
1 Introduction to
Matplotlib: 3D Plotting
and Animations

Lab Objective: 3D plots and animations are useful in visualizing solutions to ODEs and PDEs

found in many dynamics and control problems. In this lab we explore the functionality contained in

the 3D plotting and animation libraries in Matplotlib.

Introduction
Matplotlib is a Python library that contains tools for creating plots in multiple dimensions. The

library contains important classes that are needed to create plots. The most important objects to

understand in this lab are �gure objects, axes objects, and line objects. These three objects are

created using the following code.

>>> import matplotlib.pyplot as plt

>>> fig = plt.figure() # Create figure object.

>>> ax = fig.add_subplot(111) # Create axes object.

>>> line2d, = plt.plot([],[]) # Create empty 2D Line object

>>> line3d, = plt.plot([],[],[]) # Create empty 3D line object

Recall that plt.figure() creates a matplotlib.figure.Figure object, which is the window

that is displayed when plt.show() is called. 3D plotting and animation both require explicitly

de�ning the Figure object, as shown above. This allows for the object to be updated and modi�ed,

as will be explained later in the lab.

Figure objects contain matplotlib.axes._subplots.AxesSubplot objects, called axes. Axes

are spaces to plot on, and are created by the add_subplot() method of a Figure object. Figures

can have multiple axes.

Calling plt.plot() returns a list of line objects. For example, supposing x1, y1, x2, and y2 are

arrays containing data for two separate curves, then calling plt.plot(x1, y1, x2, y2) will return

a list with two elements. Each element of the list is a matplotlib.lines.Line2D object. If the axes

is three-dimensional, then the returned list will contain matplotlib.lines.Line3D objects. Because

this function call returns a list, if only one line is plotted, adding a trailing comma to the variable

name will assign the name to the �rst element of the returned list. You can alternatively reference

the zero index of the returned list, but using a trailing comma is standard.

1

2 Lab 1. Introduction to Matplotlib: 3D Plotting and Animations

Animation Background
The animation library in Matplotlib contains a class called FuncAnimation. We will use this class

throughout this lab. FuncAnimation requires a user-de�ned update function that controls the plot

for each frame of the animation. This grants the user wide �exibility and control of the resulting

animation. The following steps describe the process of creating a simple animated plot using the

FuncAnimation class.

1. Compute all data to be plotted.

2. Explicitly de�ne �gure object.

3. De�ne line objects to be altered dynamically.

4. Create function to update line objects.

5. Create FuncAnimation object.

6. Display using plt.show().

These steps will be explained by way of an example. The arrays x and y contain data giving the

location of a particle moving in the plane. To visualize this motion, one could animate the particle as

well as display the trajectory that the particle has traveled. For this animation, two separate Line2D

objects must be created on an axes object. The �rst, particle will be for the position of the particle

itself, and the second, traj will be for the trajectory that the particle has traveled. Note that these

objects are created with empty lists of data. The update function will be used to dynamically set

the data to be plotted in these line objects.

>>> import matplotlib.animation as animation

>>> import numpy as np

>>> t = np.linspace(0,2*np.pi,100)

>>> x = np.sin(t)

>>> y = t**2

>>> fig = plt.figure()

>>> ax = fig.add_subplot(111)

>>> ax.set_xlim((-1.1,1.1))

>>> ax.set_ylim((0,40))

>>> particle, = plt.plot([],[], marker='o', color='r')

>>> traj, = plt.plot([],[], color='r', alpha=0.5)

The update function must be de�ned a speci�c way in order to interact properly with the

matplotlib.animation.FuncAnimation object. The update function must accept the current frame

index as its �rst input parameter and it must return a list or tuple of line objects. The current frame

index is used to access the data to be plotted in the current frame. Both 2D and 3D line objects have

the built-in method .set_data(). This function takes in two one-dimensional arrays representing x

and y values to plot. This allows a single line object to display di�erent data for each frame. Inside

the update function, .set_data() is called on the line objects with the relevant data as inputs.

>>> def update(i):

>>> particle.set_data(x[i],y[i])

>>> traj.set_data(x[:i+1],y[:i+1])

>>> return particle,traj

3

Next, the FuncAnimation object is created. The argument frames speci�es the iterable repre-

senting the frame indices. If frames is an integer, it is treated as the iterable range(frames). After

the FuncAnimation object is created, plt.show() displays the animation.

>>> ani = FuncAnimation(fig, update, frames=range(100), interval=25)

>>> plt.show()

The following table shows more parameters that can be passed into FuncAnimation.

Parameter Description

fargs (tuple) Additional arguements to pass update function

interval (�oat) Delay between frames in milliseconds

repeat (bool) Determines whether animation repeats (Default True)

blit (bool) Determines whether blitting is used (Default False)

Note

When using FuncAnimation, it is essential that a reference is kept to the instance of the class.

The animation is advanced by a timer and if a reference is not held for the object, Python will

automatically garbage collect and the animation will stop.

Problem 1. Use the FuncAnimation class to animate the function y = sin(x + 0.1t) where

x ∈ [0, 2π], and t ranges from 0 to 100 seconds.

3D Plotting Introduction
3D plotting is very similar to 2D plotting. The main di�erence is that a set of 3D axes must be

created within the �gure object. A 3D axes object is created using the additional keyword argument

projection='3d', as shown below. Note that the Axes3D submodule must �rst be imported in

order to create the 3D axis.

>>> from mpl_toolkits.mplot3d import Axes3D

>>>

>>> # Create figure object.

>>> fig = plt.figure()

>>>

>>> # Create 3D axis object using add_subplot().

