
A Introduction to
Scikit-Learn

Lab Objective: Scikit-learn is the one of the fundamental tools in Python for machine learning.
In this appendix we highlight and give examples of some popular scikit-learn tools for classification
and regression, training and testing, data normalization, and constructing complex models.

Note

This guide corresponds to scikit-learn version 0.20, which has a few significant differences from
previous releases. See http://scikit-learn.org/stable/whats_new.html for current release
notes. Install scikit-learn (the sklearn module) with conda install scikit-learn.

Base Classes and API
Many machine learning problems center on constructing a function f : X → Y , called a model or
estimator, that accurately represents properties of given data. The domain X is usually RD, and the
range Y is typically either R (regression) or a subset of Z (classification). The model is trained on
N samples (xi)

N
i=1 ⊂ X that usually (but not always) have N accompanying labels (yi)

N
i=1 ⊂ Y .

Scikit-learn [PVG+11, BLB+13] takes a highly object-oriented approach to machine learning
models. Every major scikit-learn class inherits from sklearn.base.BaseEstimator and conforms to
the following conventions:

1. The constructor __init__() receives hyperparameters for the classifier, which are parameters
for the model f that are not dependent on data. Each hyperparameter must have a default
value (i.e., every argument of __init__() is a keyword argument), and each argument must
be saved as an instance variable of the same name as the parameter.

2. The fit() method constructs the model f . It receives an N × D matrix X and, optionally,
a vector y with N entries. Each row xi of X is one sample with corresponding label yi. By
convention, fit() always returns self.

Along with the BaseEstimator class, there are several other “mix in” base classes in sklearn.base
that define specific kinds of models. The three listed below are the most common.1

1See http://scikit-learn.org/stable/modules/classes.html#base-classes for the complete list.

1

http://scikit-learn.org/stable/whats_new.html
http://scikit-learn.org/stable/modules/classes.html#base-classes

2 Appendix A. Introduction to Scikit-Learn

• ClassifierMixin: for classifiers, estimators that take on discrete values.

• RegressorMixin: for regressors, estimators that take on continuous values.

• TransformerMixin: for preprocessing data before estimation.

Classifiers and Regressors

The ClassifierMixin and RegressorMixin both require a predict() method that acts as the
actual model f . That is, predict() receives an N × D matrix X and returns N predicted labels
(yi)

N
i=1, where yi is the label corresponding to the ith row of X. Both of these base class have a

predefined score() method that uses predict() to test the accuracy of the model. It accepts N×D
test data and a vector of N corresponding labels, then reports either the classification accuracy (for
classifiers) or the R2 value of the regression (for regressors).

For example, a KNeighborsClassifier from sklearn.neighbors inherits from BaseEstimator
and ClassifierMixin. This classifier uses a simple strategy: to classify a new piece of data z, find
the k training samples that are “nearest” to z, then take the most common label corresponding
to those nearest neighbors to be the label for z. Its constructor accepts hyperparameters such as
n_neighbors, for determining the number of neighbors k to search for, algorithm, which speficies the
strategy to find the neighbors, and n_jobs, the number of parallel jobs to run during the neighbors
search. Again, these hyperparameters are independent of any data, which is why they are set in the
constructor (before fitting the model). Calling fit() organizes the data X into a data structure
for efficient nearest neighbor searches (determined by algorithm). Calling predict() executes the
search, determines the most common label of the neighbors, and returns that label.

>>> from sklearn.datasets import load_breast_cancer
>>> from sklearn.neighbors import KNeighborsClassifier
>>> from sklearn.model_selection import train_test_split

Load the breast cancer dataset and split it into training and testing groups.
>>> cancer = load_breast_cancer()
>>> X_train, X_test, y_train, y_test = train_test_split(cancer.data,
... cancer.target)
>>> print(X_train.shape, y_train.shape)
(426, 30) (426,) # There are 426 training points, each with 30 features.

Train a KNeighborsClassifier object on the training data.
fit() returns the object, so we can instantiate and train in a single line.
>>> knn = KNeighborsClassifier(n_neighbors=2).fit(X_train, y_train)
The hyperparameter 'n_neighbors' is saved as an attribute of the same name.
>>> knn.n_neighbors
2

Test the classifier on the testing data.
>>> knn.predict(X_test[:6])
array([0, 1, 0, 1, 1, 0]) # Predicted labels for the first 6 test points.
>>> knn.score(X_test, y_test)
0.8951048951048951 # predict() chooses 89.51% of the labels right.

