
1 K-Means Clustering

Lab Objective: Clustering is the one of the main tools in unsupervised learning�machine learning

problems where the data comes without labels. In this lab we implement the k-means algorithm, a

simple and popular clustering method, and apply it to geographic clustering and color quantization.

Clustering
Previously, we analyzed the iris dataset from sklearn using PCA; we have reproduced the �rst two

principal components of the iris data in Figure 1.1. Upon inspection, a human can easily see that

there are two very distinct groups of irises. Can we create an algorithm to identify these groups

without human supervision? This task is called clustering, an instance of unsupervised learning.

The objective of clustering is to �nd a partition of the data such that points in the same subset

will be �close� according to some metric. The metric used will likely depend on the data, but some

obvious choices include Euclidean distance and angular distance. Throughout this lab we will use

the metric d(x, y) = ‖x− y‖2, the Euclidean distance between x and y.

More formally, suppose we have a collection of RK-valued observations X = {x1, x2, . . . , xn}.
Let N ∈ N and let S be the set of all N -partitions of X, where an N -partition is a partition with

exactly N nonempty elements. We can represent a typical partition in S as S = {S1, S2, . . . , SN},
where

X =
N⋃
i=1

Si

and

|Si| > 0, i = 1, 2, . . . , N.

We seek the N -partition S∗ that minimizes the within-cluster sum of squares, i.e.

S∗ = argmin
S∈S

N∑
i=1

∑
xj∈Si

‖xj − µi‖22,

where µi is the mean of the elements in Si, i.e.

µi =
1

|Si|
∑

xj∈Si

xj .

1



2 Lab 1. K-Means Clustering

Figure 1.1: The �rst two principal components of the iris dataset.

The K-Means Algorithm
Finding the global minimizing partition S∗ is generally intractable since the set of partitions can be

very large indeed, but the k-means algorithm is a heuristic approach that can often provide reasonably

accurate results.

We begin by specifying an initial cluster mean µ
(1)
i for each i = 1, · · · , N (this can be done

by random initialization, or according to some heuristic). For each iteration, we adopt the following

procedure. Given a current set of cluster means µ(t), we �nd a partition S(t) of the observations such

that

S
(t)
i = {xj : ‖xj − µ(t)

i ‖
2
2 ≤ ‖xj − µ

(t)
l ‖

2
2, l = 1, · · · , N}.

We then update our cluster means by computing for each i = 1, · · · , N . We continue to iterate in

this manner until the partition ceases to change.

Figure 1.2 shows two di�erent clusterings of the iris data produced by the k-means algorithm.

Note that the quality of the clustering can depend heavily on the initial cluster means. We can use

the within-cluster sum of squares as a measure of the quality of a clustering (a lower sum of squares

is better). Where possible, it is advisable to run the clustering algorithm several times, each with

a di�erent initialization of the means, and keep the best clustering. Note also that it is possible to

have very slow convergence. Thus, when implementing the algorithm, it is a good idea to terminate

after some speci�ed maximum number of iterations. The algorithm can be summarized as follows.

1. Choose k initial cluster centers.

2. For i = 0, . . . , max_iter,

(a) Assign each data point to the cluster center that is closest, forming k clusters.

(b) Recompute the cluster centers as the means of the new clusters.

(c) If the old cluster centers and the new cluster centers are su�ciently close, terminate early.



3

Figure 1.2: Two di�erent K-Means clusterings for the iris dataset. Notice that the clustering on the

left predicts the �ower species to a high degree of accuracy, while the clustering on the right is less

e�ective.

Problem 1. Write a KMeans class for doing basic k-means clustering. Implement the following

methods, following sklearn class conventions.

1. __init__(): Accept a number of clusters k, a maximum number of iterations, and a

convergence tolerance. Store these as attributes.

2. fit(): Accept an m × n matrix X of m data points with n features. Choose k random

rows of X as the initial cluster centers. Run the k-means iteration until consecutive

centers are within the convergence tolerance, or until iterating the maximum number of

times. Save the cluster centers as attributes.

If a cluster is empty, reassign the cluster center as a random row of X.

3. predict(): Accept an l × n matrix X of data. Return an array of l integers where the

ith entry indicates which cluster center the ith row of X is closest to.

Test your class on the iris data set after reducing the data to two principal components. Plot

the data, coloring by cluster.

Detecting Active Earthquake Regions

Suppose we are interested in learning about which regions are prone to experience frequent earthquake

activity. We could make a map of all earthquakes over a given period of time and examine it ourselves,

but this, as an unsupervised learning problem, can be solved using our k-means clustering tool.



