
1 Metropolis Algorithm

Lab Objective: Understand the basic principles of the Metropolis algorithm and apply these ideas

to the Ising Model.

The Metropolis Algorithm
Sampling from a given probability distribution is an important task in many di�erent applications

found throughout the sciences. When these distributions are complicated, as is often the case when

modeling real-world problems, direct sampling methods can become di�cult, as they might involve

computing high-dimensional integrals. The Metropolis algorithm is an e�ective method to sample

from many distributions, requiring only that we be able to evaluate the probability density function

up to a constant of proportionality. In particular, the Metropolis algorithm does not require us

to compute di�cult high-dimensional integrals, such as those that are found in the denominator of

Bayesian posterior distributions.

The Metropolis algorithm is an MCMC sampling method which generates a sequence of random

variables, similar to Gibbs sampling. These random variables form a Markov Chain whose invariant

distribution is equal to the distribution from which we wish to sample. Suppose that h : Rn → R is

the probability density function of distribution, and suppose that f(θ) = c · h(θ) for some nonzero

constant c (in practice, we assume that f is an easy function to evaluate, while h is di�cult). Let

Q : Rn ×Rn → R be a symmetric proposal function (so that Q(·,y) is a probability density function

for all y ∈ Rn, and Q(x,y) = Q(y,x) for all x,y ∈ Rn) and let A : Rn × Rn → R be an acceptance

function de�ned by

A(x,y) = min

(
1,
f(x)

f(y)

)
.

We can combine these functions in such a way so as to sample from the aforementioned Markov

Chain by following Algorithm 1.1. The Metropolis algorithm can be interpreted as follows: given

our current state y, we propose a new state according to the distribution Q(·,y). We then accept or

reject it according to A. We continue by repeating the process. So long as Q de�nes an irreducible,

aperiodic, and non-null recurrent Markov chain, we will have a Markov chain whose unique invariant

distribution will have density h. Furthermore, given any initial state, the chain will converge to this

invariant distribution. Note that for numerical reasons, it is often wise to make calculations of the

acceptance functions in log space:

logA(x,y) = min(0, log f(x)− log f(y)).

1

2 Lab 1. Metropolis Algorithm

Algorithm 1.1 Metropolis Algorithm

1: procedure Metropolis Algorithm

2: Choose initial point x0.

3: for t = 1, 2, . . . do

4: Draw x′ ∼ Q(·,xt−1)

5: Draw a ∼ unif(0, 1)

6: if a ≤ A(x′,xt−1) then

7: xt = x′

8: else

9: xt = xt−1

10: Return x1,x2,x3, . . .

Let's apply the Metropolis algorithm to a simple example of Bayesian analysis. Consider

the problem of computing the posterior distribution over the mean µ and variance σ2 of a nor-

mal distribution for which we have N data points y1, . . . , yN . For concreteness, we use the data in

examscores.csv and we assume the prior distributions

µ ∼ N(µ0 = 80, σ2
0 = 16)

σ2 ∼ IG(α = 3, β = 50).

In this situation, we wish to sample from the posterior distribution

p(µ, σ2 | y1, . . . , yN) =
p(µ)p(σ2)

∏N
i=1N(yi |µ, σ2)∫∞

−∞
∫∞

0
p(µ)p(σ2)

∏N
i=1N(yi |µ, σ2) dσ2dµ

.

However, we can conveniently calculate only the numerator of this expression. Since the denominator

is simply a constant with respect to µ and σ2, the numerator can serve as the function f in the

Metropolis algorithm, and the denominator can serve as the constant c.

We choose our proposal function to be based on a bivariate Normal distribution:

Q(x, y) = N(x | y, sI),

where I is the 2× 2 identity matrix and s is some positive scalar.

>>> import numpy as np

>>> from scipy import stats

>>> from math import sqrt, exp, log

>>> from matplotlib import pyplot as plt

Load in the data and initialize hyperparameters.

>>> scores = np.load("examscores.npy")

>>> alpha = 3

>>> beta = 50

>>> mu0 = 80

>>> sig20 = 16

Initialize the prior distributions.

>>> muprior = stats.norm(loc=mu0, scale=sqrt(sig20))

>>> sig2prior = stats.invgamma(alpha, scale=beta)

3

>>> def proposal(y, s):

... """The proposal function Q(x,y) = N(x|y,sI)."""

... return stats.multivariate_normal.rvs(mean=y, cov=s*np.eye(len(y)))

...

>>> def propLogDensity(x):

... """Calculate the log of the proportional density."""

... logprob = muprior.logpdf(x[0]) + sig2prior.logpdf(x[1])

... logprob += stats.norm.logpdf(scores, loc=x[0], scale=sqrt(x[1])).sum()

... return logprob # ^this is where the scores are used.

...

>>> def acceptance(x, y):

... return min(0, propLogDensity(x) - propLogDensity(y))

...

We are now ready to code up the Metropolis algorithm using these functions. We will keep

track of the samples generated by the algorithm, along with the proportional log densities of the

samples and the proportion of proposed samples that were accepted.

def metropolis(x0, s, n_samples):

"""Use the Metropolis algorithm to sample from posterior.

