
1 Modelling the spread
of an epidemic: SIR
models

The SIR model describes the spread of an epidemic through a large population. It does this by

describing the movement of the population through three phases of the disease: those individuals

who are susceptible, those who are infectious, and those who have been removed from the disease.

Those individuals in the removed class have either died, or have recovered from the disease and are

now immune to it. If the outbreak occurs over a short period of time, we may reasonably assume

that the total population is �xed, so that S′(t) + I ′(t) + R′(t) = 0. We may also assume that

S(t) + I(t) +R(t) = 1, so that S(t) represents the fraction of the population that is susceptible, etc.

Individuals may move from one class to another as described by the �ow

S → I → R.

Let us consider the transition rate between S and I. Let β represent the average number of contacts

made per day that could spread the disease. The proportion of these contacts that are with a

susceptible individual is S(t). Thus, one infectious individual will on average infect βS(t) others per

day. Let N represent the total population size. Then we obtain the di�erential equation

d

dt
(S(t)N) = −βS(t)(I(t)N)

Now consider the transition rate between I and R. We assume that there is a �xed proportion

γ of the infectious group who will recover on a given day, so that

d

dt
R(t) = −γI(t).

Note that γ is the reciprocal of the average length of time spent in the infectious phase.

Since the derivatives sum to 0, we have I ′(t) = −S′(t)−R′(t), so the di�erential equations are
given by

dS

dt
= −βIS,

dI

dt
= βIS − γI,

dR

dt
= γI.
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Figure 1.1: Solution to Problem (1)

Problem 1. Solve the IVP

dS

dt
= −1

2
IS,

dI

dt
=

1

2
IS − 1

4
I,

dR

dt
=

1

4
I,

S(0) = 1− 6.25 · 10−7,
I(0) = 6.25 · 10−7,
R(0) = 0,

on the interval [0, 100], and plot your results. See Figure 1.1.
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Problem 2. Suppose that, in a city of approximately three million, �ve have recently entered

the city carrying a certain disease. (Suppose they have just entered the infectious state.)

Each of those individuals has a contact each day that could spread the disease, and an

average of three days is spent in the infectious state. Find the solution of the corresponding

SIR equations for the next �fty days and plot your results.

At the peak of the infection, how many in the city will still be able to work (Assume for

simplicity that those who are in the infectious state either cannot go to work or are unproductive,

etc.) Print your result.

Problem 3. Suppose that, in a city of approximately three million, �ve have recently entered

the city carrying a certain disease. (Suppose they have just entered the infectious state.)

Each of those individuals will make three contacts every ten days that could spread the

disease, and an average of four days is spent in the infectious state. Find the solution of the

corresponding SIR equations and plot your results. See Figure 1.2.
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Figure 1.2: Solution to Problem (3).
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Variations on the SIR Model
SIS Models describe diseases where individuals who have recovered from the disease do not gain any

lasting immunity. There are only two compartments in this model: those who are susceptible, and

those who are infectious.

The basic equations are given by

dS

dt
= −βIS + γI,

dI

dt
= βIS − γI

If we add to our basic SIR model to account for the death rate and an equal birth rate, the

equations become

dS

dt
= µ(1− S)− βIS,

dI

dt
= βIS − (γ + µ)I,

dR

dt
= γI − µR

where µ represents the death rate and equal birth rate, noting that any new person born is born into

the susceptible population.

SIRS models take the previous model and allow the transfer of individuals from the recov-

ered/removed class to rejoin the susceptible class.

dS

dt
= fR+ µ(1− S)− βIS,

dI

dt
= βIS − (γ + µ)I,

dR

dt
= −fR+ γI − µR.

Problem 4. In the world there are 7 billion people. In�uenza, or the �u, is one of those

viruses that everyone can be susceptible to, even after recovering from their last sickness. The

�u virus is able to change in order to evade our immune system and we become susceptible once

more (although technically it is now a di�erent strain). Suppose the virus originates with 1000

people in Texas after Hurricane Harvey �ooded Houston and stagnant water allowed the virus

to proliferate. According to WebMD (trustworthy source, right?), once you get the virus you

are contagious up to a week, and kids up to 2 weeks. For this lab, suppose you are contagious

for 10 days before recovering. Also suppose that on average someone makes one contact every

two days that could spread the �u. Since we can catch a new strain of the �u, suppose that

a recovered individual becomes susceptible again with probability f = 1/50. The �u is also

known to be deadly, killing hundreds of thousands every year on top of the normal death rate.

To assure a steady population, let the birth rate balance out the death rate, and in particular

let µ = .0001.

