
22 HIV Treatment Using
Optimal Control

Introduction

Viruses are the cause of many common illnesses in society today, such as ebola, influenza, the common
cold, and Human Immunodeficiency Virus (HIV). Viruses are not considered to be living organisms
as they cannot reproduce on their own. Instead they inject their genes in the form of DNA or RNA
into a host’s genome. They then use the cell’s ribosomes and proteins to make the protein coat and
replicate their genes. At the end they lyse the cell (tear it apart) and release many virus particles to
infect other cells.

The body has an adaptive immune system which learns to recognize viruses and bacteria and
their hosts, and how to destroy them. A major component of this system are T cells. These
cells perform many necessary functions such as recognizing invaders, destroying infected cells, and
remembering previous infections long after recovery. Of particular interest is the helper T cell,
also known as the CD4+T cell, due to a protein found on its surface which regulates the immune
responses. HIV is unique in that it specifically targets this particular type of T cell. This means that
the system responsible for fighting infections is specifically targeted.

This loss of CD4+T cells is what causes Acquired Immune Deficiency Syndrome (AIDS). Note
that AIDS itself is not an infection, which is a common misconception among the population. Due
to the lack of T cells to recognize viruses and bacteria, the body becomes susceptible to other forms
of infection. Whereas most people are easily able to shake off a common cold, someone suffering
from the advanced stages of AIDS will be at serious risk of dying. Since AIDS comes from a loss of
T cells, it may be several years before the host notices the effects of the infection. This enables the
HIV virus to spread more easily since the host might not realize they are infected and continue in
whatever behavior made them susceptible to the infection initially.

Currently there is no cure or vaccine for HIV. However, there are treatments that reduce the
virus and bolster the immune system by increasing the CD4+T cell count. Since these treatments
can be expensive and often have negative side effects, it is important to optimize the amount of drugs
used. Sometimes combinations of these drugs are used to provide a better effect. In this lab we will
use optimal control to find the optimal dosage of a two-drug combination1.

1SHORT COURSES ON THE MATHEMATICS OF BIOLOGICAL COMPLEXITY, Web. 15 Apr. 2015
http://www.math.utk.edu/ lenhart/smb2003.v2.html.

1

2 Lab 22. HIV Treatment Using Optimal Control

Derivation of Control
We begin by defining some variables. Let T represents the concentration of CD4+T cells and V the
concentration of HIV particles. s1 and s2 represent the production of T cells by various processes.
B1 and B2 are half saturation constants (sort of like crowd control in the blood stream and plasma).
Let µ be the death rate of uninfected T cells, k the rate of infection of T cells, and c the death rate
of the virus. Let g be the input rate of some external viral source. The control variables u1 and u2
represent the amount of drugs that introduce new T cells or kill the virus, respectively. 2

Next we write the state system, the equations that describe the changes in T cells and viruses:

dT (t)

dt
= s1 −

s2V (t)

B1 + V (t)
− µT (t)− kV (t)T (t) + u1(t)T (t),

dV (t)

dt
=

gV (t)

B2 + V (t)
(1− u2(t))− cV (t)T (t).

(22.1)

The term s1 − s2V (t)
B1+V (t) is the source/proliferation of unaffected T cells, µT (t) the natural loss of T

cells, kV (t)T (t) the loss of T cells by infection. gV (t)
B2+V (t) represents the viral contribution to plasma,

and cV (t)T (t) the viral loss. To these equations we add initial conditions T (0) = T0 and V (0) = V0.
3

We now seek to maximize the functional

J(u1, u2) =

∫ tf

0

[T − (A1u
2
1 +A2u

2
2)]dt .

This functional considers i) the benefit of T cells, and ii) the systematic costs of drug treatments. The
constants A1 and A2 represent scalars to adjust the size of terms coming from u21 and u22 respectively.
We seek an optimal control u∗1, u∗2 satisfying

J(u∗1, u
∗
2) = max{J(u1, u2)|(u1, u2) ∈ U},

where U = {(u1, u2)|ui is measurable , ai ≤ ui ≤ bi, t ∈ [0, tf] for i = 1, 2}.

Optimality System
The Hamiltonian is defined as:

H = ~λ · ~f − L

H = λ1

[
s1 −

s2V

B1 + V
− µT − kV T + u1T

]
+ λ2

[g(1− u2)V
B2 + V

− cV T
]

− [T − (A1u
2
1 +A2u

2
2)].