>>> ax = fig.add_subplot(111, projection='3d')

3D Static Plotting
When the axes object is explicitly de�ned, plots are generated by calling the chosen plot function

(such as ax.plot() on the axes object. Additional information on the use of axes objects can be

found here: https://matplotlib.org/api/axes_api.html.

https://matplotlib.org/api/axes_api.html

4 Lab 1. Introduction to Matplotlib: 3D Plotting and Animations

Problem 2. The orbits for Mercury, Venus, Earth, and Mars are stored in the �le orbits.npz.

The �le contains four NumPy arrays: mercury, venus, earth, and mars. The �rst column of

each array contains the x-coordinates, the second column contains the y-coordinates, and the

third column contians the z-coordinates of each planet, all relative to the Sun, and expressed in

AU (astronomical units, the average distance between Earth and the Sun, approximately 150

million kilometers).

Use np.load('orbits.npz') to load the data for the four planets' orbits. Create a 3D

plot of the orbits, and compare your results with Figure 1.1.

Figure 1.1: The solution to Problem 2.

5

3D Animations

The key di�erence between 2D and 3D animations is that the .set_data() method does not support

setting the z values. Instead, set the x and y values with .set_data() as before, and then set the z

values with .set_3d_properties(). The .set_3d_properties() function call is also made inside

the update function.

Saving Animations

Animation in 3D requires more careful consideration than in the 2D case. When matplotlib displays

a 3D plot, it does so in an interactive �gure that allows the user to change the camera angle and

position. Since 3D rendering is more computationally expensive than 2D rendering, interactive

views of 3D animations often have poor framerates and choppy rendering. The solution is to use the

matplotlib.animation module's FuncAnimation.save() method. With an installed video encoder,

this allows Matplotlib to render a video �le of the animation, which can then be displayed inline inside

a Jupyter Notebook, or viewed using any video player supporting the chosen �letype.

Unfortunately, Matplotlib does not come with a built-in video encoder. The matplotlib.

animation module supports several third-party encoders. FFmpeg is a lightweight solution which

can be obtained from: https://www.�mpeg.org/download.html.

To prevent the animation from displaying while it is being rendered as video, use plt.ioff().

This turns o� matplotlib's interactive mode until plt.ion() is called. After creating the animation

object, use its .save() method with the desired �lename to render and save the video. The following

code is given for reference:

>>> animation.writer = animation.writers['ffmpeg']

>>> plt.ioff() # Turn off interactive mode to hide rendering animations

>>>

>>> # Code to create figure, axes, update function

>>>

>>> ani = animation.FuncAnimation(fig,update,frames)

>>> ani.save('my_animation.mp4')

Problem 3. Each row of the arrays in orbits.npz gives the position of the planets at evenly

spaced time points. The arrays correspond to 1400 points in time over a 700 day period

(beginning on 2018-5-30). Create a 3D animation of the planet orbits. Display lines for the

trajectories of the orbits and points for the current positions of the planets at each point in time.

Your update() function will need to return a list of Line3D objects, one for each orbit trajectory

and one for each planet position marker. Using animation.save(), save your animated plot

as "planet_ani.mp4".

To display the mp4 video in a Jupyter Notebook, run the following code in a markdown

cell:

<video src="planet_ani.mp4" controls>

https://www.ffmpeg.org/download.html

6 Lab 1. Introduction to Matplotlib: 3D Plotting and Animations

Surface Plotting
3D surface plotting is very similar to regular 3D plotting discussed earlier. The di�erence with

surface plots is that they require �rst creating a meshgrid for X and Y. Meshgrids are created using

the NumPy command np.meshgrid(x, y) where x and y are 1D arrays representing the x and

y coordinates of the grid. This function creates 2D arrays X and Y that combined give cartesian

cordinates for every point made from the x and y arrays.

Once a meshgrid is de�ned, a surface plot is generated by calling ax.plot_surface(X, Y, Z),

where Z is a 2D array of height values that is the same shape as X and Y.

Problem 4. Make a surface plot of the bivariate normal density function given by:

f(x) =
1√

det(2πΣ)
exp

[
−1

2
(x− µ)T Σ−1(x− µ)

]
where x = [x, y]T , µ = [0, 0]T is the mean vector, and

Σ =

[
1 3/5

3/5 2

]
is the covariance matrix. Compare your results with Figure 1.2.

Figure 1.2: The solution to Problem 4.

7

Surface Animations
Animating a 3D surface is slightly di�erent from animating a parametric curve in 3D. The object

created by .plot_surface() does not have a .set_data() method. Instead, use ax.clear() to

empty the axes at each frame, followed by a new call to ax.plot_surface(). Note that the axes

limits must be reset after ax.clear() is called.

Problem 5. Use the data in vibration.npz to produce a surface animation of the solution to

the wave equation for an elastic rectangular membrane. The �le contains three NumPy arrays:

X, Y, Z. X and Y are meshgrids of shape (300,200) corresponding to 300 points in the y-direction

and 200 points in the x-direction, giving a 2x3 rectangle with one corner at the origin. Z is

of shape (150,300,200), giving the height of the vibrating membrane at each (x,y) point for

150 values of time. In the language of partial di�erential equations, this is the solution to the

following initial/boundary value problem:

utt = 62(uxx + uyy)

(x, y) ∈ [0, 2]× [0, 3], t ∈ [0, 5]

u(t, 0, y) = u(t, 2, y) = u(t, x, 0) = u(t, x, 3) = 0

u(0, x, y) = xy(2− x)(3− y)

	Introduction to Matplotlib: 3D Plotting and Animations