Using the SIRS model above, plot the proportion of population that is Susceptible, In-

fected, and Recovered over a year span (365 days).
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Boundary Value Problem
The next exercise uses a variation of the SIR model called an SEIR model to describe the spread of

measles (see 1). This new model adds another compartment, called the exposed or latency phase. It

assumes that the rate at which measles is contracted depends on the season, i.e. the rate is periodic.

That allows us to formulate the yearly occurrence rate for measles as a boundary value problem. The

boundary value problem looks like S

E

I

′ =
 µ− β(t)SI
β(t)SI − E/λ
E/λ− I/η

 , (1.1)

S(0) = S(1), (1.2)

E(0) = E(1), (1.3)

I(0) = I(1) (1.4)

Parameters µ and λ represent the birth rate of the population and the latency period of measles,

respectively. η represents the infectious period before an individual moves from the infectious class to

the recovered class. After recovery an individual remains immune, which is why R(t) is not included

in the system. The set up of this problem is not normal since we are excluding R(t), but it results

in a nice graph.

To solve this problem we will use a full-featured BVP solver that is available in scipy. The

code below demonstrates how to use solve_bvp to solve the BVP

εy′′ + yy′ − y = 0, y(−1) = 1, y(1) = −1/3, ε = .1 (1.5)

Look at �gure 1.3 for the solution.

import numpy as np

from scipy.integrate import solve_bvp

import matplotlib.pyplot as plt

epsilon, lbc, rbc = .1, 1, - 1/3

# The ode function takes the independent variable first

# It has return shape (n,)

def ode(x , y):

return np.array([y[1] , (1/epsilon) * (y[0] - y[0] * y[1])])

# The BVP solver expects you to pass it the boundary

# conditions as a callable function that computes the difference

# between a guess at the boundary conditions

# and the desired boundary conditions.

# When we use the BVP solver, we will tell it how many constraints

# there should be on each side of the domain so that it knows

# how many entries to expect in the tuples BCa and BCb.

1Numerical Solution of Boundary Value Problems for Ordinary Di�erential Equations, by Aescher, Mattheij, and

Russell
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Figure 1.3: Solution to (1.5)

# In this case, we have one boundary condition on either side.

# These constraints are expected to evaluate to 0 when the

# boundary condition is satisfied.

# The return shape of bcs() is (n,)

def bcs(ya, yb):

BCa = np.array([ya[0] - lbc]) # 1 Boundary condition on the left

BCb = np.array([yb[0] - rbc]) # 1 Boundary condition on the right

# The return values will be 0s when the boundary conditions are met exactly

return np.hstack([BCa, BCb])

# The independent variable has size (m,) and goes from a to b with some step ←↩
size

X = np.linspace(-1, 1, 200)

# The y input must have shape (n,m) and includes our initial guess for the ←↩
boundaries

y = np.array([-1/3, -4/3]).reshape((-1,1))*np.ones((2, len(X)))

# There are multiple returns from solve_bvp(). We are interested in the y ←↩
values which can be found in the sol field.

solution = solve_bvp(ode, bcs, X, y)

# We are interested in only y, not y', which is found in the first row of sol.



7

y_plot = solution.sol(X)[0]

plt.plot(X, y_plot)

plt.show()

Problem 5. Consider (1.1) Let the periodic function for our measles case be β(t) = β0(1 +

β1 cos 2πt). Use parameters β1 = 1, β0 = 1575, η = 0.01, λ = .0279, and µ = .02. Note: in this

case, time is measured in years, so run the solution over the interval [0, 1] to show a one-year

cycle. The boundary conditions are really just saying that the year will begin and end in the

same state.

solve_bvp requires separated boundary conditions. In other words, each equation in the

set of boundary conditions can only include values at one end of the interval. To deal with this,

let C = [C1, C2, C3], and add the equation

C ′ = 0

to the system of ODEs given above (for a total of 6 equations). Then the boundary conditions

can be separated using the following trick:C1(0)

C2(0)

C3(0)

 =

S(0)E(0)

I(0)

 ,

C1(1)

C2(1)

C3(1)

 =

S(1)E(1)

I(1)

 .

Now C1, C2, C3 become the 4th, 5th, and 6th rows of your solution matrix, so the 3 boundary

conditions for the left are obtained by subtracting the last three entries of y(0) from the �rst

three entries, giving you ya[0 : 3]− ya[3 :]. Similarly, your right boundary conditions will look

like yb[0 : 3]− yb[3 :].

When you code your boundary conditions, note that solve_bvp changes the initial condi-

tions to force all the entries in the return of bcs() to be zero. You can use the initial conditions

from Fig. 1.4 as your initial guess (which will be an array of 6 elements). Remember that the

initial infected proportion is small, not 0.
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Figure 1.4: Solution to Problem (5)
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