
1 Web Scraping

Lab Objective: Web Scraping is the process of gathering data from websites on the internet.

Since almost everything rendered by an internet browser as a web page uses HTML, the �rst step in

web scraping is being able to extract information from HTML. In this lab, we introduce the requests

library for scraping web pages, and BeautifulSoup, Python's canonical tool for e�ciently and cleanly

navigating and parsing HTML.

HTTP and Requests
HTTP stands for Hypertext Transfer Protocol, which is an application layer networking protocol. It

is a higher level protocol than TCP, which we used to build a server in the Web Technologies lab, but

uses TCP protocols to manage connections and provide network capabilities. The HTTP protocol is

centered around a request and response paradigm, in which a client makes a request to a server and

the server replies with a response. There are several methods, or requests, de�ned for HTTP servers,

the three most common of which are GET, POST, and PUT. GET requests request information from

the server, POST requests modify the state of the server, and PUT requests add new pieces of data

to the server.

The standard way to get the source code of a website using Python is via the requests library.1

Calling requests.get() sends an HTTP GET request to a speci�ed website. The website returns a

response code, which indicates whether or not the request was received, understood, and accepted.

If the response code is good, typically 200, then the response will also include the website source

code as an HTML �le.

>>> import requests

Make a request and check the result. A status code of 200 is good.

>>> response = requests.get("http://www.byu.edu")

>>> print(response.status_code, response.ok, response.reason)

200 True OK

1Though requests is not part of the standard library, it is recognized as a standard tool in the data science

community. See http://docs.python-requests.org/.

1

http://docs.python-requests.org/

2 Lab 1. Web Scraping

The HTML of the website is stored in the 'text' attribute.

>>> print(response.text)

<!DOCTYPE html>

<html lang="en" dir="ltr" prefix="content: http://purl.org/rss/1.0/modules/←↩
content/ dc: http://purl.org/dc/terms/ foaf: http://xmlns.com/foaf/0.1/ ←↩
og: http://ogp.me/ns# rdfs: http://www.w3.org/2000/01/rdf-schema# schema:←↩
http://schema.org/ sioc: http://rdfs.org/sioc/ns# sioct: http://rdfs.org←↩

/sioc/types# skos: http://www.w3.org/2004/02/skos/core# xsd: http://www.←↩
w3.org/2001/XMLSchema# " class=" ">

<head>

<meta charset="utf-8" />

...

Note that some websites aren't built to handle large amounts of tra�c or many repeated

requests. Most are built to identify web scrapers or crawlers that initiate many consecutive GET

requests without pauses, and retaliate or block them. When web scraping, always make sure to

store the data that you receive in a �le and include error checks to prevent retrieving the same data

unnecessarily. This is especially important in larger applications.

Problem 1. Use the requests library to get the HTML source for the website http://www.

example.com. Save the source as a �le called example.html. If the �le already exists, make

sure not to scrape the website, or overwrite the �le. You will use this �le later in the lab.

Achtung!

Scraping copyrighted information without the consent of the copyright owner can have severe

legal consequences. Many websites, in their terms and conditions, prohibit scraping parts or all

of the site. Websites that do allow scraping usually have a �le called robots.txt (for example,

www.google.com/robots.txt) that speci�es which parts of the website are o�-limits and how

often requests can be made according to the robots exclusion standard.a

Be careful and considerate when doing any sort of scraping, and take care when writing

and testing code to avoid unintended behavior. It is up to the programmer to create a scraper

that respects the rules found in the terms and conditions and in robots.txt.b

aSee www.robotstxt.org/orig.html and en.wikipedia.org/wiki/Robots_exclusion_standard.
bPython provides a parsing library called urllib.robotparser for reading robot.txt �les. For more infor-

mation, see https://docs.python.org/3/library/urllib.robotparser.html.

HTML
Hyper Text Markup Language, or HTML, is the standard markup language�a language designed for

the processing, de�nition, and presentation of text�for creating webpages. It structures a document

using pairs of tags that surround and de�ne content. Opening tags have a tag name surrounded

by angle brackets (<tag-name>). The companion closing tag looks the same, but with a forward

http://www.example.com
http://www.example.com
www.google.com/robots.txt
http://www.robotstxt.org/orig.html
https://en.wikipedia.org/wiki/Robots_exclusion_standard
https://docs.python.org/3/library/urllib.robotparser.html

3

slash before the tag name (</tag-name>). A list of all current HTML tags can be found at http:

//htmldog.com/reference/htmltags.

Most tags can be combined with attributes to include more data about the content, help identify

individual tags, and make navigating the document much simpler. In the following example, the <a>

tag has id and href attributes.

