
1 Web Technologies

Lab Objective: The Internet is a term for the collective grouping of all publicly accessible computer

networks in the world. This network can be traversed to access services such as social communication,

maps, video streaming, and large datasets, all of which are hosted on computers across the world.

Using these technologies requires an understanding of data serialization, data transportation protocols,

and how programs such as servers, clients, and APIs are created to facilitate this communication.

Data Serialization
Serialization is the process of packaging data in a form that makes it easy to transmit the data

and quickly reconstruct it on another computer or in a di�erent programming language. Many

serialization metalanguages exist, such as Python's pickle, YAML, XML, and JSON. JSON, which

stands for JavaScript Object Notation, is the dominant format for serialization in web applications.

Despite having �JavaScript� in its name, JSON is a language-independent format and is frequently

used for transmitting data between di�erent programming languages. It stores information about

objects as a specially formatted string that is easy for both humans and machines to read and write.

Deserialization is the process of reconstructing an object from the string.

JSON is built on two types of data structures: a collection of key/value pairs similar to Python's

built-in dict, and an ordered list of values similar to Python's built-in list.

{ # A family's info written in JSON format.

"lastname": "Smith", # The outer dictionary has two keys:

"children": [# "lastname" and "children".

{ # The "children" key maps to a list of

"name": "Timmy", # two dictionaries, one for each of the

"age": 8 # two children.

},

{

"name": "Missy",

"age": 5

}

]

}

1

2 Lab 1. Web Technologies

Note

To see a longer example of what JSON looks like, try opening a Jupyter Notebook (a .ipynb

�le) in a plain text editor. The �le lists the Notebook cells, each of which has attributes like

"cell_type" (usually code or markdown) and "source" (the actual code in the cell).

The JSON libraries of various languages have a fairly standard interface. The Python standard

library module for JSON is called json. If performance speed is critical, consider using the ujson

or simplejson modules that are written in C. A string written in JSON format that represents a

piece of data is called a JSON message. The json.dumps() function generates the JSON message

for a single Python object, which can be stored and used within the Python program. Alternatively,

the json encoder json.dump() generates the same object, but writes it directly to a �le. To load a

JSON string or �le, use the json decoder json.loads() or json.load(), respectively.

>>> import json

Store info about a car in a nested dictionary.

>>> my_car = {

... "car": {

... "make": "Ford",

... "color": [255, 30, 30] },

... "owner": "me" }

Get the JSON message corresponding to my_car.

>>> car_str = json.dumps(my_car)

>>> car_str

'{"car": {"make": "Ford", "color": [255, 30, 30]}, "owner": "me"}'

Load the JSON message into a Python object, reconstructing my_car.

>>> car_object = json.loads(car_str)

>>> for key in car_object: # The loaded object is a dictionary.

... print(key + ':', car_object[key])

...

car: {'make': 'Ford', 'color': [255, 30, 30]}

owner: me

Write the car info to an external file.

>>> with open("my_car.json", 'w') as outfile:

... json.dump(my_car, outfile)

...

Read the file to check that it saved correctly.

>>> with open("my_car.json", 'r') as infile:

... new_car = json.load(infile)

...

>>> print(new_car.keys()) # This loaded object is also a dictionary.

dict_keys(['car', 'owner'])

3

Problem 1. The �le nyc_traffic.json contains information about 1000 tra�c accidents in

New York City during the summer of 2017.a Each entry lists one or more reasons for the

accident, such as �Unsafe Speed� or �Fell Asleep.�

Write a function that loads the data from the JSON �le. Make a readable, sorted bar

chart showing the total number of times that each of the 7 most common reasons for accidents

are listed in the data set.

(Hint: the collections.Counter data structure and use plt.tight_layout() may be useful

here.)

To check your work, the 6th most common reason is �Backing Unsafely,� listed 59 times.

aSee https://opendata.cityofnewyork.us/.

Custom Encoders and Decoders for JSON

The default JSON encoder and decoder do not support serialization for every kind of data structure.

For example, a set cannot be serialized using only json functions. However, the default JSON

encoder can be subclassed to handle sets or custom data structures. A custom encoder must organize

the information in an object as nested lists and dictionaries. The corresponding custom decoder uses

the way that the encoder organizes the information to reconstruct the original object.

