7
 The Finite Difference Method

A finite difference for a function $f(x)$ is an expression of the form $f(x+s)-f(x+t)$. Finite differences can give a good approximation of derivatives.

Suppose we have a function $u(x)$, defined on an interval $[a, b]$. Let $a=x_{-1}, x_{0}, x_{1}, \ldots x_{n-1}=b$ be a grid of $n+1$ evenly spaced points, with $x_{i}=a+(i+1) h, h=(b-a) / n$.

You are used to seeing the derivative $u^{\prime}(x)$ which can be written as

$$
u^{\prime}(x)=\lim _{h \rightarrow \infty} \frac{u(x+h)-u(x)}{h}=\lim _{h \rightarrow \infty} \frac{u(x+h)-u(x-h)}{2 h} .
$$

Since we are interested in the derivative at certain fixed points x_{i}, we can consider the approximation of $u^{\prime}(x)$ using finite differences. We first write the Taylor polynomial expansion of $u(x+h)$ and $u(x-h)$ centered at x. This gives

$$
\begin{align*}
& u(x+h)=u(x)+u^{\prime}(x) h+\frac{1}{2} u^{\prime \prime}(x) h^{2}+\frac{1}{6} u^{\prime \prime \prime}(x) h^{3}+\mathcal{O}\left(h^{4}\right) \tag{7.1}\\
& u(x-h)=u(x)-u^{\prime}(x) h+\frac{1}{2} u^{\prime \prime}(x) h^{2}-\frac{1}{6} u^{\prime \prime \prime}(x) h^{3}+\mathcal{O}\left(h^{4}\right) \tag{7.2}
\end{align*}
$$

Subtracting (7.2) from (7.1) and rearranging gives

$$
u^{\prime}(x)=\frac{u(x+h)-u(x-h)}{2 h}+\mathcal{O}\left(h^{2}\right) .
$$

From the Taylor expansion, this term has error $E(h)=\mathcal{O}\left(h^{2}\right)$. In terms of our grid points $\left\{x_{i}\right\}$, we can rewrite $u^{\prime}(x)$ as $u^{\prime}\left(x_{i}\right)$ and

$$
u^{\prime}\left(x_{i}\right)=\frac{u\left(x_{i}+h\right)-u\left(x_{i}-h\right)}{2 h}=\frac{u\left(x_{i+1}\right)-u\left(x_{i-1}\right)}{2 h} .
$$

We won't worry about the derivative at the endpoints, $u^{\prime}\left(x_{-1}\right)$ and $u^{\prime}\left(x_{n-1}\right)$. This allows us to write the set of points $\left\{u^{\prime}\left(x_{i}\right)\right\}$ as the solution to a system of equations

This can be rewritten with an $(N-1) \times(N-1)$ tridiagonal matrix on the left.

Next we will consider the matrix representation for $u^{\prime \prime}(x)$. If we let

$$
u^{\prime}(x)=\frac{u\left(x+\frac{h}{2}\right)-u\left(x-\frac{h}{2}\right)}{h}
$$

then

$$
\begin{gathered}
u^{\prime \prime}(x)=\frac{u^{\prime}\left(x+\frac{h}{2}\right)-u^{\prime}\left(x-\frac{h}{2}\right)}{h}=\frac{\frac{u\left(\left(x+\frac{h}{2}\right)+\frac{h}{2}\right)-u\left(\left(x+\frac{h}{2}\right)-\frac{h}{2}\right)}{h}-\frac{u\left(\left(x-\frac{h}{2}\right)+\frac{h}{2}\right)-u\left(\left(x-\frac{h}{2}\right)-\frac{h}{2}\right)}{h}}{h} \\
=\frac{u(x+h)-2 u(x)+u(x-h)}{h^{2}},
\end{gathered}
$$

with error $E(h)=\mathcal{O}\left(h^{3}\right)$. You can achieve the same result by again consider the Taylor polynomial expansion and adding (7.1) and (7.2) and rearranging. Thus

$$
u^{\prime \prime}\left(x_{i}\right)=\frac{u\left(x_{i}+h\right)-2 u\left(x_{i}\right)+u\left(x_{i}-h\right)}{h^{2}}=\frac{u\left(x_{i+1}\right)-2 u\left(x_{i}\right)+u\left(x_{i-1}\right)}{h^{2}}, \quad i=0, \ldots, n-2 .
$$

Again ignoring the second derivative at the endpoints, this can be written in matrix form as

This can also be written as an $(N-1) \times(N-1)$ tridiagonal matrix on the left.

Problem 1. Let $u(x)=\sin \left((x+\pi)^{2}-1\right)$. Use (7.3) - (7.6) to approximate $\frac{1}{2} u^{\prime \prime}-u^{\prime}$ at the grid points where $a=0, b=1$, and $n=10$. Graph the result.

