
1 Speech Recognition
using CDHMMs

Lab Objective: Understand how speech recognition via CDHMMs works, and implement a sim-

pli�ed speech recognition system.

1.0.1 Continuous Density Hidden Markov Models

Some of the most powerful applications of Hidden Markov Models, speech and voice recognition,

result from allowing the observation space to be continuous instead of discrete. These are called

Continuous Density Hidden Markov Models (CDHMMs), and they have two standard formulations:

Gaussian HMMs and Gaussian Mixture Model HMMs (GMMHMMs). In fact, the former is a special

case of the latter, so we will just discuss GMMHMMs in this lab.

In order to understand GMMHMMs, we need to be familiar with a particular continuous, multi-

variate distribution called a mixture of Gaussians. A mixture of Gaussians is a distribution composed

of several Gaussian (or Normal) distributions with corresponding weights. Such a distribution is pa-

rameterized by the number of mixture components M , the dimension N of the normal distributions

involved, a collection of component weights {c1, . . . , cM} that are nonnegative and sum to 1, and

a collection of mean and covariance parameters {(µ1,Σ1), . . . , (µM ,ΣM )} for each Gaussian compo-

nent. To sample from a mixture of Gaussians, one �rst chooses the mixture component i according to

the probability weights {c1, . . . , cM}, and then one samples from the normal distribution N (µi,Σi).

The probability density function for a mixture of Gaussians is given by

f(x) =

M∑
i=1

ciN(x; µi,Σi),

where N(·; µi,Σi) denotes the probability density function for the normal distribution N (µi,Σi).

See Figure 1.1 for the plot of such a density curve. Note that a mixture of Gaussians with just

one mixture component reduces to a simple normal distribution, and so a GMMHMM with just one

mixture component is simply a Gaussian HMM.

In a GMMHMM, we seek to model a hidden state sequence {x1, . . . ,xT } and a corresponding

observation sequence {O1, . . . , OT }, just as with discrete HMMs. The major di�erence, of course, is

that each observation Ot is a real-valued vector of length K distributed according to a mixture of

Gaussians withM components. The parameters for such a model include the initial state distribution

π and the state transition matrix A (just as with discrete HMMs). Additionally, for each state

1



2 Lab 1. Speech Recognition using CDHMMs

Figure 1.1: The probability density function of a mixture of Gaussians with four components.

i = 1, . . . , N , we have component weights {ci,1, . . . , ci,M}, component means {µi,1, . . . , µi,M}, and
component covariance matrices {Σi,1, . . . ,Σi,M}.

Let's de�ne a full GMMHMM with N = 2 states, K = 3, and M = 3 components.

>>> import numpy as np

>>> A = np.array([[.65, .35], [.15, .85]])

>>> pi = np.array([.8, .2])

>>> weights = np.array([[.7, .2, .1], [.1, .5, .4]])

>>> means1 = np.array([[0., 17., -4.], [5., -12., -8.], [-16., 22., 2.]])

>>> means2 = np.array([[-5., 3., 23.], [-12., -2., 14.], [15., -32., 0.]])

>>> means = np.array([means1, means2])

>>> covars1 = np.array([5*np.eye(3), 7*np.eye(3), np.eye(3)])

>>> covars2 = np.array([10*np.eye(3), 3*np.eye(3), 4*np.eye(3)])

>>> covars = np.array([covars1, covars2])

>>> gmmhmm = [A, weights, means, covars, pi]

We can draw a random sample from the GMMHMM corresponding to the second state as

follows:



3

Figure 1.2: An observation sequence generated from a GMMHMM with one mixture component and

two states. The observations (points in the plane) are shown as solid dots, the color indicating from

which state they were generated. The connecting dotted lines indicate the sequential order of the

observations.

>>> sample_component = np.argmax(np.random.multinomial(1, weights[1,:]))

>>> sample = np.random.multivariate_normal(means[1, sample_component, :], ←↩
covars[1, sample_component, :, :])

Figure 1.2 shows an observation sequence generated from a GMMHMM with one mixture

component and two states.

Problem 1. Write a function which accepts a GMMHMM in the format above as well as

an integer n_sim, and which simulates the GMMHMM process, generating n_sim di�erent

observations. Do so by implementing the following function declaration.

def sample_gmmhmm(gmmhmm, n_sim):

"""

Simulate sampling from a GMMHMM.



4 Lab 1. Speech Recognition using CDHMMs

Returns

-------

states : ndarray of shape (n_sim,)

The sequence of states

obs : ndarray of shape (n_sim, K)

The generated observations (column vectors of length K)

"""

pass

The classic problems for which we normally use discrete observation HMMs can also be solved

by using CDHMMs, though with continuous observations it is much more di�cult to keep things

numerically stable. We will not have you implement any of the three problems for CDHMMs yourself;

instead, you will use a stable module we will provide for you. Note, however, that the techniques for

solving these problems are still based on the forward-backward algorithm; the implementation may

be trickier, but the mathematical ideas are virtually the same as those for discrete HMMs.

