
1 Unix Shell 1:
Introduction

Lab Objective: Explore the basics of the Unix Shell. Understand how to navigate and manipulate

�le directories. Introduce the Vim text editor for easy writing and editing of text or other similar

documents.

Unix was �rst developed by AT&T Bell Labs in the 1970s. In the 1990s, Unix became the

foundation of Linux and MacOSX. The Unix shell is an interface for executing commands to the

operating system. The majority of servers are Linux based, so having a knowledge of Unix shell

commands allows us to interact with these servers.

As you get into Unix, you will �nd it is easy to learn but di�cult to master. We will build a

foundation of simple �le system management and a basic introduction to the Vim text editor. We

will address some of the basics in detail and also include lists of commands that interested learners

are encouraged to research further.

Note

Windows is not built o� of Unix, but it does come with a command line tool. We will not

cover the equivalent commands in Windows command line, but you could download a Unix-

based shell such as Git Bash or Cygwin to complete this lab (you will still lose out on certain

commands).

File System

Achtung!

In this lab you will work with �les on your computer. Be careful as you go through each problem

and as you experiment on your own. Be sure you are in the right directories and subfolders

before you start creating and deleting �les; some actions are irreversible.

1

2 Lab 1. Introduction to the Unix Shell

Navigation

Typically you have probably navigated your comptuer by clicking on icons to open directories and

programs. In the terminal, instead of point and click we use typed commands to move from directory

to directory.

Begin by opening the Terminal. The text you see in the upper left of the Terminal is called the

prompt. As you navigate through the �le system you will want to know where you are so that you

know you aren't creating or deleting �les in the wrong locations.

To see what directory you are currently working in, type pwd into the prompt. This command

stands for print working directory, and as the name suggests it prints out the string of your current

location.

Once you know where you are, you'll want to know where you can move. The ls, or list

segments, command will list all the �les and directories in your current folder location. Try typing

it in.

When you know what's around you, you'll want to navigate directories. The cd, or change

directory, command allows you to move through directories. To change to a new directory, type the

cd command followed by the name of the directory to which you want to move (if you cd into a �le,

you will get an error). You can move up one directory by typing cd ...

Two important directories are the root directory and the home directory. You can navigate to

the home directory by typing cd ∼ or just cd. You can navigate to root by typing cd /.

Problem 1. Using these commands, navigate to the Shell1/ directory provided with this lab.

We will use this directory for the remainder of the lab. Use the ls command to list the contents

of this directory. NOTE: You will �nd a directory within this directory called Test/ that is

availabe for you to experiment with the concepts and commands found in this lab. The other

�les and directories are necessary for the exercises we will be doing, so take care not to modify

them.

Getting Help

As you go through this lab, you will come across many commands with functionality beyond what

is taught here. The Terminal has two nice commands to help you with these commands. The �rst is

man <command>, which opens the manual page for the command following man. Try typing in man ls;

you will see a list of the name and description of the ls command, among other things. If you forget

how to use a command the manual page is the �rst place you should check to remember.

The apropos <keyword> command will list all Unix commands that have <keyword> contained

somewhere in their manual page names and descriptions. For example, if you forget how to copy

�les, you can type in apropos copy and you'll get a list of all commands that have copy in their

description.

Flags

When you typed in man ls up above, you may have noticed several options listed in the description,

such as -a, -A, --author. These are called �ags and change the functionality of commands. Most

commands will have �ags that change their behavior. Table 1.1 contains some of the most common

�ags for the ls command.

3

Flags Description

-a Do not ignore hidden �les and folders

-l List �les and folders in long format

-r Reverse order while sorting

-R Print �les and subdirectories recursively

-s Print item name and size

-S Sort by size

-t Sort output by date modi�ed

Table 1.1: Common �ags of the ls command.

Multiple �ags can be combined as one �ag. For example, if we wanted to list all the �les in a

directory in long format sorted by date modi�ed, we would use ls -a -l -t or ls -alt.

Manipulating Files and Directories
In this section we will learn how to create, copy, move, and delete �les and folders. Before you begin,

cd into the Test/ directory in Shell1/.

To create a text �le, use touch <filename>. To create a new directory, use mkdir <dir_name>.

To copy a �le into a directory, use cp <filename> <dir_name>. When making a copy of a

directory, the command is similar but must use the -r �ag. This �ag stands for recursively copying

�les in subdirectories. If you try to copy a �le without the -r the command will return an error.

Moving �les and directories follows a similar format, except no -r �ag is used when moving

one directory into another. The command mv <filename> <dir_name> will move a �le to a folder

and mv <dir1> <dir2> will move the �rst directory into the second. If you want to rename a �le,

use mv <file_old> <file_new>; the same goes for directories.

When deleting �les, use rm <filename>, or rm -r <dir_name> when deleting a directory.