<html> <!-- Opening tags -->

<body>

<p>

Click here

for more information.

</p> <!-- Closing tags -->

</body>

</html>

In HTML, href stands for hypertext reference, a link to another website. Thus the above

example would be rendered by a browser as a single line of text, with here being a clickable link to

http://www.example.com:

Click here for more information.

Unlike Python, HTML does not enforce indentation (or any whitespace rules), though inden-

tation generally makes HTML more readable. The previous example can be written in a single

line.

<html><body><p>Click here

for more information.</p></body></html>

Special tags, which don't contain any text or other tags, are written without a closing tag

and in a single pair of brackets. A forward slash is included between the name and the closing

bracket. Examples of these include <hr/>, which describes a horizontal line, and , the tag for

representing an image.

Problem 2. Using the output from Problem 1, examine the HTML source code for http:

//www.example.com. What tags are used? What is the value of the type attribute associated

with the style tag?

Write a function that returns the set of names of tags used in the website, and the value

of the type attribute of the style tag (as a string).

(Hint: there are ten unique tag names.)

BeautifulSoup
BeautifulSoup (bs4) is a package2 that makes it simple to navigate and extract data from HTML

documents. See http://www.crummy.com/software/BeautifulSoup/bs4/doc/index.html for the

full documentation.

2BeautifulSoup is not part of the standard library; install it with conda install beautifulsoup4 or with

pip install beautifulsoup4.

http://htmldog.com/reference/htmltags
http://htmldog.com/reference/htmltags
http://www.example.com
http://www.example.com
http://www.example.com
http://www.example.com
http://www.crummy.com/software/BeautifulSoup/bs4/doc/index.html

4 Lab 1. Web Scraping

The bs4.BeautifulSoup class accepts two parameters to its constructor: a string of HTML

code and an HTML parser to use under the hood. The HTML parser is technically a keyword

argument, but the constructor prints a warning if one is not speci�ed. The standard choice for the

parser is "html.parser", which means the object uses the standard library's html.parser module

as the engine behind the scenes.

Note

Depending on project demands, a parser other than "html.parser" may be useful. A couple of

other options are "lxml", an extremely fast parser written in C, and "html5lib", a slower parser

that treats HTML in much the same way a web browser does, allowing for irregularities. Both

must be installed independently; see https://www.crummy.com/software/BeautifulSoup/

bs4/doc/#installing-a-parser for more information.

A BeautifulSoup object represents an HTML document as a tree. In the tree, each tag is a

node with nested tags and strings as its children. The prettify() method returns a string that can

be printed to represent the BeautifulSoup object in a readable format that re�ects the tree structure.

>>> from bs4 import BeautifulSoup

>>> small_example_html = """

<html><body><p>

Click here

for more information.

</p></body></html>

"""

>>> small_soup = BeautifulSoup(small_example_html, 'html.parser')

>>> print(small_soup.prettify())

<html>

<body>

<p>

Click

here

for more information.

</p>

</body>

</html>

Each tag in a BeautifulSoup object's HTML code is stored as a bs4.element.Tag object, with

actual text stored as a bs4.element.NavigableString object. Tags are accessible directly through

the BeautifulSoup object.

Get the <p> tag (and everything inside of it).

>>> small_soup.p

https://www.crummy.com/software/BeautifulSoup/bs4/doc/#installing-a- parser
https://www.crummy.com/software/BeautifulSoup/bs4/doc/#installing-a- parser

5

<p>

Click here

for more information.

</p>

Get the <a> sub-tag of the <p> tag.

>>> a_tag = small_soup.p.a

>>> print(a_tag, type(a_tag), sep='\n')

here

<class 'bs4.element.Tag'>

Get just the name, attributes, and text of the <a> tag.

>>> print(a_tag.name, a_tag.attrs, a_tag.string, sep="\n")

a

{'id': 'info', 'href': 'http://www.example.com'}

here

Attribute Description

name The name of the tag

attrs A dictionary of the attributes

string The single string contained in the tag

strings Generator for strings of children tags

stripped_strings Generator for strings of children tags, stripping whitespace

text Concatenation of strings from all children tags

Table 1.1: Data attributes of the bs4.element.Tag class.

Problem 3. The BeautifulSoup class has a find_all() method that, when called with True

as the only argument, returns a list of all tags in the HTML source code.

Write a function that accepts a string of HTML code as an argument. Use BeautifulSoup

to return a list of the names of the tags in the code. Use your function and the source code

from http://www.example.com (use the output from Problem 1) to check your answers from

Problem 2.

Navigating the Tree Structure
Not all tags are easily accessible from a BeautifulSoup object. Consider the following example.