For example, one way to serialize a set is to express it as a dictionary with one key that

indicates its data type, and another key mapping to the actual data.

>>> class SetEncoder(json.JSONEncoder):

... """A custom JSON encoder for Python sets."""

... def default(self, obj):

... if not isinstance(obj, set):

... raise TypeError("expected a set for encoding")

... return {"dtype": "set", "data": list(obj)}

...

Use the custom encoder to convert a set to its custom JSON message.

>>> set_message = json.dumps(set('abca'), cls=SetEncoder)

>>> set_message

'{"dtype": "set", "data": ["a", "b", "c"]}'

Define a custom decoder for JSON messages generated by the SetEncoder.

>>> def set_decoder(item):

... if "dtype" in item:

... if item["dtype"] != "set" or "data" not in item:

... raise ValueError("expected a JSON message from SetEncoder")

... return set(item["data"])

... raise ValueError("expected a JSON message from SetEncoder")

...

Use the custom decoder to convert a JSON message to the original object.

>>> json.loads(set_message, object_hook=set_decoder)

{'a', 'b', 'c'}

https://opendata.cityofnewyork.us/

4 Lab 1. Web Technologies

It is good practice to check for errors to ensure that custom encoders and decoders are only

used when intended.

Problem 2. The following class facilitates a regular 3×3 game of tic-tac-toe, where the boxes

in the board have the following coordinates.

(0, 0) (0, 1) (0, 2)

(1, 0) (1, 1) (1, 2)

(2, 0) (2, 1) (2, 2)

Write a custom encoder and decoder for the TicTacToe class. If the custom encoder

receives anything other than a TicTacToe object, raise a TypeError.

class TicTacToe:

def __init__(self):

"""Initialize an empty board. The O's go first."""

self.board = [[' ']*3 for _ in range(3)]

self.turn, self.winner = "O", None

def move(self, i, j):

"""Mark an O or X in the (i,j)th box and check for a winner."""

if self.winner is not None:

raise ValueError("the game is over!")

elif self.board[i][j] != ' ':

raise ValueError("space ({},{}) already taken".format(i,j))

self.board[i][j] = self.turn

Determine if the game is over.

b = self.board

if any(sum(s == self.turn for s in r)==3 for r in b):

self.winner = self.turn # 3 in a row.

elif any(sum(r[i] == self.turn for r in b)==3 for i in range(3)):

self.winner = self.turn # 3 in a column.

elif b[0][0] == b[1][1] == b[2][2] == self.turn:

self.winner = self.turn # 3 in a diagonal.

elif b[0][2] == b[1][1] == b[2][0] == self.turn:

self.winner = self.turn # 3 in a diagonal.

else:

self.turn = "O" if self.turn == "X" else "X"

def empty_spaces(self):

"""Return the list of coordinates for the empty boxes."""

return [(i,j) for i in range(3) for j in range(3)

if self.board[i][j] == ' ']

def __str__(self):

return "\n---------\n".join(" | ".join(r) for r in self.board)

5

Servers and Clients
The Internet has speci�c protocols that allow for standardized communication within and between

computers. The most common communication protocols in computer networks are contained in the

Internet Protocol Suite. Among these is Transmission Control Protocol (TCP), which is used to

establish a connection between two computers, exchange bits of information called packets, and then

close the connection. TCP creates the connection via network socket objects that are used to send

and receive data packets from a computer.

Essentially, this can be thought of as a PO box at a post o�ce. The socket is like a PO box

owned by a particular program, which checks it periodically for updates. The computer can be

thought of as the post o�ce which houses the PO boxes. PO boxes, or sockets, can send mail to each

other within the same post o�ce, or computer, easily, but more work is needed when the PO boxes

send mail to each other from one post o�ce, or computer, to another.

A server is a program that interacts with and provides functionality to client programs. This

can be thought of as the PO box which sends the mail. A client program contacts a server to receive

some sort of response that assists it in ful�lling its function. This can be thought of as the PO box

which receives the mail. Unlike with physical mail, in which the sender can send mail to himself, a

socket being used as a server in a computer cannot also serve as a client at the same time. Servers are

fundamental to modern networks and provide services such as �le sharing, authentication, webpage

information, databases, etc.

