
1 Method of Mean
Weighted Residuals

Lab Objective: We introduce the method of mean weighted residuals (MWR) and use it to derive
a pseudospectral method. This method will then be used to solve several boundary value problems.

Consider a linear differential equation

Lu = f,

defined on the interval [−1, 1], together with associated boundary conditions. We will approximate
the solution u(x) by a linear combination of N + 1 basis functions φi, so that

u(x) ≈ uN (x) =

N∑
i=0

aiφi(x).

To determine appropriate constants ai, we then minimize the residual function

R(x, uN) = LuN − f.

Note that R(x, u) = Lu− f = 0 for the true solution u(x).
This general strategy is often called the method of mean weighted residuals (MWR method).

The MWR method is a general framework that describes many other, more specific methods. These
more specific methods come from differing approaches to minimizing the residual R(x, uN), and the
choice of basis functions φi.

The Pseudospectral Method
The pseudospectral or collocation method is obtained from the MWR method by forcing the residual
function R(x, uN) to equal zero at N + 1 points in [−1, 1], called collocation points. When done
correctly, the pseudospectral method gives high accuracy and converges rapidly.

We will let the basis functions φi be the Chebyshev polynomials,

T0(x) = 1

T1(x) = x

Tn+1(x) = 2xTn(x)− Tn−1(x)

1

2 Lab 1. Method of Mean Weighted Residuals

and the collocation points will be the Gauss-Lobatto points, xi = cos(πi/N), i = 0, . . . , N . The
appropriate solution uN may be represented with two equivalent forms. First, uN can be described
with the first N + 1 coefficients {ai}Ni=0 of its expansion in the Chebyshev polynomials. Since uN is
a polynomial of order N , it may be uniquely described by its values at the collocation points, that
is, the unknown values {uN (xi)}Ni=0.

These equivalent forms satisfy

MA = F (1.1)

and

LU = F (1.2)

where

Ui = u(xi),

Ai = ai,

Fi = f(xi),

Lij = (LCj(x))|x=xi
,

Mij = (Lφj(x))|x=xi
.

The functions Cj above are the cardinal functions, defined to be the polynomials of least degree
satisfying

Cj(xi) =

{
1 i = j

0 i 6= j.

Thus, uN can also be expanded in the basis of the cardinal functions:

uN (x) =

N∑
j=0

uN (xj)Cj(x).

When L = d/dx, the matrix corresponding to equation (1.2) is given by

Lij =
dCj

dx
(xi) =

(1 + 2N2)/6 i = j = 0,

−(1 + 2N2)/6 i = j = N,

−xj/[2(1− x2j)] i = j, 0 < j < N,

(−1)i+jαi/[αj(xi − xj)] i 6= j.

where α0 = αN = 2, and αj = 1 otherwise.
This matrix is often called the differentiation matrix (D), and can be used to piece together

the matrix L for more complicated differential operators. A stable, vectorized function to build the
differentiation matrix is given below.

import numpy as np

def cheb(N):
x = np.cos((np.pi/N)*np.linspace(0,N,N+1))
x.shape = (N+1,1)
lin = np.linspace(0,N,N+1)

3

lin.shape = (N+1,1)

c = np.ones((N+1,1))
c[0], c[-1] = 2., 2.
c = c*(-1.)**lin
X = x*np.ones(N+1) # broadcast along 2nd dimension (columns)

dX = X - X.T

D = (c*(1./c).T)/(dX + np.eye(N+1))
D = D - np.diag(np.sum(D.T,axis=0))
x.shape = (N+1,)
Here we return the differentiation matrix and the Chebyshev points,
numbered from x_0 = 1 to x_N = -1
return D, x

Using the Differentiation Matrix

Problem 1. Use the differentiation matrix to numerically approximate the derivative of u(x) =
ex cos(6x) on a grid ofN Chebychev points whereN = 6, 8, and 10. (Use the linear systemDU ≈
U ′.) Then use barycentric interpolation (scipy.interpolate.barycentric_interpolate) to
approximate u′ on a grid of 100 evenly spaced points.

Graphically compare your approximation to the exact derivative. Note that this conver-
gence would not be occurring if the collocation points were equally spaced.

To approximate u′′(x) on the grid {xi}, we use

U ′′ ≈ D2U.

The BVP

u′′ = f(x), x ∈ [−1, 1],
u(−1) = 0, u(1) = 0,

can be discretized by the linear system

D2U = F, (1.3)

where F = [f(x0), . . . , f(xN)]T . Since we have Dirichlet boundary conditions of 0, we can satisfy
the boundary condition by forcing U [0] = U [N] = 0. This is done by replacing the first and last
equations in (1.3) by the boundary conditions.