>>> pig_html = """

<html><head><title>Three Little Pigs</title></head>

<body>

<p class="title">The Three Little Pigs</p>

<p class="story">Once upon a time, there were three little pigs named

Larry,

Mo, and

Curly.

http://www.example.com

6 Lab 1. Web Scraping

<p>The three pigs had an odd fascination with experimental construction.</p>

<p>...</p>

</body></html>

"""

>>> pig_soup = BeautifulSoup(pig_html, "html.parser")

>>> pig_soup.p

<p class="title">The Three Little Pigs</p>

>>> pig_soup.a

Larry,

Since the HTML in this example has several <p> and <a> tags, only the �rst tag of each name

is accessible directly from pig_soup. The other tags can be accessed by manually navigating through

the HTML tree.

Every HTML tag (except for the topmost tag, which is usually <html>) has a parent tag. Each

tag also has zero or more sibling and children tags or text. Following a true tree structure, every

bs4.element.Tag in a soup has multiple attributes for accessing or iterating through parent, sibling,

or child tags.

Attribute Description

parent The parent tag

parents Generator for the parent tags up to the top level

next_sibling The tag immediately after to the current tag

next_siblings Generator for sibling tags after the current tag

previous_sibling The tag immediately before the current tag

previous_siblings Generator for sibling tags before the current tag

contents A list of the immediate children tags

children Generator for immediate children tags

descendants Generator for all children tags (recursively)

Table 1.2: Navigation attributes of the bs4.element.Tag class.

Start at the first <a> tag in the soup.

>>> a_tag = pig_soup.a

>>> a_tag

Larry,

Get the names of all of <a>'s parent tags, traveling up to the top.

The name '[document]' means it is the top of the HTML code.

>>> [par.name for par in a_tag.parents] # <a>'s parent is <p>, whose

['p', 'body', 'html', '[document]'] # parent is <body>, and so on.

Get the next siblings of <a>.

>>> a_tag.next_sibling

'\n' # The first sibling is just text.

>>> a_tag.next_sibling.next_sibling # The second sibling is a tag.

Mo

7

%# Alternatively, get all siblings past <a> at once.

%>>> list(a_tag.next_siblings)

%['\n',

% Mo,

% ', and\n',

% Curly.,

% '\n',

% <p>The three pigs had an odd fascination with experimental construction.</p>,

% '\n',

% <p>...</p>,

% '\n']

Note carefully that newline characters are considered to be children of a parent tag. Therefore

iterating through children or siblings often requires checking which entries are tags and which are

just text.

Get to the <p> tag that has class="story".

>>> p_tag = pig_soup.body.p.next_sibling.next_sibling

>>> p_tag.attrs["class"] # Make sure it's the right tag.

['story']

Iterate through the child tags of <p> and print hrefs whenever they exist.

>>> for child in p_tag.children:

... if hasattr(child, "attrs") and "href" in child.attrs:

... print(child.attrs["href"])

http://example.com/larry

http://example.com/mo

http://example.com/curly

Note that the "class" attribute of the <p> tag is a list. This is because the "class" attribute

can take on several values at once; for example, the tag <p class="story book"> is of class 'story'

and of class 'book'.

The behavior of the string attribute of a bs4.element.Tag object depends on the structure

of the corresponding HTML tag.

1. If the tag has a string of text and no other child elements, then string is just that text.

2. If the tag has exactly one child tag and the child tag has only a string of text, then the tag has

the same string as its child tag.

3. If the tag has more than one child, then string is None. In this case, use strings to iterate

through the child strings. Alternatively, the get_text() method returns all text belonging to

a tag and to all of its descendants. In other words, it returns anything inside a tag that isn't

another tag.

>>> pig_soup.head

<head><title>Three Little Pigs</title></head>

8 Lab 1. Web Scraping

Case 1: the <title> tag's only child is a string.

>>> pig_soup.head.title.string

'Three Little Pigs'

Case 2: The <head> tag's only child is the <title> tag.

>>> pig_soup.head.string

'Three Little Pigs'

Case 3: the <body> tag has several children.

>>> pig_soup.body.string is None

True

>>> print(pig_soup.body.get_text().strip())

The Three Little Pigs

Once upon a time, there were three little pigs named

Larry,

Mo, and

Curly.

The three pigs had an odd fascination with experimental construction.

...

Problem 4. Using the output from Problem 1, write a function that reads the �le and loads

the code into BeautifulSoup. Find the only <a> tag with a hyperlink, and return its text.

