
1 ARMA Models

Lab Objective: ARMA(p, q) models combine autoregressive and moving-average models in order
to forecast future observations using time-series. In this lab, we create an ARMA model using a
Kalman filter, and then use said model to forecast future weather data.

Time Series and ARMA Models
A time series is any discrete-time stochastic process. In other words, it is a sequence of random
variables, (yt)t∈T , that are determined by their time t. Examples of time series include the monitoring
of heart rate over time, pollution readings over time, stock prices at the closing of each day, and air
temperature. Often when using time series, we want to forecast what future observations will be, i.e.
what will the pollution be like next week, or how much stock will a company have in 3 months.

One way to forecast a time series is using an ARMA model. An ARMA(p, q) model is a
covariance-stationary discrete stochastic process {zt} that is made from an autoregressive model of
order p and a moving-average model of order q. The model itself is a stochastic process zt which
satisfies the equation

zt − µ =

(
p∑

i=1

φi(zt−i − µ)

)
︸ ︷︷ ︸

AR(p)

+at +

 q∑
j=1

θjat−j


︸ ︷︷ ︸

MA(q)

(1.1)

where µ = E[zt] and at are identically-distributed Gaussian variables with variance σ2
a, and φi and

θj are constants.

Note

In this lab, we assume that the stochastic process {zt} has µ = 0. This is because the Kalman
filter in use assumes that the observed values have µ = 0. Often a stochastic process may
be made to have mean 0 by taking the difference zt = yt − yt−1, where {yt} is the original
stochastic process and {zt} is the change in each element.

The first sum on the right hand side of 1.1 is the autoregressive part of the ARMA model; it is a
linear combination of p previously observed values of (zt−µ). The second sum is the moving average

1



2 Lab 1. ARMA Models

part of the ARMA model. This is similar to finding the average of the current and the previous q
error terms in the observations; however, note that the θj need not be positive nor sum to one.

Likelihood via Kalman Filter
Let Θ = {φi, θj , µ, σ2

a} be the set of parameters for an ARMA(p, q) model. Suppose we have a set
of observations z1, z2, . . . , zn, denoted collectively by {zt}. Using the chain rule, we can factorize the
likelihood of the model under these data as

p({zt}|Θ) =

n∏
t=1

p(zt|zt−1, . . . , z1,Θ) (1.2)

Our goal is find the p, q, and Θ that maximize this likelihood.

In a general ARMA(p, q) model, the likelihood is a function of the unobserved error terms at and
is not trivial to compute. Simple approximations can be made, but these may be inaccurate under
certain circumstances. Explicit derivations of the likelihood are possible, but tedious. However, when
the ARMA model is placed in state-space, the Kalman filter affords a straightforward, recursive way
to compute the likelihood.

We demonstrate one possible state-space representation of an ARMA(p, q) model. Let r =

max(p, q + 1). Define

x̂t|t−1 =
[
xt−1 xt−2 · · · xt−r

]T
(1.3)

F =


φ1 φ2 · · · φr−1 φr
1 0 · · · 0 0

0 1 · · · 0 0
...

... · · ·
...

...
0 0 · · · 1 0

 (1.4)

H =
[
1 θ1 θ2 · · · θr−1

]
(1.5)

Q =


σ2
a 0 · · · 0

0 0 · · · 0
...

... · · ·
...

0 0 · · · 0

 (1.6)

wt ∼ MVN(0, Q), (1.7)

where φi = 0 for i > p, and θj = 0 for j > q. Note that

F x̂t−1|t−2 + wt =



∑r
i=1 φixt−i
xt−1
xt−2
...

xt−(r−1)

+


at
0

0
...
0

 (1.8)

=
[
xt xt−1 · · · xt−(r−1)

]T
(1.9)

= x̂t|t−1 (1.10)



3

We let zt|t−1 = Hx̂t|t−1 + µ and verify that this update function satisfies our ARMA(p, q).
p∑

i=1

φi(zt−i − µ) + at +

q∑
j=1

θjat−j =

p∑
i=1

φi(Hx̂t−i) + at +

q∑
j=1

θjat−j (1.11)