3

The KNeighborsClassifier object could easily be replaced with a different classifier, such as a
GaussianNB object from sklearn.naive_bayes. Since GaussianNB also inherits from BaseEstimator
and ClassifierMixin, it has fit(), predict(), and score() methods that take in the same kinds
of inputs as the corresponding methods for the KNeighborsClassifier. The only difference, from
an external perspective, is the hyperparameters that the constructor accepts.

>>> from sklearn.naive_bayes import GaussianNB

>>> gnb = GaussianNB().fit(X_train, y_train)
>>> gnb.predict(X_test[:6])
array([1, 1, 0, 1, 1, 0])
>>> gnb.score(X_test, y_test)
0.9440559440559441

Roughly speaking, the GaussianNB classifier assumes all features in the data are independent
and normally distributed, then uses Bayes’ rule to compute the likelihood of a new point belonging to
a label for each of the possible labels. To do this, the fit() method computes the mean and variance
of each feature, grouped by label. These quantities are saved as the attributes theta_ (the means)
and sigma_ (the variances), then used in predict(). Parameters like these that are dependent
on data are only defined in fit(), not the constructor, and they are always named with a trailing
underscore. These “non-hyper” parameters are often simply called model parameters.

>>> gnb.classes_ # The collection of distinct training labels.
array([0, 1])
>>> gnb.theta_[:,0] # The means of the first feature, grouped by label.
array([17.55785276, 12.0354981])
The samples with label 0 have a mean of 17.56 in the first feature.

The fit() method should do all of the “heavy lifting” by calculating the model parameters.
The predict() method should then use these parameters to choose a label for test data.

Hyperparameters Model Parameters
Data dependence No Yes

Initialization location __init__() fit()
Naming convention Same as argument name Ends with an underscore

Examples n_neighbors, algorithm, n_jobs classes_, theta_, sigma_

Table A.1: Naming and initialization conventions for scikit-learn model parameters.

Building Custom Estimators
The consistent conventions in the various scikit-learn classes makes it easy to use a wide variety
of estimators with near-identical syntax. These conventions also makes it possible to write custom
estimators that behave like native scikit-learn objects. This usually only involves writing fit() and
predict() methods and inheriting from the appropriate base classes. As a simple (though poorly
performing) example, consider an estimator that either always predicts the same user-provided label,
or that always predicts the most common label in the training data. Which strategy to use is
independent of the data, so we encode that behavior with hyperparameters; the most common label
must be calculated from the data, so that is a model parameter.

4 Appendix A. Introduction to Scikit-Learn

>>> import numpy as np
>>> from collections import Counter
>>> from sklearn.base import BaseEstimator, ClassifierMixin

>>> class PopularClassifier(BaseEstimator, ClassifierMixin):
... """Classifier that always guesses the most common training label."""
... def __init__(self, strategy="most_frequent", constant=None):
... self.strategy = strategy # Store the hyperparameters, using
... self.constant = constant # the same names as the arguments.
...
... def fit(self, X, y):
... """Find and store the most common label."""
... self.popular_label_ = Counter(y).most_common(1)[0][0]
... return self # fit() always returns 'self'.
...
... def predict(self, X):
... """Always guess the most popular training label."""
... M = X.shape[0]
... if self.strategy == "most_frequent":
... return np.full(M, self.popular_label_)
... elif self.strategy == "constant":
... return np.full(M, self.constant)
... else:
... raise ValueError("invalid value for 'strategy' param")
...
Train a PopularClassifier on the breast cancer training data.
>>> pc = PopularClassifier().fit(X_train, y_train)
>>> pc.popular_label_
1
Score the model on the testing data.
>>> pc.score(X_test, y_test)
0.6573426573426573 # 65.73% of the testing data is labeled 1.

Change the strategy to always guess 0 by changing the hyperparameters.
>>> pc.strategy = "constant"
>>> pc.constant = 0
>>> pc.score(X_test, y_test)
0.34265734265734266 # 34.27% of the testing data is labeled 0.