4 Lab 1. K-Means Clustering

Figure 1.3: Earthquake epicenters over a 6 month period.

The �le earthquake_coordinates.npy contains earthquake data throughout the world from

January 2010 through June 2010. Each row represents a di�erent earthquake; the columns are scaled

longitude and latitude measurements. We want to cluster this data into active earthquake regions.

For this task, we might think that we can regard any epicenter as a point in R2 with coordinates

being their latitude and longitude. This, however, would be incorrect, because the earth is not �at.

Instead, latitude and longitude should be viewed in spherical coordinates in R3, which could then be

clustered.

A simple way to accomplish this transformation is to �rst transform the latitude and longitude

values to spherical coordinates, and then to Euclidean coordinates. Recall that a spherical coordinate

in R3 is a triple (r, θ, ϕ), where r is the distance from the origin, θ is the radial angle in the xy-plane

from the x-axis, and ϕ is the angle from the z-axis. In our earthquake data, once the longitude is

converted to radians it is an appropriate θ value; the latitude needs to be o�set by 90◦ degrees, then

converted to radians to obtain ϕ. For simplicity, we can take r = 1, since the earth is roughly a

sphere. We can then transform to Euclidean coordinates using the following relationships.

θ =
π

180
(longitude) ϕ =

π

180
(90− latitude)

r =
√
x2 + y2 + z2 x = r sinϕ cos θ

ϕ = arccos
z

r
y = r sinϕ sin θ

θ = arctan
y

x
z = r cosϕ

There is one last issue to solve before clustering. Each earthquake data point has norm 1 in

Euclidean coordinates, since it lies on the surface of a sphere of radius 1. Therefore, the cluster

centers should also have norm 1. Otherwise, the means can't be interpreted as locations on the

surface of the earth, and the k-means algorithm will struggle to �nd good clusters. A solution to this

problem is to normalize the mean vectors at each iteration, so that they are always unit vectors.



5

Problem 2. Add a keyword argument normalize=False to your KMeans constructor. Modify

fit() so that if normalize is True, the cluster centers are normalized at each iteration.

Cluster the earthquake data in three dimensions by converting the data from raw data to

spherical coordinates to euclidean coordinates on the sphere.

1. Convert longitude and latitude to radians, then to spherical coordinates.

(Hint: np.deg2rad() may be helpful.)

2. Convert the spherical coordinates to euclidean coordinates in R3.

3. Use your KMeans class with normalization to cluster the euclidean coordinates.

4. Translate the cluster center coordinates back to spherical coordinates, then to degrees.

Transform the cluster means back to latitude and longitude coordinates.

(Hint: use numpy.arctan2() for arctan, so that that correct quadrant is chosen).

5. Plot the data, coloring by cluster. Also mark the cluster centers.

With 15 clusters, your plot should resemble the Figure 1.4.

Figure 1.4: Earthquake epicenter clusters with k = 15.

Color Quantization
The k-means algorithm uses the euclidean metric, so it is natural to cluster geographic data. However,

clustering can be done in any abstract vector space. The following application is one example.

Images are usually represented on computers as 3-dimensional arrays. Each 2-dimensional layer

represents the red, green, and blue color values, so each pixel on the image is really a vector in R3.



6 Lab 1. K-Means Clustering

Clustering the pixels in RGB space leads a one kind of image segmentation that facilitate memory

reduction.

Reading: https://en.wikipedia.org/wiki/Color_quantization

Problem 3. Write a function that accepts an image array (of shape (m,n, 3)), an integer

number of clusters k, and an integer number of samples S. Reshape the image so that each

row represents a single pixel. Choose S pixels to train a k-means model on with k clusters.

Make a copy of the original picture where each pixel has the same color as its cluster center.

Return the new image. For this problem, you may use sklearn.cluster.KMeans instead of

your KMeans class from Problem 1.

Test your function on some of the provided NASA images.

https://en.wikipedia.org/wiki/Color_quantization


7

Additional Material
Spectral Clustering
We now turn to another method for solving a clustering problem, namely that of Spectral Clustering.

As you can see in Figure ???, it can cluster data not just by its location on a graph, but can even

separate shapes that overlap others into distinct clusters. It does so by utilizing the spectral properties

of a Laplacian matrix. Di�erent types of Laplacian matrices can be used. In order to construct a

Laplacian matrix, we �rst need to create a graph of vertices and edges from our data points. This

graph can be represented as a symmetric matrix W where wij represents the edge from xi to xj . In

the simplest approach, we can set wij = 1 if there exists an edge and wij = 0 otherwise. However, we

are interested in the similarity of points, so we will weight the edges by using a similarity measure.