Suppose that instead of knowing the function $u(x)$, we know that $\frac{1}{2} u^{\prime \prime}-u^{\prime}=f$, where the function $f(x)$ is given. How do we solve for u at the grid points?

Finite Difference Methods

Numerical methods for differential equations seek to approximate the exact solution $u(x)$ at some finite collection of points in the domain of the problem. Instead of analytically solving the original differential equation, defined over an infinite-dimensional function space, they use a simpler finite system of algebraic equations to approximate the original problem.

Consider the following differential equation:

$$
\begin{align*}
& \epsilon u^{\prime \prime}(x)-u(x)^{\prime}=f(x), \quad x \in(0,1) \tag{7.7}\\
& u(0)=\alpha, \quad u(1)=\beta
\end{align*}
$$

Equation (7.7) can be written $D u=f$, where $D=\epsilon \frac{d^{2}}{d x^{2}}-\frac{d}{d x}$ is a differential operator defined on the infinite-dimensional space of functions that are twice continuously differentiable on $[0,1]$ and satisfy $u(0)=\alpha, u(1)=\beta$.

We look for an approximate solution $\left\{U_{i}\right\}_{i=-1}^{N-1}$, where

$$
U_{i}=u\left(x_{i}\right)
$$

on an evenly spaced grid of N subintervals, $a=x_{-1}, x_{0}, \ldots, x_{N-1}=b$ with $h=x_{i+1}-x_{i}$ for each i. Our finite difference method will replace the differential operator $D=\epsilon \frac{d^{2}}{d x^{2}}-\frac{d}{d x}$, defined on an infinite-dimensional space of functions, with difference operators defined on a finite vector space (the space of grid functions $\left\{U_{i}\right\}_{i=-1}^{N-1}$). To do this, we replace derivative terms in the differential equation with appropriate difference expressions.

Recalling that

$$
\begin{aligned}
\frac{d^{2}}{d x^{2}} u\left(x_{i}\right) & =\frac{u\left(x_{i+1}\right)-2 u\left(x_{i}\right)+u\left(x_{i-1}\right)}{h^{2}}+\mathcal{O}\left(h^{2}\right) \\
\frac{d}{d x} u\left(x_{i}\right) & =\frac{u\left(x_{i+1}\right)-u\left(x_{i-1}\right)}{2 h}+\mathcal{O}\left(h^{2}\right)
\end{aligned}
$$

we define the finite difference operator D_{h} by

$$
\begin{equation*}
D_{h} U_{i}=\epsilon \frac{1}{h^{2}}\left(U_{i+1}-2 U_{i}+U_{i-1}\right)-\frac{1}{2 h}\left(U_{i+1}-U_{i-1}\right) \tag{7.8}
\end{equation*}
$$

Thus we discretize equation (7.7) using the equations

$$
\frac{\epsilon}{h^{2}}\left(U_{i+1}-2 U_{i}+U_{i-1}\right)-\frac{1}{2 h}\left(U_{i+1}-U_{i-1}\right)=f\left(x_{i}\right), \quad i=0, \ldots, N-2
$$

along with boundary conditions $U_{-1}=\alpha, U_{N-1}=\beta$.
This gives $N+1$ equations and $N+1$ unknowns, and can be written in matrix form as

We can further modify the system to obtain an $(N-1) \times(N-1)$ tridiagonal matrix on the left:

$$
\begin{align*}
& \frac{1}{h^{2}}\left[\begin{array}{ccccc}
-2 \epsilon & (\epsilon-h / 2) & 0 & \cdots & 0 \\
(\epsilon+h / 2) & -2 \epsilon & (\epsilon-h / 2) & \cdots & 0 \\
\vdots & & \ddots & & \vdots \\
0 & \cdots & (\epsilon+h / 2) & -2 \epsilon & (\epsilon-h / 2) \\
0 & \cdots & & (\epsilon+h / 2) & -2 \epsilon
\end{array}\right] \cdot\left[\begin{array}{c}
U_{0} \\
U_{1} \\
\vdots \\
U_{N-3} \\
U_{N-2}
\end{array}\right] \\
&=\left[\begin{array}{c}
f\left(x_{0}\right)-U_{-1}(\epsilon+h / 2) / h^{2} \\
f\left(x_{1}\right) \\
\vdots \\
\\
\\
\end{array} \quad \begin{array}{c}
f\left(x_{N-2}\right)-U_{n-1}(\epsilon-h / 2) / h^{2}
\end{array}\right] .
\end{align*}
$$

Problem 2. Use equation (7.9) to solve the singularly perturbed BVP (7.7) with $\epsilon=1 / 10$, $f(x)=-1, \alpha=1$, and $\beta=3$. Graph the solution. This BVP is called singularly perturbed because of the location of the parameter ϵ. For $\epsilon=0$ the ODE has a drastically different character - it then becomes first order, and can no longer support two boundary conditions.

Figure 7.1: The solution to Problem 2. The solution gets steeper near $x=1$ as ϵ gets small.