This is a terrible classifier, but it is actually implemented as sklearn.dummy.DummyClassifier
because any legitimate machine learning algorithm should be able to beat it, so it is useful as a baseline
comparison.

Note that score() was inherited from ClassifierMixin (it isn’t defined explicitly), so it
returns a classification rate. In the next example, a slight simplification of the equally unintelligent
sklearn.dummy.DummyRegressor, the score() method is inherited from RegressorMixin, so it
returns an R2 value.

5

>>> from sklearn.base import RegressorMixin

>>> class ConstRegressor(BaseEstimator, RegressorMixin):
... """Regressor that always predicts a mean or median of training data."""
... def __init__(self, strategy="mean", constant=None):
... self.strategy = strategy # Store the hyperparameters, using
... self.constant = constant # the same names as the arguments.
...
... def fit(self, X, y):
... self.mean_, self.median_ = np.mean(y), np.median(y)
... return self # fit() always returns 'self'.
...
... def predict(self, X):
... """Always predict the middle of the training data."""
... M = X.shape[0]
... if self.strategy == "mean":
... return np.full(M, self.mean_)
... elif self.strategy == "median":
... return np.full(M, self.median_)
... elif self.strategy == "constant":
... return np.full(M, self.constant)
... else:
... raise ValueError("invalid value for 'strategy' param")
...
Train on the breast cancer data (treating it as a regression problem).
>>> cr = ConstRegressor(strategy="mean").fit(X_train, y_train)
>>> print("mean:", cr.mean_, " median:", cr.median_)
mean: 0.6173708920187794 median: 1.0

Get the R^2 score of the regression on the testing data.
>>> cr.score(X_train, y_train)
0 # Unsurprisingly, no correlation.

Achtung!

Both PopularClassifier and ConstRegressor wait until predict() to validate the strategy
hyperparameter. The check could easily be done in the constructor, but that goes against scikit-
learn conventions: in order to cooperate with automated validation tools, the constructor of any
class inheriting from BaseEstimator must store the arguments of __init__() as attributes—
with the same names as the arguments—and do nothing else.

6 Appendix A. Introduction to Scikit-Learn

Note

The first input to fit() and predict() are always two-dimensional N × D NumPy arrays,
where N is the number of observations and D is the number of features. To fit or predict on
one-dimensional data (D = 1), reshape the input array into a “column vector” before feeding it
into the estimator. One-dimensional problems are somewhat rare in machine learning, but the
following example shows how to do a simple one-dimensional linear regression.

>>> from matplotlib import pyplot as plt
>>> from sklearn.linear_model import LinearRegression

Generate data for a 1-dimensional regression problem.
>>> X = np.linspace(0, 5, 10)
>>> Y = 2*X + 1 + np.random.normal(size=10)

Reshape the training data into a column vector.
>>> lr = LinearRegression().fit(X.reshape((-1,1)), Y)

Define another set of points to do predictions on.
>>> x = np.linspace(0, 5, 20)
>>> y = lr.predict(x.reshape((-1,1))) # Reshape before predicting.
>>> plt.plot(X, Y, 'k*', label="data")
>>> plt.plot(x, y, label="predicted")
>>> plt.legend(loc="upper left")
>>> plt.show()

0 1 2 3 4 5
0

2

4

6

8

10
data
predicted

Transformers

A scikit-learn transformer processes data to make it better suited for estimation. This may involve
shifting and scaling data, dropping columns, replacing missing values, and so on.

7

Classes that inherit from the TransformerMixin base class have a fit() method that accepts
an N ×D matrix X (like an estimator) and an optional set of labels. The labels are not needed—in
fact the fit() method should do nothing with them—but the parameter for the labels remains as a
keyword argument to be consistent with the fit(X,y) syntax of estimators. Instead of a predict()
method, the transform() method accepts data, modifies it (usually via a copy), and returns the
result. The new data may or may not have the same number of columns as the original data.

One common transformation is shifting and scaling the features (columns) so that they each
have a mean of 0 and a standard deviation of 1. The following example implements a basic version
of this transformer.