Creating a Server

One simple way to create a server in Python is via the socket module. The server socket must

�rst be initialized by specifying the type of connection and the address at which clients can �nd the

server. The server socket then listens and waits for a connection from a client, receives and processes

data, and eventually sends a response back to the client. After exchanges between the server and the

client are �nished, the server closes the connection to the client.

Name Description

socket Create a new socket using the given address family, socket type and protocol number.

bind Bind the socket to an address. The socket must not already be bound.

listen Enable a server to accept connections.

accept Accept a connection. Must be bound to an address and listening for connections.

connect Connect to a remote socket at address.

sendall Send data to the socket. The socket must be connected to a remote socket.

Continues to send data until either all data has been sent or an error occurs.

recv Receive data from the socket. Must be given a bu�er size; use 1024.

close Mark the socket closed.

Table 1.1: Socket method descriptions

The socket.socket() method receives two parameters, which specify the socket type. The

server address is a (host, port) tuple. The host is the IP address, which in this case is "localhost"

or "0.0.0.0"�the default address that speci�es the local machine and allows connections on all

interfaces. The port number is an integer from 0 to 65535. About 250 port numbers are commonly

used, and certain ports have pre-de�ned uses. Only use port numbers greater than 1023 to avoid

interrupting standard system services, such as email and system updates.

6 Lab 1. Web Technologies

After setting up the server socket, the server program waits for a client to connect. The

accept() method returns a new socket object and the client's address. Data is received through the

connection socket's recv() method, which takes an integer specifying the number of bits of data to

receive. The data is transferred as a raw byte stream (of type bytes), so the decode() method is

necessary to translate the data into a string. Likewise, data that is sent back to the client through

the connection socket's sendall() method must be encoded into a byte stream via the encode()

method.

Finally, try-finally blocks in the server ensure that the connection is always closed securely.

Put these blocks within an in�nite while(True) block to ensure that your server will be ready for

any client request. Note that the accept() method does not return until a connection is made with

a client. Therefore, this server program cannot be executed in its entirety without a client. To stop

a server, raise a KeyBoardInterrupt (press ctrl+c) in the terminal where it is running.

Note that server-client communication is the reason that JSON serialization and deserialization

is so important. For example, information such as an image or a family tree could be sent more

simply using serialized objects.

def mirror_server(server_address=("0.0.0.0", 33333)):

"""A server for reflecting strings back to clients in reverse order."""

print("Starting mirror server on {}".format(server_address))

Specify the socket type, which determines how clients will connect.

server_sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

server_sock.bind(server_address) # Assign this socket to an address.

server_sock.listen(1) # Start listening for clients.

while True:

Wait for a client to connect to the server.

print("\nWaiting for a connection...")

connection, client_address = server_sock.accept()

try:

Receive data from the client.

print("Connection accepted from {}.".format(client_address))

in_data = connection.recv(1024).decode() # Receive data.

print("Received '{}' from client".format(in_data))

Process the received data and send something back to the client.

out_data = in_data[::-1]

print("Sending '{}' back to the client".format(out_data))

connection.sendall(out_data.encode()) # Send data.

finally: # Make sure the connection is closed securely.

connection.close()

print("Closing connection from {}".format(client_address))

7

Achtung!

It often takes some time for a computer to reopen a port after closing a server connection. This

is due to the timeout functionality of speci�c protocols that check connections for errors and

disruptions. While testing code, wait a few seconds before running the program again, or use

di�erent ports for each test.

Problem 3. Write a function that accepts a (host, port) tuple and starts up a tic-tac-toe

server at the speci�ed location. Wait to accept a connection, then while the connection is open,

repeat the following operations.

1. Receive a JSON serialized TicTacToe object (serialized with your custom encoder from

Problem 2) from the client.

2. Deserialize the TicTacToe object using your custom decoder from Problem 2.

3. If the client has just won the game, send "WIN" back to the client and close the connection.

4. If there is no winner but board is full, send "DRAW" to the client and close the connection.

5. If the game still isn't over, make a random move on the tic-tac-toe board and serialize

the updated TicTacToe object. If this move wins the game, send "LOSE" to the client,

then send the serialized object separately (as proof), and close the connection. Otherwise,

send only the updated TicTacToe object back to the client but keep the connection open.

