you
understand by looking at the plot.

note: The function bvp is not provided; you need to use your code from problem 2 to

6 Lab 7. The Finite Difference Method

define it. Make sure your function is compatible with the code below. It must take 5 parameters
as input and return the solution.

num_approx = 10 # Number of Approximations
N = 5*np.array([2**j for j in range(num_approx)])
h, max_error = (1.-0)/N[:-1], np.ones(num_approx-1)

Best numerical solution, used to approximate the true solution.
bvp returns the grid, and the grid function, approximating the solution
with N subintervals of equal length.
num_sol_best = bvp(lambda x:-1, epsilon=.1, alpha=1, beta=3, N=N[-1])
for j in range(len(N)-1):

num_sol = bvp(lambda x:-1, epsilon=.1, alpha=1, beta=3, N=N[j])
max_error[j] = np.max(np.abs(num_sol-num_sol_best[::2**(num_approx-j-1)]))

plt.loglog(h,max_error,'.-r',label="$E(h)$")
plt.loglog(h,h**(2.),'-k',label="$h^{\, 2}$")
plt.xlabel("h")
plt.legend(loc='best')
plt.show()
print("The order of the finite difference approximation is about ",

(np.log(max_error[0])-np.log(max_error[-1]))/(np.log(h[0])-np.log(h[-1])),
".")

Problem 4. Extend your finite difference code to the case of a general second order linear
BVP with boundary conditions (These boundary conditions are sometimes called Dirichlet
conditions):

a1(x)y
′′ + a2(x)y

′ + a3(x)y = f(x), x ∈ (a, b),

y(a) = α, y(b) = β.

Use your code to solve the boundary value problem

εy′′ − 4(π − x2)y = cosx,

y(0) = 0, y(π/2) = 1,

for ε = 0.1. Be sure to modify the finite difference operator Dh in (7.8) correctly.

The next few problems will help you troubleshoot your finite difference code.

7

0.0 0.5 1.0 1.5

x

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

y

Figure 7.3: The solution to Problem 4.

Problem 5. Numerically solve the boundary value problem

εy′′ + xy′ = −επ2 cos(πx)− πx sin(πx),
y(−1) = −2, y(1) = 0,

for ε = 0.1, 0.01, and 0.001.

Problem 6. Numerically solve the boundary value problem

(ε+ x2)y′′ + 4xy′ + 2y = 0,

y(−1) = 1/(1 + ε), y(1) = 1/(1 + ε),

for ε = 0.05, 0.02.

8 Lab 7. The Finite Difference Method

1.0 0.5 0.0 0.5 1.0

x

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

y

Figure 7.4: The solution to Problem 5.

1.0 0.5 0.0 0.5 1.0

x

0

10

20

30

40

50

60

y

Figure 7.5: The solution to Problem 6.

	The Finite Difference Method