Note that the costate is represented with λ instead of p. The costate evolution equations are:

λ
′

1 = −∂H
∂T

= 1 + λ1[µ+ kV ∗ − u∗1] + λ2cV
∗,

λ
′

2 = −∂H
∂V

= λ1

[B1s2
(B1 + V ∗)2

+ kT ∗
]
− λ2

[B2g(1− u∗2)
(B2 + V ∗)2

− cT ∗
]
.

2‘Immunotherapy of HIV-1 Infection’, Kirschner, D. and Webb, G. F., Journal of Biological Systems, 6(1), 71-83
(1998)

3‘Optimal Control of an HIV Immunology Model’, H.R Joshi

3

The transversality (or endpoint) conditions are λ1(tf) = λ2(tf) = 0, with T (0) = T0 and V (0) = V0.
The optimality equations are:

∂H

∂u1
= 2A1u

∗
1(t) + λ1T

∗(t) = 0

∂H

∂u2
= 2A2u

∗
2(t) + λ2

[−gV ∗(t)
B2 + V ∗(t)

]
= 0

From these conditions we obtain

u∗1(t) =
−1
2A1

[λ1T
∗(t)] ,

u∗2(t) =
1

2A2

[
λ2

gV ∗(t)

B2 + V ∗(t)

]
.

From the bounds on the controls we have

u∗1(t) = min

{
max{a1,

−1
2A1

(λ1T
∗(t))}, b1

}
,

u∗2(t) = min

{
max{a2,

λ2
2A2

gV ∗(t)

B2 + V ∗(t)
}, b2

}
.

This gives us the optimal system

T ′ = s1 −
s2V

B1 + V
− µT − kV T +min{max{a1,

−1
2A1

(λ1T)}, b1}T,

V ′ =
g(1−min{max{a2, λ2

2A2

gV
B2+V

}, b2})V
B2 + V

− cV T
(22.2)

λ′1 = 1 + λ1

[
µ+ kV −min{max{a1,

−1
2A1

(λ1T)}, b1}
]
+ λ2cV,

λ′2 = λ1

[
B1s2

(B1 + V)2
+ kT

]
− λ2

[
B2g(1−min{max{a2, λ2

2A2

V
B2+V

}, b2})
(B2 + V)2

− cT

]
,

(22.3)

with end conditions λ1(tf) = λ2(tf) = 0, and T (0) = T0, V (0) = V0.

Creating a Numerical Solver
We iteratively solve for our control u. In each iteration we solve our state equations and our costate
equations numerically, then use those to find our new control. Lastly, we check to see if our control
has converged. To solve each set of differential equations, we will use the RK4 solver from a previous
lab with one minor adjustment. Our state equations depend on u, and our costate equations depend
on our state equations. Therefore, we will pass another parameter into the function that RK4 takes
in that will index the arrays our equations depend on.

Dependencies for this lab's code:
import numpy as np
from matplotlib import pyplot as plt

#Code from RK4 Lab with minor edits
def initialize_all(y0, t0, t, n):

""" An initialization routine for the different ODE solving

4 Lab 22. HIV Treatment Using Optimal Control

methods in the lab. This initializes Y, T, and h. """
if isinstance(y0, np.ndarray):

Y = np.empty((n, y0.size)).squeeze()
else:

Y = np.empty(n)
Y[0] = y0
T = np.linspace(t0, t, n)
h = float(t - t0) / (n - 1)
return Y, T, h

def RK4(f, y0, t0, t, n):
""" Use the RK4 method to compute an approximate solution
to the ODE y' = f(t, y) at n equispaced parameter values from t0 to t
with initial conditions y(t0) = y0.

y0 is assumed to be either a constant or a one-dimensional numpy array.
t and t0 are assumed to be constants.
f is assumed to accept three arguments.
The first is a constant giving the value of t.
The second is a one-dimensional numpy array of the same size as y.
The third is an index to the other arrays.

This function returns an array Y of shape (n,) if
y is a constant or an array of size 1.
It returns an array of shape (n, y.size) otherwise.
In either case, Y[i] is the approximate value of y at
the i'th value of np.linspace(t0, t, n).
"""
Y,T,h = initialize_all(y0,t0,t,n)
for i in xrange(n-1):

K1 = f(T[i],Y[i],i)
K2 = f(T[i]+h/2.,Y[i]+h/2.*K1,i)
K3 = f(T[i]+h/2.,Y[i]+h/2.*K2,i)
K4 = f(T[i+1],Y[i]+h*K3,i)
Y[i+1] = Y[i] + h/6.*(K1+2*K2 +2*K3+K4)

return Y

Problem 1. Create a function that defines the state equations and returns both equations in
a single array. The function should be able to be passed into the RK4 solver. This function
can depend on the global variables defined below.

