Labs for Foundations of Applied Mathematics Volume 1 Mathematical Analysis

Jeffrey Humpherys & Tyler J. Jarvis, managing editors

List of Contributors

E. Evans Brigham Young University R. Evans Brigham Young University J. Grout Drake University J. Humpherys Brigham Young University T. Jarvis Brigham Young University J. Whitehead Brigham Young University J. Adams Brigham Young University J. Bejarano Brigham Young University Z. Boyd Brigham Young University M. Brown Brigham Young University A. Carr Brigham Young University C. Carter Brigham Young University T. Christensen Brigham Young University M. Cook Brigham Young University R. Dorff Brigham Young University B. Ehlert Brigham Young University M. Fabiano Brigham Young University

K. Finlinson Brigham Young University J. Fisher Brigham Young University R. Flores Brigham Young University R. Fowers Brigham Young University A. Frandsen Brigham Young University R. Fuhriman Brigham Young University S. Giddens Brigham Young University C. Gigena Brigham Young University M. Graham Brigham Young University F. Glines Brigham Young University C. Glover Brigham Young University M. Goodwin Brigham Young University R. Grout Brigham Young University D. Grundvig Brigham Young University E. Hannesson Brigham Young University J. Hendricks Brigham Young University A. Henriksen Brigham Young University

List of Contributors

I. Henriksen Brigham Young University C. Hettinger Brigham Young University S. Horst Brigham Young University K. Jacobson Brigham Young University J. Leete Brigham Young University J. Lytle Brigham Young University R. McMurray Brigham Young University S. McQuarrie Brigham Young University D. Miller Brigham Young University J. Morrise Brigham Young University M. Morrise Brigham Young University A. Morrow Brigham Young University R. Murray Brigham Young University J. Nelson Brigham Young University E. Parkinson Brigham Young University M. Probst Brigham Young University M. Proudfoot Brigham Young University

D. Reber Brigham Young University H. Ringer Brigham Young University C. Robertson Brigham Young University M. Russell Brigham Young University R. Sandberg Brigham Young University C. Sawyer Brigham Young University M. Stauffer Brigham Young University J. Stewart Brigham Young University S. Suggs Brigham Young University A. Tate Brigham Young University T. Thompson Brigham Young University M. Victors Brigham Young University J. Webb Brigham Young University R. Webb Brigham Young University J. West Brigham Young University A. Zaitzeff Brigham Young University

This project is funded in part by the National Science Foundation, grant no. TUES Phase II DUE-1323785.

ii

Preface

This lab manual is designed to accompany the textbook *Foundations of Applied Mathematics Volume 1: Mathematical Analysis* by Humpherys, Jarvis and Evans. The labs focus mainly on important numerical linear algebra algorithms, with applications to images, networks, and data science. The reader should be familiar with Python [VD10] and its NumPy [Oli06, ADH⁺01, Oli07] and Matplotlib [Hun07] packages before attempting these labs. See the Python Essentials manual for introductions to these topics.

©This work is licensed under the Creative Commons Attribution 3.0 United States License. You may copy, distribute, and display this copyrighted work only if you give credit to Dr. J. Humpherys. All derivative works must include an attribution to Dr. J. Humpherys as the owner of this work as well as the web address to

https://github.com/Foundations-of-Applied-Mathematics/Labs as the original source of this work. To view a copy of the Creative Commons Attribution 3.0 License, visit http://creativecommons.org/licenses/by/3.0/us/

or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.

