
1 A Pseudospectral
method for periodic
functions

Lab Objective: We look at a pseudospectral method with a Fourier basis, and numerically solve
the advection equation using a pseudospectral discretization in space and a Runge-Kutta integration
scheme in time.

Let f be a periodic function on [0, 2π]. Let x1, . . . , xN be N evenly spaced grid points on
[0, 2π].Since f is periodic on [0, 2π], we can ignore the grid point xN = 2π. We will further assume
that N is even; similar formulas can be derived for N odd. Let h = 2π/N ; then {x0, . . . , xN−1} =
{0, h, 2h, . . . , 2π − h}.

The discrete Fourier transform (DFT) of f , denoted by f̂ or F(f), is given by

f̂(k) = h

N−1∑
j=0

e−ikxjf(xj) where k = −N/2 + 1, . . . , 0, 1, . . . , N/2.

The inverse DFT is then given by

f(xj) =
1

2π

N/2∑
k=−N/2

eikxj

ck
f̂(k), j = 0, . . . , N − 1, (1.1)

where

ck =

{
2 if k = −N/2 or k = N/2,

1 otherwise.
(1.2)

The inverse DFT can then be used to define a natural interpolant (sometimes called a band-limited
interpolant) by evaluating (1.1) at any x rather than xj :

p(x) =
1

2π

N/2∑
k=−N/2

eikxf̂(k). (1.3)

The interpolant for f ′ is then given by

p′(x) =
1

2π

N/2−1∑
k=−N/2+1

ikeikxf̂(k). (1.4)

1

2 Lab 1. A Pseudospectral method for periodic functions

Consider the function u(x) = sin2(x) cos(x) + e2 sin(x+1). Using (1.4), the derivative u′ may
be approximated with the following code. 1 We note that although we only approximate u′ at the
Fourier grid points, (1.4) provides an analytic approximation of u′ in the form of a trigonometric
polynomial.

import numpy as np
from scipy.fftpack import fft, ifft
import matplotlib.pyplot as plt

N=24
x1 = (2.*np.pi/N)*np.arange(1,N+1)
f = np.sin(x1)**2.*np.cos(x1) + np.exp(2.*np.sin(x1+1))

This array is reordered in Python to
accomodate the ordering inside the fft function in scipy.
k = np.concatenate((np.arange(0,N/2) ,

np.array([0]) , # Because hat{f}'(k) at k = N/2 is zero.
np.arange(-N/2+1,0,1)))

Approximates the derivative using the pseudospectral method
f_hat = fft(f)
fp_hat = ((1j*k)*f_hat)
fp = np.real(ifft(fp_hat))

Calculates the derivative analytically
x2 = np.linspace(0,2*np.pi,200)
derivative = (2.*np.sin(x2)*np.cos(x2)**2. -

np.sin(x2)**3. +
2*np.cos(x2+1)*np.exp(2*np.sin(x2+1))
)

plt.plot(x2,derivative,'-k',linewidth=2.)
plt.plot(x1,fp,'*b')
plt.show()

Problem 1. Consider again the function u(x) = sin2(x) cos(x) + e2 sin(x+1). Create a function
that approximates 1

2u
′′ − u′ on the Fourier grid points for N = 24. Plot the approximation as

well as the analytic solution.

The advection equation
Recall that the advection equation is given by

ut + cux = 0 (1.5)

1See Spectral Methods in MATLAB by Lloyd N. Trefethen. Another good reference is Chebyshev and Fourier
Spectral Methods by John P. Boyd.

3

0 1 2 3 4 5 6

6

4

2

0

2

4

6

Figure 1.1: The derivative of u(x) = sin2(x) cos(x) + e2 sin(x+1).

where c is the speed of the wave (the wave travels to the right for c > 0). We will consider the
solution of the advection equation on the circle; this essentially amounts to solving the advection
equation on [0, 2π] and assuming periodic boundary conditions.

A common method for solving time-dependent PDEs is called the method of lines. To apply
the method of lines to our problem, we use our Fourier grid points in [0, π]: given an even N , let
h = 2π/N , so that {x0, . . . , xN−1} = {0, h, 2h, . . . , 2π− h}. By using these grid points we obtain the
collection of equations

ut(xj , t) + cux(xj , t) = 0, t > 0, j = 0, . . . N − 1. (1.6)

Let U(t) be the vector valued function given by U(t) = (u(xj , t))
N−1
j=0 . Let F(U)(t) denote the

discrete Fourier transform of u(x, t) (in space), so that

F(U)(t) = (û(k, t))
N/2
k=−N/2+1.

Define F−1 similarly. Using the pseudospectral approximation in space leads to the system of ODEs

Ut + ~cF−1
(
i~kF(U)

)
= 0 (1.7)

where ~k is a vector, and ~kF(U) denotes element-wise multiplication. Similarly ~c could also be a
vector, if the wave speed c is allowed to vary.

4 Lab 1. A Pseudospectral method for periodic functions

Problem 2. Use scipy.integrate.odeint to solve the initial value problem

ut + c(x)ux = 0, (1.8)

where c(x) = .2 + sin2(x− 1), and u(x, t = 0) = e−100(x−1)
2

. Use the method given in (1.7) to
rewrite the problem as a system of ODEs. Animate your numerical solution from t = 0 to t = 8

(and x ∈ [0, 2π]) over 150 time steps and 100 x steps. a

aThis problem is solved in Spectral Methods in MATLAB using a leapfrog discretization in time.

	A Pseudospectral method for periodic functions