Speech Recognition and Hidden Markov Models
Hidden Markov Models are the basis of modern speech recognition systems. However, a fair amount of

signal processing must precede the HMM stage, and there are other components of speech recognition,

such as language models, that we will not address in this lab.

The basic signal processing and HMM stages of the speech recognition system that we develop

in this lab can be summarized as follows: The audio to be processed is divided into small frames

of approximately 30 ms. These are short enough that we can treat the signal as being constant

over these inervals. We can then take this framed signal and, through a series of transformations,

represent it by mel-frequency cepstral coe�cients (MFCCs), keeping only the �rst K (say K = 10).

Viewing these MFCCs as continuous observations in RK , we can train a GMMHMM on sequences of

MFCCs for a given word, spoken multiple times. Doing this for several words, we have a collection

of GMMHMMs, one for each word. Given a new speech signal, after framing and decomposing it

into its MFCC array, we can score the signal against each GMMHMM, returning the word whose

GMMHMM scored the highest.

Industrial-grade speech recognition systems do not train a GMMHMM for each word in a

vocabulary (that would be ludicrous for a large vocabulary), but rather on phonemes, or distinct

sounds. The English language has 44 phonemes, yielding 44 di�erent GMMHMMs. As you could

imagine, this greatly facilitates the problem of speech recognition. Each and every word can be

represented by some combination of these 44 distinct sounds. By correctly classifying a signal by

its phonemes, we can determine what word was spoken. Doing so is beyond the scope of this lab,

so we will simply train GMMHMMs on �ve words/phrases: biology, mathematics, political science,

psychology, and statistics.

Problem 2. Obtain 30 (or more) recordings for each of the words/phrases mathematics, biol-

ogy, political science, psychology, and statistics. These audio samples should be 2 seconds in

duration, recorded at a rate of 44100 samples per second, with samples stored as 16-bit signed

integers in WAV format. Load the recordings into Python using scipy.io.wavfile.read.



5

If the audio �les have two channels, average these channels to obtain an array of length

88200 for each sample. Extract the MFCCs from each sample using code from the �le MFCC.py:

>>> import MFCC

>>> # assume sample is an array of length 88200

>>> mfccs = MFCC.extract(sample)

Store the MFCCs for each word in a separate list. You should have �ve lists, each containing

30 MFCC arrays, corresponding to each of the �ve words under consideration.

For a speci�c word, given enough distinct samples of that word (decomposed into MFCCs),

we can train a GMMHMM. Recall, however, that the training procedure does not always produce a

very e�ective model, as it can get stuck in a poor local minimum. To combat this, we will train 10

GMMHMMs for each word (using a di�erent random initialization of the parameters each time) and

keep the model with the highest log-likelihood.

For training, we will use the �le we have provided called gmmhmm.py, as this is a stable imple-

mentation of GMMHMM algorithms. To facilitate random restarts, we need a function to provide

initializations for the initial state distribution and the transition matrix.

Let samples be a list of arrays, where each array is the output of the MFCC extraction for a

speech sample. Using a function initialize() that returns a random initial state distribution and

row-stochastic transition matrix, we can train a GMMHMM with 5 states and 3 mixture components

and view its log-likelihood as follows:

>>> import gmmhmm

>>> startprob, transmat = initialize(5)

>>> model = gmmhmm.GMMHMM(n_components=5, n_mix=3, transmat=transmat, startprob←↩
=startprob, cvtype='diag')

>>> # these values for covars_prior and var should work well for this problem

>>> model.covars_prior = 0.01

>>> model.fit(samples, init_params='mc', var=0.1)

>>> print model.logprob

Problem 3. Partition each list of MFCCs into a training set of 20 samples, and a test set of

the remaining 10 samples.

Using the training sets, train a GMMHMM on each of the words from the previous problem

with at least 10 random restarts, keeping the best model for each word (the one with the highest

log-likelihood). This process may take several minutes. Since you will not want to run this

more than once, you will want to save the best model for each word to disk using the pickle

module so that you can use it later.

Given a trained model, we would like to compute the log-likelihood of a new sample. Letting

obs be an array of MFCCs for a speech sample we do this as follows:

>>> score = model.score(obs)



6 Lab 1. Speech Recognition using CDHMMs

We classify a new speech sample by scoring it against each of the 5 trained GMMHMMs, and returning

the word corresponding to the GMMHMM with the highest score.

Problem 4. Classify the 10 test samples for each word. How does your system perform?

Which words are the hardest to correctly classify? Make a dictionary containing the accuracy

of the classi�cation of your �ve testing sets. Speci�cally, the words/phrases will be the keys,

and the values will be the percent accuracy.


	Speech Recognition using CDHMMs
	Continuous Density Hidden Markov Models