Preface

iv

Contents

Pre	eface	iii
I	Labs	1
1	Linear Transformations	3
2	Linear Systems	15
3	The QR Decomposition	29
4	Least Squares and Computing Eigenvalues	41
5	Image Segmentation	55
6	The SVD and Image Compression	65
7	Facial Recognition	75
8	Differentiation	83
9	Newton's Method	93
10	Conditioning and Stability	101
11	Monte Carlo Integration	111
12	Visualizing Complex-valued Functions	117
13	The PageRank Algorithm	125
14	The Drazin Inverse	137
15	Iterative Solvers	145
16	The Arnoldi Iteration	155
17	GMRES	161

Π	Appendices	167			
\mathbf{A}	Getting Started	169			
в	Installing and Managing Python	177			
С	NumPy Visual Guide	181			
Bibliography					

vi

Part I Labs

Linear Transformations

Lab Objective: Linear transformations are the most basic and essential operators in vector space theory. In this lab we visually explore how linear transformations alter points in the Cartesian plane. We also empirically explore the computational cost of applying linear transformations via matrix multiplication.

Linear Transformations

A linear transformation is a mapping between vector spaces that preserves addition and scalar multiplication. More precisely, let V and W be vector spaces over a common field \mathbb{F} . A map $L: V \to W$ is a linear transformation from V into W if

$$L(a\mathbf{x}_1 + b\mathbf{x}_2) = aL\mathbf{x}_1 + bL\mathbf{x}_2$$

for all vectors \mathbf{x}_1 , $\mathbf{x}_2 \in V$ and scalars $a, b \in \mathbb{F}$.

Every linear transformation L from an m-dimensional vector space into an n-dimensional vector space can be represented by an $m \times n$ matrix A, called the *matrix representation* of L. To apply Lto a vector \mathbf{x} , left multiply by its matrix representation. This results in a new vector \mathbf{x}' , where each component is some linear combination of the elements of \mathbf{x} . For linear transformations from \mathbb{R}^2 to \mathbb{R}^2 , this process has the form

$$A\mathbf{x} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} ax + by \\ cx + dy \end{bmatrix} = \begin{bmatrix} x' \\ y' \end{bmatrix} = \mathbf{x}'.$$

Linear transformations can be interpreted geometrically. To demonstrate this, consider the array of points H that collectively form a picture of a horse, stored in the file horse.npy. The coordinate pairs \mathbf{x}_i are organized by column, so the array has two rows: one for x-coordinates, and one for y-coordinates. Matrix multiplication on the left transforms each coordinate pair, resulting in another matrix H' whose columns are the transformed coordinate pairs:

$$AH = A \begin{bmatrix} x_1 & x_2 & x_3 & \dots \\ y_1 & y_2 & y_3 & \dots \end{bmatrix} = A \begin{bmatrix} \mathbf{x}_1 & \mathbf{x}_2 & \mathbf{x}_3 & \dots \end{bmatrix} = \begin{bmatrix} A\mathbf{x}_1 & A\mathbf{x}_2 & A\mathbf{x}_3 & \dots \end{bmatrix}$$
$$= \begin{bmatrix} \mathbf{x}_1' & \mathbf{x}_2' & \mathbf{x}_3' & \dots \end{bmatrix} = \begin{bmatrix} x_1' & x_2' & x_3' & \dots \\ y_1' & y_2' & y_3' & \dots \end{bmatrix} = H'.$$

To begin, use np.load() to extract the array from the npy file, then plot the unaltered points as individual pixels. See Figure 1.1 for the result.

```
>>> import numpy as np
>>> from matplotlib import pyplot as plt
# Load the array from the .npy file.
>>> data = np.load("horse.npy")
# Plot the x row against the y row with black pixels.
>>> plt.plot(data[0], data[1], 'k,')
# Set the window limits to [-1, 1] by [-1, 1] and make the window square.
>>> plt.axis([-1,1,-1,1])
>>> plt.gca().set_aspect("equal")
>>> plt.show()
```

Types of Linear Transformations

Linear transformations from \mathbb{R}^2 into \mathbb{R}^2 can be classified in a few ways.

• **Stretch**: Stretches or compresses the vector along each axis. The matrix representation is diagonal:

$$\left[\begin{array}{cc}a&0\\0&b\end{array}\right].$$

If a = b, the transformation is called a *dilation*. The stretch in Figure 1.1 uses $a = \frac{1}{2}$ and $b = \frac{6}{5}$ to compress the x-axis and stretch the y-axis.

