
� Lorenz Equations

Lab Objective: Investigate the behavior of a system that exhibits chaotic behavior. Demonstrate
methods for visualizing the evolution of a system.

Chaos is everywhere. It can crop up in unexpected places and in remarkably simple systems,
and a great deal of work has been done to describe the behavior of chaotic systems. One primary
characteristic of chaos is that small changes in initial conditions result in large changes over time in
the solution curves.

The Lorenz System
One of the earlier examples of chaotic behavior was discovered by Edward Lorenz. In 1963, while
working to study atmospheric dynamics he derived the simple system of equations
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where �, ⇢, and � are all constants. After deriving these equations, he plotted the solutions and
observed some unexpected behavior. For appropriately chosen values of �, ⇢, and �, the solutions
did not tend toward any steady fixed points, nor did the system permit any stable cycles. The
solutions did not tend off toward infinity either. With further work, he began the study of what was
called a strange attractor. This system, though relatively simple, exhibits chaotic behavior.

Problem 1. Write a function that implements the Lorenz equations. Let � = 10, ⇢ = 28,
� = 8

3 . Make a 3D plot of a solution to the Lorenz equations for an initial condition where
(x, y, z) are drawn randomly from a uniform distribution from �15 to 15. As usual, use scipy
.integrate.odeint to compute the solution. Compare your results with Figure 1.1
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Figure 1.1: Approximate solution to the Lorenz equation with random initial conditions

Basin of Attraction
Notice in the first problem that the solution tended to a ’nice’ region. This region is a basin of
attraction, and the set of numerical values towards which a system will converge to is an attractor.
Consider what happens when we change up the initial conditions.

Problem 2. To better visualize the Lorenz attractor, produce a single 3D plot displaying three
solutions to the Lorenz equations, each with random initial conditions. Compare your results
with Figure 1.2

Chaos
Chaos systems exhibit high sensitivity to initial conditions. This means that a small difference in
initial conditions may still result in solutions that are largely different over time. Chaotic systems
are not random. According to Lorenz, chaos is "[w]hen the present determines the future, but the
approximate present does not approximately determine the future."
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Figure 1.2: Multiple solutions to the Lorenz equation with random initial conditions

Problem 3. Use matplotlib.animation.FuncAnimation to produce a 3D animation of two
solutions to the Lorenz equations with similar initial conditions. To make similar initial con-
ditions, draw (x1, y1, z1) randomly as before, and then produce (x2, y2, z2) by adding a small
perturbation: np.random.randn(3)*(1e-10). It will take several seconds before the separation
between the two solutions will be noticeable.

The animation should have a point marker and the past trajectory curve for each solution.
Save your animation as lorenz_animation1.mp4.

In a chaotic system, round-off error implicit in a numerical method can also produce similarly
diverging approximations for the same initial condition. For example, using a Runge-Kutta method
with two different values of h on identical initial conditions will still result in approximations that
differ in a chaotic fashion.

Problem 4. The odeint function allows users to specify error tolerances (similar to setting
a value of h for a Runge-Kutta method). Using a single random initial condition, produce
two approximations by using the odeint arguments (atol=1e-14, rtol=1e-12) for the first
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approximation and (atol=1e-15, rtol=1e-13) for the second.
As in the previous problem, use FuncAnimation to animate both solutions. Save the

animation as lorenz_animation2.mp4.

Lyapunov Exponents
The Lyapunov exponent of a dynamical system is one measure of how chaotic a system is. While
there are more conditions for a system to be considered chaotic, one of the primary indicators of
a chaotic system is extreme sensitivity to initial conditions. Strictly speaking, this is saying that a
chaotic system is poorly conditioned. In a chaotic dynamical system, the sensitivity to changes in
initial conditions depends exponentially on the time the system is allowed to evolve. If �(t) represents
the difference between two solution curves, when �(t) is small, the following approximation holds.

k�(t)k ⇠ k�(0)ke�t

where � is a constant called the Lyapunov exponent. In other words, log(k�(t)k) is approximately
linear as a function of time, with slope �. For the Lorenz system (and the parameter values specified
in this lab), it can be verified experimentally that � ⇡ .9.

Problem 5. Estimate the Lyapunov exponent of the Lorenz equations by doing the following:

• Produce an initial condition that already lies on the attractor. This can be done by
picking a random initial condition, and then solving the system forward in time for a
while.

• Produce a second initial condition by adding a small perturbation: np.random.randn(3)
*(1e-10).

• For both initial conditions, use odeint to produce approximate solutions for 0  t  10.

• Compute k�(t)k by taking the norm of the difference between the two approximate solu-
tions.

• Use scipy.stats.linregress to calculate a best-fit line for log(k�(t)k) against t.

• The slope of the resulting best-fit line is an approximation of the Lyapunov exponent �.

Print your estimate for �. Also use plt.semilogy to produce a semilog plot of k�(t)k and
the best-fit line you calculated. Compare your results to Figure 1.3.

Hint: Remember that the best-fit line you calculated corresponds to a best-fit exponential
for k�(t)k. If a and b are the slope and intercept of the best-fit line, respectively, the best-fit
exponential can be plotted on a semilog plot using plt.semilogy(t,np.exp(a*t+b)).
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Figure 1.3: A semilog plot of the separation between two solutions to the Lorenz equations together
with a fitted line that gives a rough estimate of the Lyapunov exponent of the system.