Searching for Tags

Navigating the HTML tree manually can be helpful for gathering data out of lists or tables, but

these kinds of structures are usually buried deep in the tree. The find() and find_all() methods

of the BeautifulSoup class identify tags that have distinctive characteristics, making it much easier

to jump straight to a desired location in the HTML code. The find() method only returns the �rst

tag that matches a given criteria, while find_all() returns a list of all matching tags. Tags can be

matched by name, attributes, and/or text.

Find the first tag in the soup.

>>> pig_soup.find(name='b')

The Three Little Pigs

Find all tags with a class attribute of 'pig'.

Since 'class' is a Python keyword, use 'class_' as the argument.

>>> pig_soup.find_all(class_="pig")

[Larry,,

Mo,

Curly.]

Find the first tag that matches several attributes.

>>> pig_soup.find(attrs={"class": "pig", "href": "http://example.com/mo"})

Mo

9

Find the first tag whose text is 'Mo'.

>>> pig_soup.find(string='Mo')

'Mo' # The result is the actual string,

>>> pig_soup.find(string='Mo').parent # so go up one level to get the tag.

Mo

Problem 5. The �le san_diego_weather.html contains the HTML source for an old page

from Weather Underground.a Write a function that reads the �le and loads it into Beautiful-

Soup. Return a list of the following tags:

1. The tag containing the date �Thursday, January 1, 2015�.

2. The tags which contain the links �Previous Day� and �Next Day.�

3. The tag which contains the number associated with the Actual Max Temperature.

This HTML tree is signi�cantly larger than the previous examples. To get started, consider

opening the �le in a web browser. Find the element that you are searching for on the page,

right click it, and select Inspect. This opens the HTML source at the element that the mouse

clicked on.

aSee http://www.wunderground.com/history/airport/KSAN/2015/1/1/DailyHistory.html?req_city=San+

Diego&req_state=CA&req_statename=California&reqdb.zip=92101&reqdb.magic=1&reqdb.wmo=99999&MR=1

Advanced Search Techniques

Consider the problem of �nding the tag that is a link to the URL http://example.com/curly.

>>> pig_soup.find(href="http://example.com/curly")

Curly.

This approach works, but it requires entering in the entire URL. To perform generalized

searches, the find() and find_all() method also accept compiled regular expressions from the

re module. This way, the methods locate tags whose name, attributes, and/or string matches a

pattern.

>>> import re

Find the first tag with an href attribute containing 'curly'.

>>> pig_soup.find(href=re.compile(r"curly"))

Curly.</a

Find the first tag with a string that starts with 'Cu'.

>>> pig_soup.find(string=re.compile(r"^Cu")).parent

Curly.

Find all tags with text containing 'Three'.

http://www.wunderground.com/history/airport/KSAN/2015/1/1/DailyHistory.html?req_city=San+Diego&req_state=CA&req_statename=California&reqdb.zip=92101&reqdb.magic=1&reqdb.wmo=99999&MR=1
http://www.wunderground.com/history/airport/KSAN/2015/1/1/DailyHistory.html?req_city=San+Diego&req_state=CA&req_statename=California&reqdb.zip=92101&reqdb.magic=1&reqdb.wmo=99999&MR=1
http://example.com/curly

10 Lab 1. Web Scraping

>>> [tag.parent for tag in pig_soup.find_all(string=re.compile(r"Three"))]

[<title>Three Little Pigs</title>, The Three Little Pigs]

Finally, to �nd a tag that has a particular attribute, regardless of the actual value of the

attribute, use True in place of search values.

Find all tags with an 'id' attribute.

>>> pig_soup.find_all(id=True)

[Larry,,

Mo,

Curly.]

Final the names all tags WITHOUT an 'id' attribute.

>>> [tag.name for tag in pig_soup.find_all(id=False)]

['html', 'head', 'title', 'body', 'p', 'b', 'p', 'p', 'p']

Problem 6. The �le large_banks_index.html is an index of data about large banks, as

recorded by the Federal Reserve.a Write a function that reads the �le and loads the source into

BeautifulSoup. Return a list of the tags containing the links to bank data from September 30,

2003 to December 31, 2014, where the dates are in reverse chronological order.

aSee https://www.federalreserve.gov/releases/lbr/.

Problem 7. The �le large_banks_data.html is one of the pages from the index in Problem

6.a Write a function that reads the �le and loads the source into BeautifulSoup. Create a single

�gure with two subplots:

1. A sorted bar chart of the seven banks with the most domestic branches.

2. A sorted bar chart of the seven banks with the most foreign branches.

In the case of a tie, sort the banks alphabetically by name.

aSee http://www.federalreserve.gov/releases/lbr/20030930/default.htm.

https://www.federalreserve.gov/releases/lbr/
http://www.federalreserve.gov/releases/lbr/20030930/default.htm

	Web Scraping