=

r∑
i=1

φi(xt−i +

r−1∑
k=1

θkxt−i−k) + at +

r−1∑
j=1

θjat−j (1.12)

= at +

r∑
i=1

φi(xt−i) +

r−1∑
j=1

θj

( r∑
i=1

φixt−j−i + at−j

)
(1.13)

= at +

r∑
i=1

φi(xt−i) +

r−1∑
j=1

θjxt−k (1.14)

= xt +

r−1∑
j=1

θjxt−kθkxt−k (1.15)

= zt. (1.16)

Then the linear stochastic dynamical system

x̂t+1|t = F x̂t|t−1 + wt (1.17)
zt|t−1 = Hx̂t|t−1 + µ (1.18)

describes the same process as the original ARMA model. Note that the equation for zt involves a
deterministic component, namely µ. The Kalman filter theory developed in the previous lab, however,
assumed no deterministic component for the observations zt, so you should subtract off the mean µ
from the time series observations zt when using them in the predict and update steps.

Since we have assumed that the error terms in the model are Gaussian, each conditional distri-
bution in 1.2 is also Gaussian, and is completely characterized by its mean and variance. But these
two quantities are easily found via the Kalman filter, namely

mean Hx̂t|t−1 + µ (1.19)

variance HPt|t−1H
T (1.20)

where x̂t|t−1 and Pt|t−1 are found during the Predict step. Given that each conditional distribution
is Guassian, the likelihood can be found as follows:

p({zt}|Θ) =

n∏
t=1

N(zt; Hx̂t|t−1 + µ, HPt|t−1H
T ) (1.21)

Problem 1. Write a function that returns the log-likelihood of an ARMA(p, q) model, given
a time series zt. Use the state_space_rep() function provided to create F,Q, and H and use
the kalman() filter provided to calculate the mean and covariance of the error terms.

def arma_likelihood(time_series, phis=array([]), thetas=array([]), mu=0.,
sigma=1.):

"""
Return the log-likelihood of the ARMA model parameters, given the time
series.



4 Lab 1. ARMA Models

Parameters
----------
time_series : ndarray of shape (n,1)

The time series in question, z_t
phis : ndarray of shape (p,)

The phi parameters
thetas : ndarray of shape (q,)

The theta parameters
mu : float

The parameter mu
sigma : float

The standard deviation of the a_t random variables

Returns
-------
log_likelihood : float

The log-likelihood of the model
"""
pass

When done correctly, your function should match the following output:

>>> arma_likelihood(ta, phis=array([0.9]), mu=17., sigma=0.4)
-77.6035

Identification and Fitting
Now that we can compute the likelihood of a given ARMA model, we want to find the best choice
of ARMA model given our time series. In this lab, we define the "best" choice of ARMA model as
the model which minimizes the AICc, given by

2k

(
1 +

k + 1

n− k

)
− 2`(Θ) (1.22)

where n is the sample size, k = p+ q + 2 is the number of parameters in the model, and `(Θ) is the
maximum likelihood for the model class.

To compute the maximum likelihood for a model class, we need to optimize 1.21 over the space
of parameters Θ. We can do so by using the function from Problem 1 along with some optimization
routine, such as scipy.optimize.fmin.

To minimize the AICc, we perform model identification. This is choosing the order of our model
out of possible p’s and q’s. The order of our model which minimizes the AICc is then the optimal
model.



5

Problem 2. Write a function that accepts a time series {zt} and returns the parameters of
the model that minimize the AICc, given the constraint that p ≤ 3, q ≤ 3.

def arma_fit(time_series):
"""
Return the ARMA model that minimizes AICc for the given time series,
subject to p,q <= 3.

Parameters
----------
time_series : ndarray of shape (n,1)

The time series in question, z_t

Returns
-------
phis : ndarray of shape (p,)

The phi parameters
thetas : ndarray of shape (q,)

The theta parameters
mu : float

The parameter mu
sigma : float

The standard deviation of the a_t random variables
"""
pass

Here’s a hint for performing the optimization at each step, using
scipy.optimize.fmin.