Again, the -r �ag tells the Terminal to recursively remove all the �les and subfolders within the

targeted directory.

If you want to make sure your command is doing what you intend, the -v �ag tells rm, cp, or

mkdir to have the Terminal print strings of what it is doing. When your Terminal gets too cluttered,

use clear to clean it up.

Below is an example of all these commands in action.

$ cd Test

$ touch data.txt # create new empty file data.txt

$ mkdir New # create directory New

$ ls # list items in test directory

New data.txt

$ cp data.txt New/ # copy data.txt to New directory

$ cd New/ # enter the New directory

$ ls # list items in New directory

data.txt

$ mv data.txt new_data.txt # rename data.txt new_data.txt

$ ls # list items in New directory

new_data.txt

$ cd .. # Return to test directory

$ rm -rv New/ # Remove New directory and its contents

4 Lab 1. Introduction to the Unix Shell

Commands Description

clear Clear the terminal screen

cp file1 dir1 Create a copy of file1 and move it to dir1/

cp file1 file2 Create a copy of file1 and name it file2

cp -r dir1 dir2 Create a copy of dir1/ and all its contents into dir2/

mkdir dir1 Create a new directory named dir1/

mkdir -p path/to/new/dir1 Create dir1/ and all intermediate directories

mv file1 dir1 Move file1 to dir1/

mv file1 file2 Rename file1 as file2

rm file1 Delete file1 [-i, -v]

rm -r dir1 Delete dir1/ and all items within dir1/ [-i, -v]

touch file1 Create an empty �le named file1

Table 1.2: The commands discussed in this section.

removed 'New/data.txt'

removed directory: 'New/'

$ clear # Clear terminal screen

Table 1.2 contains all the commands we have discussed so far. Notice the common �ags are

contained in square brackets; use man to see what these mean.

Problem 2. Inside the Shell1/ directory, delete the Audio/ folder along with all its contents.

Create Documents/, Photos/, and Python/ directories.

Wildcards
As we are working in the �le system, there will be times that we want to perform the same command

to a group of similar �les. For example, if you needed to move all text �les within a directory to a

new directory. Rather than copy each �le one at a time, we can apply one command to several �les

using wildcards. We will use the * and ? wildcards. The * wildcard represents any string and the ?

wildcard represents any single character. Though these wildcards can be used in almost every Unix

command, they are particularly useful when dealing with �les.

$ ls

File1.txt File2.txt File3.jpg text_files

$ mv -v *.txt text_files/

File1.txt -> text_files/File1.txt

File2.txt -> text_files/File2.txt

$ ls

File3.jpg text_files

See Table 1.3 for examples of common wildcard usuage.

5

Command Description

*.txt All �les that end with .txt.

image* All �les that have image as the �rst 5 characters.

py All �les that contain py in the name.

doc*.txt All �les of the form doc1.txt, doc2.txt, docA.txt, etc.

Table 1.3: Common uses for wildcards.

Command Description

cat Print the contents of a �le in its entirety

more Print the contents of a �le one page at a time

less Like more, but you can navigate forward and backward

head Print the �rst 10 lines of a �le

head -nK Print the �rst K lines of a �le

tail Print just the last 10 lines of a �le

tail -nK Print the last K lines of a �le

Table 1.4: Commands for printing contents of a �le

Problem 3. Within the Shell1/ directory, there are many �les. We will organize these �les

into directories. Using wildcards, move all the .jpg �les to the Photos/ directory, all the .txt

�les to the Documents/ directory, and all the .py �les to the Python/ directory. You will see a

few other folders in the Shell1/ directory. Do not move any of the �les within these folders at

this point.

Displaying File Contents
When using the �le system, you may be interested in checking �le content to be sure you're looking

at the right �le. Several commands are made available for ease in reading �le content.

The cat command, followed by the �lename will display all the contents of a �le on the screen.

If you are dealing with a large �le, you may only want to view a certain number of lines at a time.

Use less <filename> to restrict the number of lines that show up at a time. Use the arrow keys to

navigate up and down. Press q to exit.

For other similar commands, look at table 1.4.

Searching the File System
There are two commands we use for searching through our directories. The find command is used to

�nd �les or directories in a directory hierarchy. The grep command is used to �nd lines matching a

string. More speci�cally, we can use grep to �nd words inside �les. We will provide a basic template

in Table 1.5 for using these two commands and leave it to you to explore the uses of the other �ags.

The man command can help you learn about them.

Problem 4. In addition to the .jpg �les you have already moved into the Photos/ folder,

there are a few other .jpg �les in a few other folders within the Shell1/ directory. Find where

6 Lab 1. Introduction to the Unix Shell

Command Description

find dir1 -type f -name "word" Find all �les in dir1/ (and its subdirectories) called word

(-type f is for �les; -type d is for directories)

grep "word" filename Find all occurences of word within filename

grep -nr "word" dir1 Find all occurences of word within the �les inside dir1/

(-n lists the line number; -r performs a recursive search)

Table 1.5: Commands using find and grep.

these �les are using the find command and move them to the Photos/ folder.