• Shear: Slants the vector by a scalar factor horizontally or vertically (or both simultaneously). The matrix representation is

$$\left[\begin{array}{rrr}1&a\\b&1\end{array}\right].$$

Pure horizontal shears (b = 0) skew the x-coordinate of the vector while pure vertical shears (a = 0) skew the y-coordinate. Figure 1.1 has a horizontal shear with $a = \frac{1}{2}, b = 0$.

• **Reflection**: Reflects the vector about a line that passes through the origin. The reflection about the line spanned by the vector $[a, b]^{\mathsf{T}}$ has the matrix representation

$$\frac{1}{a^2+b^2} \left[\begin{array}{cc} a^2-b^2 & 2ab\\ 2ab & b^2-a^2 \end{array} \right].$$

The reflection in Figure 1.1 reflects the image about the y-axis (a = 0, b = 1).

• Rotation: Rotates the vector around the origin. A counterclockwise rotation of θ radians has the following matrix representation:

$$\begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}$$

A negative value of θ performs a clockwise rotation. Choosing $\theta = \frac{\pi}{2}$ produces the rotation in Figure 1.1.

Figure 1.1: The points stored in horse.npy under various linear transformations.

Problem 1. Write a function for each type of linear transformation. Each function should accept an array to transform and the scalars that define the transformation (a and b for stretch, shear, and reflection, and θ for rotation). Construct the matrix representation, left multiply it with the input array, and return the transformed array.

To test these functions, write a function to plot the original points in horse.npy together with the transformed points in subplots for a side-by-side comparison. Compare your results to Figure 1.1.

Compositions of Linear Transformations

Let V, W, and Z be finite-dimensional vector spaces. If $L: V \to W$ and $K: W \to Z$ are linear transformations with matrix representations A and B, respectively, then the *composition* function $KL: V \to Z$ is also a linear transformation, and its matrix representation is the matrix product BA.

For example, if S is a matrix representing a shear and R is a matrix representing a rotation, then RS represents a shear followed by a rotation. In fact, any linear transformation $L : \mathbb{R}^2 \to \mathbb{R}^2$ is a composition of the four transformations discussed above. Figure 1.1 displays the composition of all four previous transformations, applied in order (stretch, shear, reflection, then rotation).

Affine Transformations

All linear transformations map the origin to itself. An *affine transformation* is a mapping between vector spaces that preserves the relationships between points and lines, but that may not preserve the origin. Every affine transformation T can be represented by a matrix A and a vector \mathbf{b} . To apply T to a vector x, calculate $A\mathbf{x} + \mathbf{b}$. If $\mathbf{b} = \mathbf{0}$ then the transformation is linear, and if A = I but $\mathbf{b} \neq \mathbf{0}$ then it is called a *translation*.

For example, if T is the translation with $\mathbf{b} = \begin{bmatrix} \frac{3}{4}, \frac{1}{2} \end{bmatrix}^{\mathsf{T}}$, then applying T to an image will shift it right by $\frac{3}{4}$ and up by $\frac{1}{2}$. This translation is illustrated below.

Affine transformations include all compositions of stretches, shears, rotations, reflections, and translations. For example, if S represents a shear and R a rotation, and if **b** is a vector, then $RS\mathbf{x}+\mathbf{b}$ shears, then rotates, then translates \mathbf{x} .

Modeling Motion with Affine Transformations

Affine transformations can be used to model particle motion, such as a planet rotating around the sun. Let the sun be the origin, the planet's location at time t be given by the vector $\mathbf{p}(t)$, and suppose the planet has angular momentum ω (a measure of how fast the planet goes around the sun). To find the planet's position at time t given the planet's initial position $\mathbf{p}(0)$, rotate the vector $\mathbf{p}(0)$ around the origin by $t\omega$ radians. Thus if $R(\theta)$ is the matrix representation of the linear transformation that rotates a vector around the origin by θ radians, then $\mathbf{p}(t) = R(t\omega)\mathbf{p}(0)$.