5

Achtung!

When solving the state equations, because of the nature of T ′ and V ′, solve the original
equations (22.1) from the beginning of the lab and not the equations (22.2) with u∗i (t)

replaced by the minmax function.

a_1, a_2 = 0, 0
b_1, b_2 = 0.02, 0.9
s_1, s_2 = 2., 1.5
mu = 0.002
k = 0.000025
g = 30.
c = 0.007
B_1, B_2 = 14, 1
A_1, A_2 = 250000, 75
T0, V0 = 400, 3
t_f = 50
n = 1000

These constants come from both references cited at the end of this lab.

initialize global variables, state, costate, and u.
state = np.zeros((n,2))
state0 = np.array([T0, V0])

costate = np.zeros((n,2))
costate0 = np.zeros(2)

u=np.zeros((n,2))
u[:,0] += .02
u[:,1] += .9

define state equations
def state_equations(t,y,i):

'''
Parameters

t : float

the time
y : ndarray (2,)

the T cell concentration and the Virus concentration at time t
i : int

index for the global variable u.
Returns

y_dot : ndarray (2,)

6 Lab 22. HIV Treatment Using Optimal Control

the derivative of the T cell concentration and the virus ←↩
concentration at time t

'''
pass

The state equations work great in the RK4 solver; however, the costate equations have end
conditions rather than initial conditions. Thus we want our RK4 solver to iterate backwards from
the end to the beginning. An easy way to accomplish this is to define a function λ̂i(t) = λi(tf − t).
Then λ̂i has the initial conditions λ̂i(0) = λi(tf). We get the new equations

˙̂
λ1(t) = λ1(tf − t) (−µ− kV (tf − t) + u1(tf − t))− cλ2(tf − t)V (tf − t)− 1,

˙̂
λ2(t) = −λ1(tf − t)

(
s2B1

(B1 + V (tf − t))2
+ kT (tf − t)

)
+ λ2(tf − t)

(
gB2(1− u2(tf − t))
(B2 + V (tf − t))2

− cT (tf − t)
)
.

These we can solve with our RK4 solver and recover the original costate equations by simply
indexing the array backwards.

Problem 2. Create a function that defines the costate equations and returns both equations
in a single array. The function should be able to be passed into the RK4 solver. Use the global
variables as defined in Problem 1.

def lambda_hat(t,y,i):
'''
Parameters

t : float

the time
y : ndarray (2,)

the lambda_hat values at time t
i : int

index for global variables, u and state.
Returns

y_dot : ndarray (2,)

the derivative of the lambda_hats at time t.
'''
pass

Finally, we can put these together to create our solver.

7

Figure 22.1: The solution to Problem 3.

Problem 3. Create and run a numerical solver for the HIV two drug model using the code
below.

epsilon = 0.001
test = epsilon + 1

while(test > epsilon):
oldu = u.copy();

#solve the state equations with forward iteration
#state = RK4(...)

#solve the costate equations with backwards iteration
#costate = RK4(...)[::-1]

#solve for u1 and u2

#update control
u[:,0] = 0.5*(u1 + oldu[:,0])
u[:,1] = 0.5*(u2 + oldu[:,1])

#test for convergence

8 Lab 22. HIV Treatment Using Optimal Control

test = abs(oldu - u).sum()

Your solutions should match Figure 22.1.

In modern medicine, patients generally take combinations of five or more medications with
different functions. These include Nucleotide Reverse Transcriptase Inhibitors, which prevent HIV
inserting its genes into host DNA, Non-Nucleoside Reverse Transcriptase Inhibitors, which do the
same job as NRTIs in a different fashion, Protease Inhibitors, which cut up replicated HIV strands,
Fusion Inhibitors, which block the virus from entering the cells to begin with, and Integrase Inhibitors,
which prevents the virus’ replicated DNA from being inserted into a cell’s DNA. These drugs often can
interact with each other and have different side effects on the body. Also, doctors rotate medications
as the body and virus develop immunity.

	HIV Treatment Using Optimal Control