Parameters:

x0 ((2,) ndarray): The first entry is mu, the second entry is sigma^2.

s (float): The standard deviation parameter for the proposal function.

n_samples (int): The number of samples to generate.

Returns:

draws ((n_samples, 2) ndarray): The MCMC samples.

logprobs ((n_samples,) ndarray): The log density of the samples.

accept_rate (float): The proportion of accepted proposed samples.

"""

accept_counter = 0

draws = np.empty((n_samples,2))

logprob = np.empty(n_samples)

x = x0.copy()

for i in range(n_samples):

xprime = proposal(x,s)

a = np.random.uniform()

if log(a) <= acceptance(xprime, x):

accept_counter += 1

x = xprime

draws[i] = x

logprob[i] = propLogDensity(x)

return draws, logprob, accept_counter/n_samples

Now let's sample from the posterior. We take initial guesses µ = 40 and σ2 = 10 and set s = 20.

Draw 10,000 samples.

4 Lab 1. Metropolis Algorithm

>>> draws, lprobs, rate = metropolis(np.array([40., 10.]), 20., 10000)

>>> print("Acceptance Rate:", rate)

Acceptance Rate: 0.3531

We can evaluate the quality of our results by plotting the log probabilities, the µ samples, the

σ2 samples, and kernel density estimators for the marginal posterior distributions of µ and σ2.

Plot the first 500 log probabilities.

>>> plt.plot(lprobs[:500])

>>> plt.show()

>>> fig, axes = plt.subplots(2, 2)

Plot the mu samples.

>>> axes[0,0].plot(draws[:,0])

>>> axes[0,0].set_title(r"μ samples")

Plot the sigma2 samples.

>>> axes[1,0].plot(draws[:,1])

>>> axes[1,0].set_title(r"σ^2 samples")

Build and plot KDE for posterior mu.

>>> mu_kernel = stats.gaussian_kde(draws[50:,0])

>>> x_min = draws[50:,0].min() - 1

>>> x_max = draws[50:,0].max() + 1

>>> x = np.linspace(x_min, x_max, 200)

>>> axes[0,1].plot(x, mu_kernel(x))

>>> axes[0,1].set_title(r"μ posterior")

Build and plot KDE for posterior sigma2.

>>> sig_kernel = stats.gaussian_kde(draws[50:,1])

>>> x_min, x_max = 20, 200

>>> x = np.linspace(x_min, x_max, 200)

>>> axes[1,1].plot(x, sig_kernel(x))

>>> axes[1,1].set_title(r"σ^2 posterior")

>>> plt.show()

The results should be similar to Figures 1.2 and 1.1.

5

0 100 200 300 400 500

1750

1500

1250

1000

750

500

250

Figure 1.1: Log densities of the �rst 500 Metropolis samples.

0 2000 4000 6000 8000 10000
40

50

60

70

80

90

 samples

80 82 84 86 88 90 92
0.00

0.05

0.10

0.15

0.20

0.25

 posterior

0 2000 4000 6000 8000 10000

20

40

60

80

100

120

2 samples

25 50 75 100 125 150 175 200
0.000

0.005

0.010

0.015

0.020

0.025

2 posterior

Figure 1.2: Metropolis samples and KDEs for the marginal posterior distribution of µ (top row) and

σ2 (bottom row).

6 Lab 1. Metropolis Algorithm

The Ising Model
In statistical mechanics, the Ising model describes how atoms interact in ferromagnetic material.

Assume we have some lattice Λ of sites. We say i ∼ j if i and j are adjacent sites. Each site i in

our lattice is assigned an associated spin σi ∈ {±1}. A state in our Ising model is a particular spin

con�guration σ = (σk)k∈Λ. If L = |Λ|, then there are 2L possible states in our model. If L is large,

the state space becomes huge, which is why MCMC sampling methods (in particular the Metropolis

algorithm) are so useful in calculating model estimations.

With any spin con�guration σ, there is an associated energy

H(σ) = −J
∑
i∼j

σiσj

where J > 0 for ferromagnetic materials, and J < 0 for antiferromagnetic materials. Throughout

this lab, we will assume J = 1, leaving the energy equation to be H(σ) = −
∑
i∼j σiσj where the

interaction from each pair is added only once.

We will consider a lattice that is a 100 × 100 square grid. The adjacent sites for a given site

are those directly above, below, to the left, and to the right of the site, so to speak. For sites on the

edge of the grid, we assume it wraps around. In other words, a site at the farthest left side of the

grid is adjacent to the corresponding site on the farthest right side. Thus, a single spin con�guration

can be represented as a 100× 100 array, with entries of ±1.

Problem 1. Write a function that accepts an integer n and returns a random spin con�guration

for an n× n lattice (as an n× n NumPy array of 1s and −1s).

(Hint: np.random.binomial() or scipy.stats.bernoulli() may be helpful.)

Test your function with n = 100, plotting the spin con�guration via plt.imshow() with

cmap="gray". It should look fairly random, as in Figure 1.3.

Figure 1.3: Spin con�guration from random initialization.