Composing the rotation with a translation shifts the center of rotation away from the origin, yielding more complicated motion.

Problem 2. The moon orbits the earth while the earth orbits the sun. Assuming circular orbits, we can compute the trajectories of both the earth and the moon using only linear and affine transformations.

Assume an orientation where both the earth and moon travel counterclockwise, with the sun at the origin. Let $\mathbf{p}_e(t)$ and $\mathbf{p}_m(t)$ be the positions of the earth and the moon at time t, respectively, and let ω_e and ω_m be each celestial body's angular momentum. For a particular time t, we calculate $\mathbf{p}_e(t)$ and $\mathbf{p}_m(t)$ with the following steps.

- 1. Compute $\mathbf{p}_e(t)$ by rotating the initial vector $\mathbf{p}_e(0)$ counterclockwise about the origin by $t\omega_e$ radians.
- 2. Calculate the position of the moon relative to the earth at time t by rotating the vector $\mathbf{p}_m(0) \mathbf{p}_e(0)$ counterclockwise about the origin by $t\omega_m$ radians.
- 3. To compute $\mathbf{p}_m(t)$, translate the vector resulting from the previous step by $\mathbf{p}_e(t)$.

Write a function that accepts a final time T, initial positions x_e and x_m , and the angular momenta ω_e and ω_m . Assuming initial positions $\mathbf{p}_e(0) = (x_e, 0)$ and $\mathbf{p}_m(0) = (x_m, 0)$, plot $\mathbf{p}_e(t)$ and $\mathbf{p}_m(t)$ over the time interval $t \in [0, T]$.

Setting $T = \frac{3\pi}{2}$, $x_e = 10$, $x_m = 11$, $\omega_e = 1$, and $\omega_m = 13$, your plot should resemble the following figure (fix the aspect ratio with ax.set_aspect("equal")). Note that a more celestially accurate figure would use $x_e = 400$, $x_m = 401$ (the interested reader should see http://www.math.nus.edu.sg/aslaksen/teaching/convex.html).

Timing Matrix Operations

Linear transformations are easy to perform via matrix multiplication. However, performing matrix multiplication with very large matrices can strain a machine's time and memory constraints. For the remainder of this lab we take an empirical approach in exploring how much time and memory different matrix operations require.

Timing Code

Recall that the time module's time() function measures the number of seconds since the Epoch. To measure how long it takes for code to run, record the time just before and just after the code in question, then subtract the first measurement from the second to get the number of seconds that have passed. Additionally, in IPython, the quick command %timeit uses the timeit module to quickly time a single line of code.

```
In [1]: import time
In [2]: def for_loop():
            """Go through ten million iterations of nothing."""
   . . . :
            for _ in range(int(1e7)):
                pass
In [3]: def time_for_loop():
   . . . : .
            """Time for_loop() with time.time()."""
                                           # Clock the starting time.
            start = time.time()
            for_loop()
   . . . : .
           return time.time() - start  # Return the elapsed time.
   . . . 1
In [4]: time_for_loop()
0.24458789825439453
In [5]: %timeit for_loop()
248 ms +- 5.35 ms per loop (mean +- std. dev. of 7 runs, 1 loop each)
```

Timing an Algorithm

Most algorithms have at least one input that dictates the size of the problem to be solved. For example, the following functions take in a single integer n and produce a random vector of length n as a list or a random $n \times n$ matrix as a list of lists.

```
from random import random
def random_vector(n):  # Equivalent to np.random.random(n).tolist()
    """Generate a random vector of length n as a list."""
    return [random() for i in range(n)]
def random_matrix(n):  # Equivalent to np.random.random((n,n)).tolist()
    """Generate a random nxn matrix as a list of lists."""
    return [[random() for j in range(n)] for i in range(n)]
```

Executing random_vector(n) calls random() n times, so doubling n should about double the amount of time random_vector(n) takes to execute. By contrast, executing random_matrix(n) calls random() n^2 times (n times per row with n rows). Therefore doubling n will likely more than double the amount of time random_matrix(n) takes to execute, especially if n is large.