Points that are similar to one another are assigned a high similarity measure value, and dissimilar

points a low value. One possible measure is the Gaussian similarity function, which de�nes the

similarity between distinct points xi and xj as

s(xi, xj) = e−
‖xi−xj‖

2

2σ2

for some set value σ.

Note that some similarity functions can yield extremely small values for dissimilar points. We

have several options for dealing with this possibility. One is simply to set all values which are less

than some ε to be zero, entirely erasing the edge between these two points. Another option is to

keep only the T largest-valued edges for each vertex. Whichever method we choose to use, we will

end up with a weighted similarity matrix W . Using this we can �nd the diagonal degree matrix D,

which gives the number of edges found at each vertex. If we have the original fully-connected graph,

then Dii = n− 1 for each i. If we keep the T highest-valued edges, Dii = T for each i.

As mentioned before, we may use di�erent types of Laplacian matrices. Three such possibilities

are:

1. The unnormalized Laplacian, L = D −W

2. The symmetric normalized Laplacian, Lsym = I −D−1/2WD−1/2

3. The random walk normalized Laplacian, Lrw = I −D−1W .

Given a similarity measure, which type of Laplacian to use, and the desired number of clusters

k, we can now proceed with the Spectral Clustering algorithm as follows:

� Compute W , D, and the appropriate Laplacian matrix.

� Compute the �rst k eigenvectors u1, · · · , uk of the Laplacian matrix.

� Set U = [u1, · · · , uk], and if using Lsym or Lrw normalize U so that each row is a unit vector

in the Euclidean norm.

� Perform k-means clustering on the n rows of U .

� The n labels returned from your kmeans function correspond to the label assignments for

x1, · · · , xn.

As before, we need to run through our k-means function multiple times to �nd the best measure

when we use random initialization. Also, if you normalize the rows of U , then you will need to set

the argument normalize = True.



8 Lab 1. K-Means Clustering

Problem 4. Implement the Spectral Clustering Algorithm by calling your kmeans function,

using the following function declaration:

def specClus(measure,Laplacian,args,arg1=None,kiters=10):

"""

Cluster a dataset using the k-means algorithm.

Parameters

----------

measure : function

The function used to calculate the similarity measure.

Laplacian : int in {1,2,3}

Which Laplacian matrix to use. 1 corresponds to the unnormalized,

2 to the symmetric normalized, 3 to the random walk normalized.

args : tuple

The arguments as they were passed into your k-means function,

consisting of (data, n_clusters, init, max_iter, normalize). Note

that you will not pass 'data' into your k-means function.

arg1 : None, float, or int

If Laplacian==1, it should remain as None

If Laplacian==2, the cut-off value, epsilon.

If Laplacian==3, the number of edges to retain, T.

kiters : int

How many times to call your kmeans function to get the best

measure.

Returns

-------

labels : ndarray of shape (n,)

The i-th entry is an integer in [0,n_clusters-1] indicating

which cluster the i-th row of data belongs to.

"""

pass

We now need a way to test our code. The website http://cs.joensuu.�/sipu/datasets/ contains

many free data sets that will be of use to us. Scroll down to the �Shape sets" heading, and download

some of the datasets found there to use for trial datasets.

Problem 5. Create a function that will return the accuracy of your spectral clustering imple-

mentation, as follows:

def test_specClus(location,measure,Laplacian,args,arg1=None,kiters=10):

"""

Cluster a dataset using the k-means algorithm.



9

Parameters

----------

location : string

The location of the dataset to be tested.

measure : function

The function used to calculate the similarity measure.

Laplacian : int in {1,2,3}

Which Laplacian matrix to use. 1 corresponds to the unnormalized,

2 to the symmetric normalized, 3 to the random walk normalized.

args : tuple

The arguments as they were passed into your k-means function,

consisting of (data, n_clusters, init, max_iter, normalize). Note

that you will not pass 'data' into your k-means function.

arg1 : None, float, or int

If Laplacian==1, it should remain as None

If Laplacian==2, the cut-off value, epsilon.

If Laplacian==3, the number of edges to retain, T.

kiters : int

How many times to call your kmeans function to get the best

measure.

Returns

-------

accuracy : float

The percent of labels correctly predicted by your spectral

clustering function with the given arguments (the number

correctly predicted divided by the total number of points.

"""

pass


	K-Means Clustering