>>> from sklearn.base import TransformerMixin

>>> class NormalizingTransformer(BaseEstimator, TransformerMixin):
... def fit(self, X, y=None):
... """Calculate the mean and standard deviation of each column."""
... self.mu_ = np.mean(X, axis=0)
... self.sig_ = np.std(X, axis=0)
... return self
...
... def transform(self, X):
... """Center each column at zero and normalize it."""
... return (X - self.mu_) / self.sig_
...
Fit the transformer and transform the cancer data (both train and test).
>>> nt = NormalizingTransformer()
>>> Z_train = nt.fit_transform(X_train) # Or nt.fit(X_train).transform(X_train)
>>> Z_test = nt.transform(X_test) # Transform test data (without fitting)

>>> np.mean(Z_train, axis=0)[:3] # The columns of Z_train have mean 0...
array([-8.08951237e-16, -1.72006384e-17, 1.78678147e-15])
>>> np.std(Z_train, axis=0)[:3] # ...and have unit variance.
array([1., 1., 1.])
>>> np.mean(Z_test, axis=0)[:3] # The columns of Z_test each have mean
array([-0.02355067, 0.11665332, -0.03996177]) # close to 0...
>>> np.std(Z_test, axis=0)[:3] # ...and have close to unit deviation.
array([0.9263711 , 1.18461151, 0.91548103])

Check to see if the classification improved.
>>> knn.fit(X_train, y_train).score(X_test, y_test) # Old score.
0.8951048951048951
>>> knn.fit(Z_train, y_train).score(Z_test, y_test) # New score.
0.958041958041958

This particular transformer is implemented as sklearn.preprocessing.StandardScaler. A
close cousin is sklearn.preprocessing.RobustScaler, which ignores outliers when choosing the
scaling and shifting factors.

Like estimators, transformers may have both hyperparameters (provided to the constructor)
and model parameters (determined by fit()). Thus a transformer looks and acts like an estimator,
with the exception of the predict() and transform() methods.

8 Appendix A. Introduction to Scikit-Learn

Achtung!

The transform() method should only rely on model parameters derived from the training
data in fit(), not on the data that is worked on in transform(). For example, if the
NormalizingTransformer is fit with the input X̂, then transform() should shift and scale
any input X by the mean and standard deviation of X̂, not by the mean and standard devia-
tion of X. Otherwise, the transformation is different for each input X.

Scikit-learn Module Classifier Name Notable Hyperparameters
discriminant_analysis LinearDiscriminantAnalysis solver, shrinkage, n_components
discriminant_analysis QuadraticDiscriminantAnalysis reg_param

ensemble AdaBoostClassifier n_estimators, learning_rate
ensemble RandomForestClassifier n_estimators, max_depth

linear_model LogisticRegression penalty, C
linear_model SGDClassifier loss, penalty, alpha
naive_bayes GaussianNB priors
naive_bayes MultinomialNB alpha

neighbors KNeighborsClassifier n_neighbors, weights
neighbors RadiusNeighborsClassifier radius, weights

neural_network MLPClassifier hidden_layer_size, activation
svm SVC C, kernel

tree DecisionTreeClassifier max_depth

Scikit-learn Module Regressor Name Notable Hyperparameters
ensemble AdaBoostRegressor n_estimators, learning_rate
ensemble ExtraTreesRegressor n_estimators, max_depth
ensemble GradientBoostingRegressor n_estimators, max_depth
ensemble RandomForestRegressor n_estimators, max_depth
isotonic IsotonicRegression y_min, y_max

kernel_ridge KernelRidge alpha, kernel
linear_model LinearRegression fit_intercept

neural_network MLPRegressor hidden_layer_size, activation
svm SVR C, kernel

tree DecisionTreeRegressor max_depth

Module Transformer Name Notable Hyperparameters
decomposition PCA n_components
preprocessing Imputer missing_values, strategy
preprocessing MinMaxScaler feature_range
preprocessing OneHotEncoder categorical_features
preprocessing QuantileTransformer n_quantiles, output_distribution
preprocessing RobustScaler with_centering, with_scaling
preprocessing StandardScaler with_mean, with_std

Table A.2: Common scikit-learn classifiers, regressors, and transformers. For full documentation on
these classes, see http://scikit-learn.org/stable/modules/classes.html.

http://scikit-learn.org/stable/modules/classes.html

9

Validation Tools
Knowing how to determine whether or not an estimator performs well is an essential part of machine
learning. This often turns out to be a surprisingly sophisticated issue that largely depends on the type
of problem being solved and the kind of data that is available for training. Scikit-learn has validation
tools for many situations; for brevity, we restrict our attention to the simple (but important) case of
binary classification, where the range of the desired model is Y = {0, 1}.