To visualize this phenomenon, we time random_matrix() for $n = 2^1, 2^2, \ldots, 2^{12}$ and plot n against the execution time. The result is displayed below on the left.

```
>>> domain = 2**np.arange(1,13)
>>> times = []
>>> for n in domain:
... start = time.time()
... random_matrix(n)
... times.append(time.time() - start)
...
>>> plt.plot(domain, times, 'g.-', linewidth=2, markersize=15)
>>> plt.xlabel("n", fontsize=14)
>>> plt.ylabel("Seconds", fontsize=14)
>>> plt.show()
```


The figure on the left shows that the execution time for random_matrix(n) increases quadratically in n. In fact, the blue dotted line in the figure on the right is the parabola $y = an^2$, which fits nicely over the timed observations. Here a is a small constant, but it is much less significant than the exponent on the n. To represent this algorithm's growth, we ignore a altogether and write random_matrix(n) $\sim n^2$.

Note

An algorithm like random_matrix(n) whose execution time increases quadratically with n is called $O(n^2)$, notated by random_matrix(n) $\in O(n^2)$. Big-oh notation is common for indicating both the *temporal complexity* of an algorithm (how the execution time grows with n) and the *spatial complexity* (how the memory usage grows with n).

Problem 3. Let A be an $m \times n$ matrix with entries a_{ij} , \mathbf{x} be an $n \times 1$ vector with entries x_k , and B be an $n \times p$ matrix with entries b_{ij} . The matrix-vector product $A\mathbf{x} = \mathbf{y}$ is a new $m \times 1$ vector and the matrix-matrix product AB = C is a new $m \times p$ matrix. The entries y_i of \mathbf{y} and c_{ij} of C are determined by the following formulas:

$$y_i = \sum_{k=1}^n a_{ik} x_k \qquad \qquad c_{ij} = \sum_{k=1}^n a_{ik} b_k$$

These formulas are implemented below without using NumPy arrays or operations.

Time each of these functions with increasingly large inputs. Generate the inputs A, \mathbf{x} , and B with random_matrix() and random_vector() (so each input will be $n \times n$ or $n \times 1$). Only time the multiplication functions, not the generating functions.

Report your findings in a single figure with two subplots: one with matrix-vector times, and one with matrix-matrix times. Choose a domain for n so that your figure accurately describes the growth, but avoid values of n that lead to execution times of more than 1 minute. Your figure should resemble the following plots.

Logarithmic Plots

Though the two plots from Problem 3 look similar, the scales on the y-axes show that the actual execution times differ greatly. To be compared correctly, the results need to be viewed differently.

A logarithmic plot uses a logarithmic scale—with values that increase exponentially, such as 10^1 , 10^2 , 10^3 , ...—on one or both of its axes. The three kinds of log plots are listed below.

- log-lin: the x-axis uses a logarithmic scale but the y-axis uses a linear scale. Use plt.semilogx() instead of plt.plot().
- **lin-log**: the *x*-axis is uses a linear scale but the *y*-axis uses a log scale. Use plt.semilogy() instead of plt.plot().
- log-log: both the x and y-axis use a logarithmic scale. Use plt.loglog() instead of plt.plot().

Since the domain $n = 2^1, 2^2, \ldots$ is a logarithmic scale and the execution times increase quadratically, we visualize the results of the previous problem with a log-log plot. The default base for the logarithmic scales on logarithmic plots in Matplotlib is 10. To change the base to 2 on each axis, specify the keyword arguments basex=2 and basey=2.