(Hint: print information at each step so you can see what the server is doing.)

Ensure that the connection closes securely even if an exception is raised. Note that you

will not be able to fully test your server until you have written a client (see Problem 4).

Creating a Client

The socket module also has tools for writing client programs. First, create a socket object with

the same settings as the server socket, then call the connect() method with the server address as

a parameter. Once the client socket is connected to the server socket, the two sockets can transfer

information between themselves.

Unlike the server socket, the client socket sends and reads the data itself instead of creating a

new connection socket. When the client program is complete, close the client socket. The server will

keep running, waiting for another client to serve.

To see a client and server communicate, open a terminal and run the server. Then run the

client in a separate terminal. Try this with the provided examples.

def mirror_client(server_address=("0.0.0.0", 33333)):

"""A client program for mirror_server()."""

print("Attempting to connect to server at {}...".format(server_address))

Set up the socket to be the same type as the server.

8 Lab 1. Web Technologies

client_sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

client_sock.connect(server_address) # Attempt to connect to the server.

Send some data from the client user to the server.

out_data = input("Type a message to send to the server: ")

client_sock.sendall(out_data.encode()) # Send data.

Wait to receive a response back from the server.

in_data = client_sock.recv(1024).decode() # Receive data.

print("Received '{}' from the server".format(in_data))

Close the client socket.

client_sock.close()

Problem 4. Write a client function that accepts a (host, port) tuple and connects to the tic-

tac-toe server at the speci�ed location. Start by initializing a new TicTacToe object, then

repeat the following steps until the game is over.

1. Print the board and prompt the player for a move. Continue prompting the player until

they provide valid input.

2. Update the board with the player's move, then serialize it using your custom encoder

from Problem 2, and send the serialized version to the server.

3. Receive a response from the server. If the game is over, congratulate or mock the player

appropriately. If the player lost, receive a second response from the server (the �nal game

board), deserialize it, and print it out.

Close the connection once the game ends.

APIs
An Application Program Interface (API) is a particular kind of server that listens for requests from

authorized users and responds with data. For example, a list of locations can be sent with the proper

request syntax to a Google Maps API, and it will respond with the calculated driving time from

start to end, including each location. Every API has endpoints where clients send their requests.

Though standards exist for creating and communicating with APIs, most APIs have a unique syntax

for authentication and requests that is documented by the organization providing the service.

The requests module is the standard way to send a download request to an API in Python.

>>> import requests

>>> requests.get(endpoint).json() # Download and extract the data.

9

Achtung!

Each website and API has a policy that speci�es appropriate behavior for automated data

retrieval and usage. If data is requested without complying with these requirements, there can

be severe legal consequences. Most websites detail their policies in a �le called robots.txt on

their main page. See, for example, https://www.google.com/robots.txt.

https://www.google.com/robots.txt

10 Lab 1. Web Technologies

Additional Material
Other Internet Protocols
There are many protocols in the Internet Protocol Suite other than TCP that are used for di�erent

purposes. The Protocol Suite can be divided into four categorical layers:

1. Application: Software that utilizes transport protocols to move information between comput-

ers. This layer includes protocols important for email, �le transfers, and browsing the web.

2. Transport: Protocols that assist in basic high level communication between two computers in

areas such as data-streaming, reliability control, and �ow control.

3. Internet: Protocols that handle routing, assignment of addresses, and movement of data on a

network.

4. Link: Protocols that communicate with local networking hardware such as routers and switches.

Although these examples are simple, every data transfer with TCP follows a similar pattern.

For basic connections, these interactions are simple processes. However, requesting a webpage would

require management of possibly hundreds of connections. In order to make this more feasible, there

are higher level protocols that handle smaller TCP/IP details. The most predominant of these

protocols is HTTP.

HTTP
HTTP stands for Hypertext Transfer Protocol, which is an application layer networking protocol.

It is a higher level protocol than TCP but uses TCP protocols to manage connections and provide

network capabilities. The protocol is centered around a request and response paradigm in which a

client makes a request to a server and the server replies with response. There are several methods,

or requests, de�ned for HTTP servers, the three most common of which are GET, POST, and PUT.