Evaluation Metrics
The score() method of a scikit-learn estimator representing the model f : X → {0, 1} returns the
accuracy of the model, which is the percent of labels that are predicted correctly. However, accuracy
isn’t always the best measure of success. Consider the confusion matrix for a classifier, the matrix
where the (i, j)th entry is the number of observations with actual label i but that are classified as
label j. In binary classification, calling the class with label 0 the negatives and the class with label
1 the positives, this becomes the following.

Predicted: 0 Predicted: 1[]
Actual: 0 True Negatives (TN) False Positives (FP)
Actual: 1 False Negatives (FN) True Positives (TP)

With this terminology, we define the following metrics.

• Accuracy :
TN + TP

TN + FN + FP + TP
, the percent of labels predicted correctly.

• Precision:
TP

TP + FP
, the percent of predicted positives that are actually correct.

• Recall :
TP

TP + FN
, the percent of actual positives that are predicted correctly.

Precision is useful in situations where false positives are dangerous or costly, while recall is
important when avoiding false negatives takes priority. For example, an email spam filter should
avoid filtering out an email that isn’t actually spam, so precision is a valuable metric for the filter.
On the other hand, recall is more important in disease detection: it is better to test positive and
not have the disease than to test negative when the disease is actually present. Focusing on a single
metric often leads to skewed results (for example, always predicting the same label), so the following
metric is also common.

• Fβ Score: (1 + β2)
precision · recall

(β2 · precision) + recall
=

(1 + β2)TP

(1 + β2)TP + FP + β2FN
.

Choosing β < 1 weighs precision more than recall, while β > 1 prioritizes recall over precision.
The choice of β = 1 yields the common F1 score, which weighs precision and recall equally. This is
an important alternative to accuracy when, for example, the training set is heavily unbalanced with
respect to the class labels.

Scikit-learn implements these metrics in sklearn.metrics, as well as functions for evaluating
regression, non-binary classification, and clustering models. The general syntax for such functions
is some_score(actual_labels, predicted_labels). For the complete list and further discussion,
see http://scikit-learn.org/stable/modules/model_evaluation.html.

http://scikit-learn.org/stable/modules/model_evaluation.html

10 Appendix A. Introduction to Scikit-Learn

>>> from sklearn.metrics import (confusion_matrix, classification_report,
... accuracy_score, precision_score,
... recall_score, f1_score)

Fit the esimator to training data and predict the test labels.
>>> knn.fit(X_train, y_train)
>>> knn_predicted = knn.predict(X_test)

Compute the confusion matrix by comparing actual labels to predicted labels.
>>> CM = confusion_matrix(y_test, knn_predicted)
>>> CM
array([[44, 5],

[10, 84]])

Get accuracy (the "usual" score), precision, recall, and f1 scores.
>>> accuracy_score(y_test, knn_predicted) # (CM[0,0] + CM[1,1]) / CM.sum()
0.8951048951048951
>>> precision_score(y_test, knn_predicted) # CM[1,1] / CM[:,1].sum()
0.9438202247191011
>>> recall_score(y_test, knn_predicted) # CM[1,1] / CM[1,:].sum()
0.8936170212765957
>>> f1_score(y_test, knn_predicted)
0.9180327868852459

Get all of these scores at once with classification_report().
>>> print(classification_report(y_test, knn_predicted))

precision recall f1-score support

0 0.81 0.90 0.85 49
1 0.94 0.89 0.92 94

micro avg 0.90 0.90 0.90 143
macro avg 0.88 0.90 0.89 143

weighted avg 0.90 0.90 0.90 143

Cross Validation

The sklearn.model_selection module has utilities to streamline and improve model evaluation.

• train_test_split() randomly splits data into training and testing sets (we already used this).

• cross_val_score() randomly splits the data and trains and scores the model a set number
of times. Each trial uses different training data and results in a different model. The function
returns the score of each trial.