Pipes and Redirects

Terminal commands can be combined using pipes. When combined, or piped, the output of one

command is passed to the another. Two commands are piped together using the | operator. To

demonstrate pipes we will �rst introduce commands that allow us to view the contents of a �le in

Table 1.4.

In the �rst example below, the cat command output is piped to wc -l. The wc command stands

forword count. This command can be used to count words or lines. The -l �ag tells the wc command

to count lines. Therefore, this �rst example counts the number of lines in assignments.txt. In the

second example below, the command lists the �les in the current directory sorted by size in descending

order. For details on what the �ags in this command do, consult man sort.

$ cd Shell1/Files/Feb

$ cat assignments.txt | wc -l

9

$ ls -s | sort -nr

12 project3.py

12 project2.py

12 assignments.txt

4 pics

total 40

In the previous example, we pipe the contents of assignments.txt to wc -l using cat. When

working with �les speci�cally, you can also use redirects. The < operator gives a �le to a Terminal

command. The same output from the �rst example above can be achieved by running the following

command:

$ wc -l < assignments.txt

9

If you are wanting to save the resulting output of a command to a �le, use > or >>. The

> operator will overwrite anything that may exist in the output �le whereas >> will append the

output to the end of the output �le. For example, if we want to append the number of lines in

assignments.txt to word_count.txt, we would run the following commmand:

7

$ wc -l < assignements.txt >> word_count.txt

Since grep is used to print lines matching a pattern, it is also very useful to use in conjunction

with piping. For example, ls -l | grep root prints all �les associated with the root user.

Problem 5. The words.txt �le in the Documents/ directory contains a list of words that are

not in alphabetical order. Write the number of words in words.txt and an alphabetically sorted

list of words to sortedwords.txt using pipes and redirects. Save this �le in the Documents/

directory. Try to accomplish this with a total of two commands or fewer.

Archiving and Compression
In �le management, the terms archiving and compressing are commonly used interchangeably. How-

ever, these are quite di�erent. To archive is to combine a certain number of �les into one �le. The

resulting �le will be the same size as the group of �les that were archived. To compress is to take a

�le or group of �les and shrink the �le size as much as possible. The resulting compressed �le will

need to be extracted before being used.

The ZIP �le format is the most popular for archiving and compressing �les. If the zip Unix

command is not installed on your system, you can download it by running sudo apt-get install

zip. Note that you will need to have administrative rights to download this package. To unzip a

�le, use unzip.

$ cd Shell1/Documents

$ zip zipfile.zip doc?.txt

adding: doc1.txt (deflated 87%)

adding: doc2.txt (deflated 90%)

adding: doc3.txt (deflated 85%)

adding: doc4.txt (deflated 97%)

use -l to view contents of zip file

$ unzip -l zipfile.zip

Archive: zipfile.zip

Length Date Time Name

--------- ---------- ----- ----

5234 2015-08-26 21:21 doc1.txt

7213 2015-08-26 21:21 doc2.txt

3634 2015-08-26 21:21 doc3.txt

4516 2015-08-26 21:21 doc4.txt

--------- -------

16081 3 files

$ unzip zipfile.zip

inflating: doc1.txt

inflating: doc2.txt

inflating: doc3.txt

inflating: doc4.txt

8 Lab 1. Introduction to the Unix Shell

While the zip �le format is more popular on the Windows platform, the tar utility is more

common in the Unix environment. The following commands use tar to archive the �les and gzip to

compress the archive.

Notice that all the commands below have the -z, -v, and -f �ags. The -z �ag calls for the

gzip compression tool, the -v �ag calls for a verbose output, and -f indicates the next parameter

will be the name of the archive �le.

$ ls

doc1.txt doc2.txt doc3.txt doc4.txt

use -c to create a new archive

$ tar -zcvf docs.tar.gz doc?.txt

doc1.txt

doc2.txt

doc3.txt

doc4.txt

$ ls

docs.tar.gz

use -t to view contents

$ tar -ztvf <archive>

-rw-rw-r-- username/groupname 5119 2015-08-26 16:50 doc1.txt

-rw-rw-r-- username/groupname 7253 2015-08-26 16:50 doc2.txt

-rw-rw-r-- username/groupname 3524 2015-08-26 16:50 doc3.txt

-rw-rw-r-- username/groupname 4516 2015-08-26 16:50 doc4.txt

use -x to extract

$ tar -zxvf <archive>

doc1.txt

doc2.txt

doc3.txt

doc4.txt

Problem 6. Archive and compress the �les in the Photos/ directory using tar and gzip.