#The following code will force U[0] = U[N] = 0
D, x = cheb(N) #for some N
D2 = np.dot(D, D)
D2[0,:], D2[-1,:] = 0, 0
D2[0,0], D2[-1,-1] = 1, 1
F[0], F[-1] = 0, 0

4 Lab 1. Method of Mean Weighted Residuals

Problem 2. Use the pseudospectral method to solve the boundary value problem

u′′ = e2x, x ∈ (−1, 1),
u(−1) = 0, u(1) = 0.

Use N = 8 in the cheb(N) method and use barycentric interpolation to approximate u on
100 evenly spaced points. Compare your numerical solution with the exact solution,

u(x) =
− cosh(2)− sinh(2)x+ e2x

4
.

Problem 3. Use the pseudospectral method to solve the boundary value problem

u′′ + u′ = e3x, x ∈ (−1, 1),
u(−1) = 2, u(1) = −1.

Use N = 8 in the cheb(N) method and use barycentric interpolation to approximate u on
100 evenly spaced points.

The previous exercise involved setting up and solving a linear system

AU = F,

where F is a vector whose entries are e3x evaluated at the collocation points xj , and U represents
the approximation to the solution u at those points. However, whenever the ODE is nonlinear,
the discretization becomes a nonlinear system of equations that must be solved in some other way,
such as with Newton’s method (or its cousins). Here we will use scipy.optimize.root. The next
exercise contains a BVP whose ODE is nonlinear, with the additional complexity that the domain
of the problem is not [−1, 1].

Problem 4. Use the pseudospectral method to solve the boundary value problem

u′′ = λ sinh(λu), x ∈ (0, 1),

u(0) = 0, u(1) = 1

for several values of λ: λ = 4, 8, 12. Begin by transforming this BVP onto the domain −1 <
x < 1. Use N = 20 in the cheb(N) method and use barycentric interpolation to approximate
u on 100 evenly spaced points.

Below is sample code for using scipy.optimize.root. It requires that a function F be
defined, which returns the residual of the nonlinear system (the difference between the right-
and left-hand sides for some "guess" input U). Recall that boundary conditions must be handled
differently than the equations for the interior.

from scipy.optimize import root

N = 20

5

D, x = cheb(20)

def F(U):
out = None #Set up the equation you want the root of.
#Make sure to set the boundaries correctly

return out #scipy.optimize.root will update U until the output is all←↩
0's.

guess = None #Make your guess, same size as the cheb(N) output
solution = root(F, guess).x

Minimizing the Area of a Surface of Revolution
A surface of revolution that minimizes its area is an example of a larger class of surfaces called
minimal surfaces. A famous example of a minimal surface is a soap bubble. Soap bubbles minimize
their surface area while containing a fixed volume of air. This behavior extends to merged bubbles,
and a soap film whose boundary is a wire frame. Minimal surfaces have applications in molecular
engineering and material science, and general relativity, where they describe the apparent horizon of
a black hole.

Consider a function y(x) defined on [−1, 1] satisfying y(−1) = a, y(1) = b. The area of the
surface obtained by revolving the graph of y(x) about the x-axis is given by

T [y(x)] =

∫ 1

−1
2πy(x)

√
1 + (y′(x))2 dx.

To find the function y(x) whose surface of revolution minimizes surface area, we must minimize the
functional T [y]. This is a classical problem from a branch of mathematics called the calculus of
variations. Standard derivatives allow us to find the minimum values of functions defined on Rn,
and where they occur. The calculus of variations allows us to find the minimum values of functions
whose input are other functions.

From the calculus of variations we know that a necessary condition for y(x) to minimize T [y]
is that the Euler-Lagrange equation must be satisfied:

Ly −
d

dx
Ly′ = 0,

where L(x, y, y′) = 2πy
√
1 + (y′)2. Simplifying the Euler-Lagrange equation for our problem results

in the ODE
yy′′ − (y′)2 − 1 = 0.

Discretizing this ODE using the pseudospectral method results in the (nonlinear) system of equations

Y · (D2Y)− (DY) · (DY) = I,

where I is a vector of ones.

6 Lab 1. Method of Mean Weighted Residuals

Figure 1.1: The minimal surface corresponding to Problem 5.

Problem 5. Find the function y(x) that satisfies y(−1) = 1, y(1) = 7, and whose surface of
revolution (about the x-axis) minimizes surface area. Compute the surface area, and plot the
surface. Use N = 50 in the cheb(N) method and use barycentric interpolation to approximate
u on 100 evenly spaced points.

Below is sample code for creating the 3D wireframe figure.

barycentric = None #This is the output of barycentric_interpolate() on ←↩
100 points

x = np.linspace(-1, 1, 100)
theta = np.linspace(0,2*np.pi,401)
X, T = np.meshgrid(x, theta)
Y, Z = barycentric*np.cos(T), barycentric*np.sin(T)

fig = plt.figure()
ax = fig.add_subplot(111,projection="3d")
ax.plot_wireframe(X, Y, Z, rstride=10, cstride=10)
plt.show()

	Method of Mean Weighted Residuals