• cross_validate() does the same thing as cross_val_score(), but it also reports the time it
took to fit, the time it took to score, and the scores for the test set as well as the training set.

11

Doing multiple evaluations with different testing and training sets is extremely important. If the
scores on a cross validation test vary wildly, the model is likely overfitting to the training data.

>>> from sklearn.model_selection import cross_val_score, cross_validate

Make (but do not train) a classifier to test.
>>> knn = KNeighborsClassifier(n_neighbors=3)

Test the classifier on the training data 4 times.
>>> cross_val_score(knn, X_train, y_train, cv=4)
array([0.88811189, 0.92957746, 0.96478873, 0.92253521])

Get more details on the train/test procedure.
>>> cross_validate(knn, X_train, y_train, cv=4,
... return_train_score=False)
{'fit_time': array([0.00064683, 0.00042295, 0.00040913, 0.00040436]),
'score_time': array([0.00115728, 0.00109601, 0.00105286, 0.00102782]),
'test_score': array([0.88811189, 0.92957746, 0.96478873, 0.92253521])}

Do the scoring with an alternative metric.
>>> cross_val_score(knn, X_train, y_train, scoring="f1", cv=4)
array([0.93048128, 0.95652174, 0.96629213, 0.93103448])

Note

Any estimator, even a user-defined class, can be evaluated with the scikit-learn tools presented
in this section as long as that class conforms to the scikit-learn API discussed previously (i.e.,
inheriting from the correct base classes, having fit() and predict() methods, managing
hyperparameters and parameters correctly, and so on). Any time you define a custom estimator,
following the scikit-learn API gives you instant access to tools such as cross_val_score().

Grid Search

Recall that the hyperparameters of a machine learning model are user-provided parameters that
do not depend on the training data. Finding the optimal hyperparameters for a given model is a
challenging and active area of research.2 However, brute-force searching over a small hyperparameter
space is simple in scikit-learn: a sklearn.model_selection.GridSearchCV object is initialized with
an estimator, a dictionary of hyperparameters, and cross validation parameters (such as cv and
scoring). When its fit() method is called, it does a cross validation test on the given estimator
with every possible hyperparameter combination.

For example, a k-neighbors classifier has a few important hyperparameters that can have a
significant impact on the speed and accuracy of the model: n_neighbors, the number of nearest
neighbors allowed to vote; and weights, which specifies a strategy for weighting the distances between
points. The following code tests various combinations of these hyperparameters.

2Intelligent hyperparameter selection is sometimes called metalearning. See, for example, [SGCP+18].

12 Appendix A. Introduction to Scikit-Learn

>>> from sklearn.model_selection import GridSearchCV

>>> knn = KNeighborsClassifier()
Specify the hyperparameters to vary and the possible values they should take.
>>> param_grid = {"n_neighbors": [2, 3, 4, 5, 6],
... "weights": ["uniform", "distance"]}
>>> knn_gs = GridSearchCV(knn, param_grid, cv=4, scoring="f1", verbose=1)
>>> knn_gs.fit(X_train, y_train)
Fitting 4 folds for each of 5 candidates, totalling 20 fits
[Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent worker.
[Parallel(n_jobs=1)]: Done 20 out of 20 | elapsed: 0.1s finished

After fitting, the gridsearch object has data about the results.
>>> print(knn_gs.best_params_, knn_gs.best_score_)
{'n_neighbors': 5, 'weights': 'uniform'} 0.9532526583188765

The cost of a grid search rapidly increases as the hyperparameter space grows. However,
the outcomes of each trial are completely independent of each other, so the problem of training
each classifier is embarassingly parallel. To parallelize the grid search over n cores, set the n_jobs
parameter to n, or set it to −1 to divide the labor between as many cores as are available.

In some circumstances, the parameter grid can be also organized in a way that eliminates
redundancy. Consider an SVC classifier from sklearn.svm, an estimator that works by lifting the
data into a high-dimensional space, then constructing a hyperplane to separate the classes. The SVC
has a hyperparameter, kernel, that determines how the lifting into higher dimensions is done, and
for each choice of kernel there are additional corresponding hyperparameters. To search the total
hyperparameter space without redundancies, enter the parameter grid as a list of dictionaries, each
of which defines a different section of the hyperparameter space. In the following code, doing so
reduces the number of trials from 3× 2× 3× 4 = 72 to only 1 + (1× 1× 3) + (1× 4) = 11.