Name the arhive pics.tar.gz and save it inside the Photos/ directory. Use ls -l to see how

much the �les were compressed in the process.

Vim: A Terminal Text Editor
Today many have become accustomed to having GUIs (Graphic User Interfaces) for all their ap-

plications. Before modern text editors (i.e. Microsoft Word, Pages for Mac, Google Docs) there

were terminal text editors. Vim is one of the most popular terminal text editors. While vim may

9

be intimidating at �rst, as you become familiar with vim it may become one of your preferred text

editors for writing code.

One of the major philosophies of vim is to be able to keep your �ngers on the keyboard at

all times. Thus, vim has many keyboard shortcuts that allow you to navigate the �le and execute

commands without relying on a mouse, toolbars, or arrow keys.

In this section, we will go over the basics of navigation and a few of the most common commands.

We will also provide a list of commands that interested readers are encouraged to research.

It has been said that at no point does somebody �nish learning Vim. You will �nd that you

will constantly be able to add something new to your arsenal.

Getting Started
Start Vim with the following command:

$ vim my_file.txt

When executing this command, if my_file.txt already exists, vim will open the �le and we

may begin editing the existing �le. If my_file.txt does not exist, it will be created and we may

begin editing the �le.

You may notice if you start typing the characters may or may not appear on your screen. This

is because vim has multiple modes. When vim starts, we are placed in command mode. We want to

be in insert mode to begin entering text. To enter insert mode from command mode, hit the i key.

You should see -- INSERT -- at the bottom of your terminal window. In insert mode vim act like a

typical word processor. Letters will appear in the document as you type them. If you ever need to

leave insert mode and return to command mode, hit the Esc key.

Saving/Quitting Vim
To save or quit the current document, �rst enter last line mode by pressing the : key. To just save,

type w and hit enter. To save and quit, type wq. To quit without saving, run q!

Problem 7. Using vim, create a new �le in the Documents/ directory named first_vim.txt.

Write least multiple lines to this �le. Save and exit the �le you have created.

Navigation
We are accustomed to navigating GUI text editors using a mouse and arrow keys. In vim, we navigate

using keyboard shortcuts while in command mode.

Problem 8. Become accustomed to navigating in command mode using the following keys:

10 Lab 1. Introduction to the Unix Shell

Command Description

a append text after cursor

A Append text to end of line

o Begin a new line below the cursor

O Begin a new line above the cursor

s Substitute characters under cursor

Table 1.6: Commands for entering insert mode

Command Description

k up

j down

h left

l right

w beginning of next word

e end of next word

b beginning of previous word

0 (zero) beginning of line

$ end of line

gg beginning of �le

#gg go to line #

G end of �le

Alternative Ways to Enter Insert Mode
Hitting the i key is not the only way to enter insert mode. Alternative methods are described in

Table 1.6.

Visual Mode
Visual mode allows you to select multiple characters. Among other things, we can use this to replace

words with the s command, and we can select text to cut or copy.

Problem 9. Open the document you created in the previous problem. While in command

mode, enter visual mode by pressing the v key. Using the navigation keys discussed earlier,

move the cursor to select a few words. Copy this text using the y key (stands for yank). Return

to command mode by pressing Esc. Move the cursor to where you would like to paste the text

and press the p key to paste. Similarly, select text in visual mode and hit d to delete the text

and paste it somewhere else with the p key.

Deleting Text in Command Mode
Insert mode should only be used for inserting text. Try to get in the habit of leaving insert mode

as soon as you are done adding the text you want to add. Deleting text is much more e�cient and

versatile in command mode. The x and X commands are used to delete single characters. The d

command is always accompanied by another navigational command. See Table 1.7 for a few examples.

11

Command Description

x delete letter after cursor

X delete letter before cursor

dd delete line

dl delete letter

d#l delete # letters

dw delete word

d#w delete # words

Table 1.7: Commands for deleting in command mode

Command Description

:map customize

:help view vim docs

cw change word

u undo

Ctrl-R redo

. Repeat the previous command

* �nd next occurrence of word under cursor

�nd previous occurrence of word under cursor

/str �nd str in �le

n �nd next match

N �nd previous match

Table 1.8: Commands for entering insert mode

A Few Closing Remarks
In the next lab, we will introduce how to access another machine through the terminal. Vim will be

essential in this situation since GUIs will not be an option.

If you are interested in continuing to use vim, you may be interested in checking out gvim.

Gvim is a GUI that uses vim commands in a more traditional text editor window.

Also, in Table 1.8, we have listed a few more commands that are worth exploring. If you are

interested in any of these features of vim, we encourage you to research these features further on the

internet. Additionally, many people have published their vimrc �le on the internet so other vim users

can learn what options are worth exploring. It is also worth noting that we can use vim navigation

commands in many other places in the shell. For example, try using the navigation commands when

viewing the man vim page.

	Introduction to the Unix Shell