A heuristic test for convergence

The finite differences used above are second order approximations of the first and second derivatives of a function. It seems reasonable to expect that the numerical solution would converge at a rate of about $\mathcal{O}\left(h^{2}\right)$. How can we check that a numerical approximation is reasonable?

Figure 7.2: Demonstration of second order convergence for the finite difference approximation (7.8) of the BVP given in (7.7) with $\epsilon=.5$.

Suppose a finite difference method is $\mathcal{O}\left(h^{p}\right)$ accurate. This means that the error $E(h) \approx C h^{p}$ for some constant C as $h \rightarrow 0$ (in other words, for $h>0$ small enough).

So compute the approximation y_{k} for each stepsize $h_{k}, h_{1}>h_{2}>\ldots>h_{m} . y_{m}$ should be the most accurate approximation, and will be thought of as the true solution. Then the error of the approximation for stepsize $h_{k}, k<m$, is

$$
\begin{aligned}
E\left(h_{k}\right) & =\max \left(\left|y_{k}-y_{m}\right|\right) \approx C h_{k}^{p} \\
\log \left(E\left(h_{k}\right)\right) & =\log (C)+p \log \left(h_{k}\right) .
\end{aligned}
$$

Thus on a $\log -\log$ plot of $E(h)$ vs. h, these values should be on a straight line with slope p when h is small enough to start getting convergence. We should note that demonstrating second-order convergence does NOT imply that the numerical approximation is converging to the correct solution.

Problem 3. Return to problem 2. How many subintervals are needed to obtain 4 digits of accuracy?

This is a question about the convergence of your solution. The following code generates the log-log plot in Figure 7.2, and demonstrates second-order convergence for our finite difference approximation of (7.7). Use this code to determine what h (and hence what N) is needed for the error to be less than 10^{-4}. You don't need to return the value of h, but make sure you understand by looking at the plot.

NOTE: The function bvp is not provided; you need to use your code from problem $\underline{2}$ to
define it. Make sure your function is compatible with the code below. It must take 5 parameters as input and return the solution.

```
num_approx = 10 # Number of Approximations
N = 5*np.array([2**j for j in range(num_approx)])
h, max_error = (1.-0)/N[:-1], np.ones(num_approx-1)
# Best numerical solution, used to approximate the true solution.
# bvp returns the grid, and the grid function, approximating the solution
# with N subintervals of equal length.
num_sol_best = bvp(lambda x:-1, epsilon=.1, alpha=1, beta=3, N=N[-1])
for j in range(len(N)-1):
    num_sol = bvp(lambda x:-1, epsilon=.1, alpha=1, beta=3, N=N[j])
    max_error[j] = np.max(np.abs(num_sol-num_sol_best[::2**(num_approx-j-1)]))
plt.loglog(h,max_error,'.-r',label="$E(h)$")
plt.loglog(h,h**(2.),'-k',label="$h~{\, 2}$")
plt.xlabel("$h$")
plt.legend(loc='best')
plt.show()
print("The order of the finite difference approximation is about ",
    (np.log(max_error [0])-np.log(max_error[-1]))/(np.log(h[0])-np.log(h[-1])),
    ".")
```

Problem 4. Extend your finite difference code to the case of a general second order linear BVP with boundary conditions (These boundary conditions are sometimes called Dirichlet conditions):

$$
\begin{aligned}
& a_{1}(x) y^{\prime \prime}+a_{2}(x) y^{\prime}+a_{3}(x) y=f(x), \quad x \in(a, b) \\
& y(a)=\alpha, \quad y(b)=\beta
\end{aligned}
$$

Use your code to solve the boundary value problem

$$
\begin{gathered}
\epsilon y^{\prime \prime}-4\left(\pi-x^{2}\right) y=\cos x \\
y(0)=0, \quad y(\pi / 2)=1
\end{gathered}
$$

for $\epsilon=0.1$. Be sure to modify the finite difference operator D_{h} in (7.8) correctly.

The next few problems will help you troubleshoot your finite difference code.

Figure 7.3: The solution to Problem 4.

Problem 5. Numerically solve the boundary value problem

$$
\begin{array}{r}
\epsilon y^{\prime \prime}+x y^{\prime}=-\epsilon \pi^{2} \cos (\pi x)-\pi x \sin (\pi x) \\
y(-1)=-2, \quad y(1)=0
\end{array}
$$

for $\epsilon=0.1,0.01$, and 0.001 .

Problem 6. Numerically solve the boundary value problem

$$
\begin{array}{r}
\left(\epsilon+x^{2}\right) y^{\prime \prime}+4 x y^{\prime}+2 y=0 \\
y(-1)=1 /(1+\epsilon), \quad y(1)=1 /(1+\epsilon)
\end{array}
$$

for $\epsilon=0.05,0.02$.

Figure 7.4: The solution to Problem 5.

Figure 7.5: The solution to Problem $6 \underline{\text {. }}$