>>> from sklearn.svm import SVC

>>> svc = SVC(C=0.01, max_iter=100)
>>> param_grid = [
... {"kernel": ["linear"]},
... {"kernel": ["poly"], "degree": [2,3], "coef0": [0,1,5]},
... {"kernel": ["rbf"], "gamma": [.01, .1, 1, 100]}]
>>> svc_gs = GridSearchCV(svc, param_grid,

cv=4, scoring="f1",
verbose=1, n_jobs=-1).fit(X_train, y_train)

Fitting 4 folds for each of 11 candidates, totalling 44 fits
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done 44 out of 44 | elapsed: 2.4s finished

>>> print(svc_gs.best_params_, svc_gs.best_score_)
{'gamma': 0.01, 'kernel': 'rbf'} 0.8909310239174055

See https://scikit-learn.org/stable/modules/grid_search.html for more details about
GridSearchCV and its relatives.

https://scikit-learn.org/stable/modules/grid_search.html

13

Pipelines
Most machine learning problems require at least a little data preprocessing before estimation in
order to get good results. A scikit-learn pipeline (sklearn.pipeline.Pipeline) chains together one
or more transformers and one estimator into a single object, complete with fit() and predict()
methods. For example, it is often a good idea to shift and scale data before feeding it into a classifier.
The StandardScaler transformer can be combined with a classifier with a pipeline. Calling fit()
on the resulting object calls fit_transform() on each successive transformer, then fit() on the
estimator at the end. Likewise, calling predict() on the Pipeline object calls transform() on
each transformer, then predict() on the estimator.

>>> from sklearn.preprocessing import StandardScaler
>>> from sklearn.pipeline import Pipeline

Chain together a scaler transformer and a KNN estimator.
>>> pipe = Pipeline([("scaler", StandardScaler()), # "scaler" is a label.

("knn", KNeighborsClassifier())]) # "knn" is a label.
>>> pipe.fit(X_train, y_train)
>>> pipe.score(X_test, y_test)
0.972027972027972 # Already an improvement!

Since Pipeline objects behaves like estimators (following the fit() and predict() conven-
tions), they can be used with tools like cross_val_score() and GridSearchCV. To specify which
hyperparameters belong to which steps of the pipeline, precede each hyperparameter name with <
stepname>__. For example, knn__n_neighbors corresponds to the n_neighbors hyperparameter of
the part of the pipeline that is labeled knn.

Specify the possible hyperparameters for each step.
>>> pipe_param_grid = {"scaler__with_mean": [True, False],
... "scaler__with_std": [True, False],
... "knn__n_neighbors": [2,3,4,5,6],
... "knn__weights": ["uniform", "distance"]}

Pass the Pipeline object to the GridSearchCV and fit it to the data.
>>> pipe = Pipeline([("scaler", StandardScaler()),

("knn", KNeighborsClassifier())])
>>> pipe_gs = GridSearchCV(pipe, pipe_param_grid,
... cv=4, n_jobs=-1, verbose=1).fit(X_train, y_train)
Fitting 4 folds for each of 40 candidates, totalling 160 fits
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done 160 out of 160 | elapsed: 0.3s finished

>>> print(pipe_gs.best_params_, pipe_gs.best_score_, sep='\n')
{'knn__n_neighbors': 6, 'knn__weights': 'distance',
'scaler__with_mean': True, 'scaler__with_std': True}

0.971830985915493

Pipelines can also be used to compare different transformations or estimators. For example, a
pipeline could end in either a KNeighborsClassier() or an SVC(), even though they have different
hyperparameters. Like before, use a list of dictionaries to specify the hyperparameter space.