>>> # assume p, q, and time_series are defined
>>> def f(x): # x contains the phis, thetas, mu, and sigma
>>> return -1*arma_likelihood(time_series, phis=x[:p], thetas=x[p:p+q←↩

], mu=x[-2],sigma=x[-1])
>>> # create initial point
>>> x0 = np.zeros(p+q+2)
>>> x0[-2] = time_series.mean()
>>> x0[-1] = time_series.std()
>>> sol = op.fmin(f,x0,maxiter=10000, maxfun=10000)

The variable sol is a flat array of length p+ q+ 2, whose first p entries give the optimal values
for the φ polynomial, the next q entries give the optimal values for the θ polynomial, and the
last two entries give the optimal values for µ and σa, respectively. Notice that we defined a
wrapper function f to feed into the scipy.optimize.fmin routine. This wrapper function
returns the negative of the log likelihood, since the optimization routine we are calling finds the
minimum of a function, and we are interested in the maximum of the log likelihood.



6 Lab 1. ARMA Models

Your code should produce the following output (it may take a minute or so to run):

>>> arma_fit(ta)
(array([ 0.9087]), array([-0.5759]), 17.0652..., 0.3125...)

Problem 3. Use your solution from Problem 2 to fit models to the data found in ta, tb, and
tc. Report the fitted parameters p, q,Θ.

Forecasting with Kalman Filter
Now that we have identified an ARMA(p, q) model, we can use this model to predict future states.
The Kalman filter provides a straightforward way to predict future states, by giving the mean and
variance of the conditional distribution of future observations. Observations can be found as follows

zt+k|z1, · · · , zt ∼ N(zt+k; Hx̂t+k|t + µ, HPt+k|tH
T ) (1.23)

To evolve the Kalman filter, recall the predict and update rules of a Kalman filter.

Predict x̂k|k−1 = F x̂k−1|k−1 + u

Pk|k−1 = FPk−1|k−1F
T +Q

Update ỹk = zk −Hx̂k|k−1

Sk = HPk|k−1H
T +R

Kk = Pk|k−1H
TS−1k

x̂k|k = x̂k|k−1 +Kkỹk

Pk|k = (I −KkH)Pk|k−1

Problem 4. The datasets ta, tb and tc contain mock weather data, giving the temperature
of the past 197 days. For each data set, find the mean and standard deviation of the next 20
intervals using the Kalman filter. Begin the recursion of the Kalman filter using the update
rule and then predict forward using the predict rule. Return the future means and standard
deviations (given by Hx̂t+k|t + µ and

√
HPt+k|tHT , respectively). For each dataset, plot the

original data, their expected values, and plus and minus two standard deviations to demonstrate
credible intervals.

def arma_forecast(time_series, phis=array([]), thetas=array([]), mu=0.,
sigma=1., future_periods=20):

"""
Return forecasts for a time series modeled with the given ARMA model.

Parameters
----------
time_series : ndarray of shape (n,1)



7

The time series in question, z_t
phis : ndarray of shape (p,)

The phi parameters
thetas : ndarray of shape (q,)

The theta parameters
mu : float

The parameter mu
sigma : float

The standard deviation of the a_t random variables
future_periods : int

The number of future periods to return

Returns
-------
e_vals : ndarray of shape (future_periods,)

The expected values of z for times n+1, ..., n+future_periods
sigs : ndarray of shape (future_periods,)

The standard deviations of z for times n+1, ..., n+future_periods
"""
pass

You should get the following result:

>>> arma_forecast(ta, phis, thetas, mu, sigma, 4)
(array([ 17.3762, 17.3478, 17.322 , 17.2986]),
array([ 0.3125, 0.3294, 0.3427, 0.3533]))

Your results (when using twenty future periods) should match those in Figure 1.1.

Problem 5. Modify your arma_forecast() function to generate possible observations using
future means and covariance matrices. Plot these generated observations with the original data
for each dataset.



8 Lab 1. ARMA Models

Figure 1.1: Three time series along with expected value (green), ±σa credible interval (yellow), and
±2σa credible interval (cyan) of twenty forecasted values.


	ARMA Models