GET requests request information from a server, POST requests modify the state of the server, and

PUT requests add new pieces of data to the server.

Every HTTP request or response consists of two parts: a header and a body. The headers

contain important information about the request including: the type of request, encoding, and a

timestamp. Custom headers may be added to any request to provide additional information. The

body of the request or response contains the appropriate data or may be empty.

An HTTP connection can be setup in Python by using the standard Python library http.

Though it is the standard, the process can be greatly simpli�ed by using an additional library called

requests. The following demonstrates a simple GET request with the http library.

>>> import http

>>> conn = http.client.HTTPConnection("www.example.net") # Establish connection

>>> conn.request("GET", "/") # Send GET request

>>> resp = conn.getresponse() # Server response message

>>> print(resp.status)

200 # A status of 200 is the standard sign for successful communication

>>> print(resp.getheaders())

[('Cache-Control', 'max-age=604800'), ... , ('Content-Length', '1270')] # ←↩
Header information about request

>>> print(resp.read())

11

b'<!doctype html>\n<html> ... n</html>\n' # Long string with HTML from ←↩
webpage

>>> conn.close() # When the request is finished, the connection is closed

As previously mentioned, this exchange is greatly simpli�ed by the requests library:

>>> import requests

>>> r = requests.get("http://www.example.net")

>>> print(r.headers)

{'Cache-Control': 'max-age=604800', ... , 'Content-Length': '606'}

>>> print(r.content)

b'<!doctype html>\n<html> ... n</html>\n'

This process is how a web browser (a client program) retrieves a webpage. It �rst sends an

HTTP request to the web server (a server program) and receives the HTML, CSS, and other code

�les for a webpage, which are compiled and run in the web browser.

Requests also often include parameters which are keys to tell the server what is being requested

or placed. These parameters can be included in the URL that requests from the server, or in

parameters that the requests library can implement. For example:

>>> r = requests.get("http://httpbin.org/get?key2=value2&key1=value1")

>>> print(r.text)

{

"args": {

"key1": "value1",

"key2": "value2"

},

...

},

"origin": "128.187.116.7",

"url": "http://httpbin.org/get?key2=value2&key1=value1"

}

>>> r = requests.get("http://httpbin.org/get", params={'key1':'value1','key2':'←↩
value2'})

>>> print(r.url)

http://httpbin.org/get?key2=value2&key1=value1

>>> print(r.text)

{

"args": {

"key1": "value1",

"key2": "value2"

},

...

},

"origin": "128.187.116.7",

"url": "http://httpbin.org/get?key2=value2&key1=value1"

}

12 Lab 1. Web Technologies

A similar format to GET requests can also be used for PUT or POST requests. These special

requests alter the state of the server or send a piece of data to the server, respectively. In addition,

for PUT and POST requests, a data string or dictionary may be sent as a binary stream attachment.

The requests library attaches these data objects with the data parameter. For example:

>>> r = requests.put('http://httpbin.org/put', data='{key1:value1,key2:value2}'←↩
)

>>> print(r.text)

{

"args": {},

"data": "{key1:value1,key2:value2}",

"files": {},

"form": {},

...

"json": null,

"origin": "128.187.116.7",

"url": "http://httpbin.org/put"

}

Note that the data parameter accepts input in the form of a JSON string.

Frequently, when these requests arrive at the server, they are in the form of a binary stream,

which can be read with similar notation to the Python open function. Below is an example of reading

the previous PUT request with a data attachment as a binary stream using read.

>>> data = r.json()['data'] # Retrieve the sent data string

>>> print(data)

'{key1:value1,key2:value2}'

>>> print(len(data.encode())) # Show the string's length in bytes

25

>>> with open('request.txt', 'w') as file:

>>> file.write(data) # Write the string to a file

>>> with open('request.txt', 'rb') as file: # Open the file as a binary stream

>>> file.read(25) # Read the correct number of bytes

b'{key1:value1,key2:value2}'

For more information on the requests library, see the documentation at http://docs.python-requests.

org/.

http://docs.python-requests.org/
http://docs.python-requests.org/

	Web Technologies