14 Appendix A. Introduction to Scikit-Learn

>>> pipe = Pipeline([("scaler", StandardScaler()),
("classifier", KNeighborsClassifier())])

>>> pipe_param_grid = [
... {"classifier": [KNeighborsClassifier()], # Try a KNN classifier...
... "classifier__n_neighbors": [2,3,4,5],
... "classifier__weights": ["uniform", "distance"]},
... {"classifier": [SVC(kernel="rbf")], # ...and an SVM classifier.
... "classifier__C": [.001, .01, .1, 1, 10, 100],
... "classifier__gamma": [.001, .01, .1, 1, 10, 100]}]
>>> pipe_gs = GridSearchCV(pipe, pipe_param_grid,
... cv=5, scoring="f1",
... verbose = 1, n_jobs=-1).fit(X_train, y_train)
Fitting 5 folds for each of 44 candidates, totalling 220 fits
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done 220 out of 220 | elapsed: 0.6s finished

>>> params = pipe_gs.best_params_
>>> print("Best classifier:", params["classifier"])
Best classifier: SVC(C=10, cache_size=200, class_weight=None, coef0=0.0,

decision_function_shape='ovr', degree=3, gamma=0.01, kernel='rbf',
max_iter=-1, probability=False, random_state=None, shrinking=True,
tol=0.001, verbose=False)

Check the best classifier against the test data.
>>> confusion_matrix(y_test, pipe_gs.predict(X_test))
array([[48, 1], # Near perfect!

[1, 93]])

15

Additional Material
Exercises

Problem 1. Writing custom scikit-learn transformers is a convenient way to organize the data
cleaning process. Consider the data in titanic.csv, which contains information about passen-
gers on the maiden voyage of the RMS Titanic in 1912. Write a custom transformer class to
clean this data, implementing the transform() method as follows:

1. Extract a copy of data frame with just the "Pclass", "Sex", and "Age" columns.

2. Replace NaN values in the "Age" column (of the copied data frame) with the mean age.
The mean age of the training data should be calculated in fit() and used in transform()
(compare this step to using sklearn.preprocessing.Imputer).

3. Convert the "Pclass" column datatype to pandas categoricals (pd.CategoricalIndex).

4. Use pd.get_dummies() to convert the categorical columns to multiple binary columns
(compare this step to using sklearn.preprocessing.OneHotEncoder).

5. Cast the result as a NumPy array and return it.

Ensure that your transformer matches scikit-learn conventions (it inherits from the correct base
classes, fit() returns self, etc.).

Problem 2. Read the data from titanic.csv with pd.read_csv(). The "Survived" column
indicates which passengers survived, so the entries of the column are the labels that we would
like to predict. Drop any rows in the raw data that have NaN values in the "Survived" column,
then separate the column from the rest of the data. Split the data and labels into training and
testing sets. Use the training data to fit a transformer from Problem 1, then use that transformer
to clean the training set, then the testing set. Finally, train a LogisticRegressionClassifier
and a RandomForestClassifier on the cleaned training data, and score them using the cleaned
test set.

Problem 3. Use classification_report() to score your classifiers from Problem 2. Next,
do a grid search for each classifier (using only the cleaned training data), varying at least two
hyperparameters for each kind of model. Use classification_report() to score the resulting
best estimators with the cleaned test data. Try changing the hyperparameter spaces or scoring
metrics so that each grid search yields a better estimator.

Problem 4. Make a pipeline with at least two transformers to further process the Titanic
dataset. Do a gridsearch on the pipeline and report the hyperparameters of the best estimator.

16 Appendix A. Introduction to Scikit-Learn

Bibliography

[BLB+13] Lars Buitinck, Gilles Louppe, Mathieu Blondel, Fabian Pedregosa, Andreas Mueller,
Olivier Grisel, Vlad Niculae, Peter Prettenhofer, Alexandre Gramfort, Jaques Grobler,
Robert Layton, Jake VanderPlas, Arnaud Joly, Brian Holt, and Gaël Varoquaux. API
design for machine learning software: experiences from the scikit-learn project. In ECML
PKDD Workshop: Languages for Data Mining and Machine Learning, pages 108–122,
2013.

[PVG+11] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825–2830, 2011.

[SGCP+18] Brandon Schoenfeld, Christophe Giraud-Carrier, Mason Poggemann, Jarom Chris-
tensen, and Kevin Seppi. Preprocessor selection for machine learning pipelines. arXiv
preprint arXiv:1810.09942, 2018.

17

	Introduction to Scikit-Learn
	Bibliography