7

Problem 2. Write a function that accepts a spin con�guration σ for a lattice as a NumPy

array. Compute the energy H(σ) of the spin con�guration. Be careful to not double count site

pair interactions!

(Hint: np.roll() may be helpful.)

Di�erent spin con�gurations occur with di�erent probabilities, depending on the energy of the

spin con�guration and β > 0, a quantity inversely proportional to the temperature. More speci�cally,

for a given β, we have

Pβ(σ) =
e−βH(σ)

Zβ

where Zβ =
∑
σ e
−βH(σ). Because there are 2100·100 = 210000 possible spin con�gurations for our

particular lattice, computing this sum is infeasible. However, the numerator is quite simple, provided

we can e�ciently compute the energy H(σ) of a spin con�guration. Thus the ratio of the probability

densities of two spin con�gurations is simple:

Pβ(σ∗)

Pβ(σ)
=
e−βH(σ∗)

e−βH(σ)
= eβ(H(σ)−H(σ∗))

The simplicity of this ratio should lead us to think that a Metropolis algorithm might be an

appropriate way by which to sample from the spin con�guration probability distribution, in which

case the acceptance probability would be

A(σ∗, σ) =

{
1 if H(σ∗) < H(σ)

eβ(H(σ)−H(σ∗)) otherwise.
(1.1)

By choosing our transition matrix Q cleverly, we can also make it easy to compute the energy for

any proposed spin con�guration. We restrict our possible proposals to only those spin con�gurations

in which we have �ipped the spin at exactly one lattice site, i.e. we choose a lattice site i and �ip its

spin. Thus, there are only L possible proposal spin con�gurations σ∗ given σ, each being proposed

with probability 1
L , and such that σ∗j = σj for all j 6= i, and σ∗i = −σi. Note that we would never

actually write out this matrix (it would be 210000× 210000). Computing the proposed site's energy is

simple: if the spin �ip site is i, then we have

H(σ∗) = H(σ) + 2
∑
j:j∼i

σiσj . (1.2)

Problem 3. Write a function that accepts an integer n and chooses a pair of indices (i, j)

where 0 ≤ i, j ≤ n− 1. Each possible pair should have an equal probability 1
n2 of being chosen.

Problem 4. Write a function that accepts a spin con�guration σ, its energy H(σ), and integer

indices i and j. Use (1.2) to compute the energy of the new spin con�guration σ∗, which is σ

but with the spin �ipped at the (i, j)th entry of the corresponding lattice. Do not explicitly

construct the new lattice for σ∗.

8 Lab 1. Metropolis Algorithm

Problem 5. Write a function that accepts a �oat β and spin con�guration energies H(σ) and

H(σ∗). Using (1.1), calculate whether or not the new spin con�guration σ∗ should be accepted

(return True or False). Consider doing the calculations in log space.

To track the convergence of the Markov chain, we would like to look at the probabilities of

each sample at each time. However, this would require us to compute the denominator Zβ , which

is generally the reason we have to use a Metropolis algorithm to begin with. We can get away with

examining only −βH(σ). We should see this value increase as the algorithm proceeds, and it should

converge once we are sampling from the correct distribution. Note that we don't expect these values

to converge to a speci�c value, but rather to a restricted range of values.

Problem 6. Write a function that accepts a �oat β > 0 and integers n, n_samples, and

burn_in. Initialize an n × n lattice for a spin con�guration σ using Problem 1. Use the

Metropolis algorithm to (potentially) update the lattice burn_in times.

1. Use Problem 3 to choose a site for possibly �ipping the spin, thus de�ning a potential

new con�guration σ∗.

2. Use Problem 4 to calculate the energy H(σ∗) of the proposed con�guration.

3. Use Problem 5 to accept or reject the proposed con�guration. If it is accepted, set σ = σ∗

by �ipping the spin at the indicated site.

4. Track −βH(σ) at each iteration (independent of acceptance).

After the burn-in period, continue the iteration n_samples times, also recording every 100th

sample (to prevent memory failure). Return the samples, the sequence of weighted energies

−βH(σ), and the acceptance rate.

Test your sampler on a 100× 100 grid with 200000 total iterations, with n_samples large

enough so that you will keep 50 samples, for β = 0.2, 0.4, 1. Plot the proportional log proba-

bilities, as well as a late sample from each test. How does the ferromagnetic material behave

di�erently with di�ering temperatures? Recall that β is an inverse function of temperature.

You should see more structure with lower temperature, as illustrated in Figure 1.4.

9

0 25000 50000 75000 100000 125000 150000 175000 200000

0

200

400

600

800

(a) Proportional log probs when β = 0.2. (b) Spin con�guration sample when β = 0.2.

0 25000 50000 75000 100000 125000 150000 175000 200000

0

1000

2000

3000

4000

(c) Proportional log probs when β = 0.4. (d) Spin con�guration sample when β = 0.4.

0 25000 50000 75000 100000 125000 150000 175000 200000

0

2500

5000

7500

10000

12500

15000

17500

(e) Proportional log probs when β = 1. (f) Spin con�guration sample when β = 1.

Figure 1.4

	Metropolis Algorithm