Suppose the domain of *n* values are stored in domain and the corresponding execution times for matrix_vector_product() and matrix_matrix_product() are stored in vector_times and matrix_times, respectively. Then the following code produces Figure 1.5.

```
>>> ax1 = plt.subplot(121) # Plot both curves on a regular lin-lin plot.
>>> ax1.plot(domain, vector_times, 'b.-', lw=2, ms=15, label="Matrix-Vector")
>>> ax1.plot(domain, matrix_times, 'g.-', lw=2, ms=15, label="Matrix-Matrix")
>>> ax1.legend(loc="upper left")
>>> ax2 = plot.subplot(122) # Plot both curves on a base 2 log-log plot.
>>> ax2.loglog(domain, vector_times, 'b.-', basex=2, basey=2, lw=2)
>>> ax2.loglog(domain, matrix_times, 'g.-', basex=2, basey=2, lw=2)
>>> ax2.loglog(domain, matrix_times, 'g.-', basex=2, basey=2, lw=2)
>>> plt.show()
```


Figure 1.5

In the log-log plot, the slope of the matrix_matrix_product() line is about 3 and the slope of the matrix_vector_product() line is about 2. This reflects the fact that matrix-matrix multiplication (which uses 3 loops) is $O(n^3)$, while matrix-vector multiplication (which only has 2 loops) is only $O(n^2)$.

Problem 4. NumPy is built specifically for fast numerical computations. Repeat the experiment of Problem 3, timing the following operations:

- matrix-vector multiplication with matrix_vector_product().
- matrix-matrix multiplication with matrix_matrix_product().
- matrix-vector multiplication with np.dot() or @.
- matrix-matrix multiplication with np.dot() or @.

Create a single figure with two subplots: one with all four sets of execution times on a regular linear scale, and one with all four sets of execution times on a log-log scale. Compare your results to Figure 1.5.

Note

Problem 4 shows that matrix operations are significantly faster in NumPy than in plain Python. Matrix-matrix multiplication grows cubically regardless of the implementation; however, with lists the times grows at a rate of an^3 while with NumPy the times grow at a rate of bn^3 , where a is much larger than b. NumPy is more efficient for several reasons:

- 1. Iterating through loops is very expensive. Many of NumPy's operations are implemented in C, which are much faster than Python loops.
- 2. Arrays are designed specifically for matrix operations, while Python lists are general purpose.
- 3. NumPy carefully takes advantage of computer hardware, efficiently using different levels of computer memory.

However, in Problem 4, the execution times for matrix multiplication with NumPy seem to increase somewhat inconsistently. This is because the fastest layer of computer memory can only handle so much information before the computer has to begin using a larger, slower layer of memory.

Additional Material

Image Transformation as a Class

Consider organizing the functions from Problem 1 into a class. The constructor might accept an array or the name of a file containing an array. This structure would makes it easy to do several linear or affine transformations in sequence.

```
>>> horse = ImageTransformer("horse.npy")
>>> horse.stretch(.5, 1.2)
>>> horse.shear(.5, 0)
>>> horse.relect(0, 1)
>>> horse.rotate(np.pi/2.)
>>> horse.translate(.75, .5)
>>> horse.display()
```

Animating Parametrizations

The plot in Problem 2 fails to fully convey the system's evolution over time because time itself is not part of the plot. The following function creates an animation for the earth and moon trajectories.

```
from matplotlib.animation import FuncAnimation
def solar_system_animation(earth, moon):
    """Animate the moon orbiting the earth and the earth orbiting the sun.
    Parameters:
        earth ((2,N) ndarray): The earth's postion with x-coordinates on the
            first row and y coordinates on the second row.
        moon ((2,N) ndarray): The moon's postion with x-coordinates on the
            first row and y coordinates on the second row.
    0.0.0
    fig, ax = plt.subplots(1,1)
                                                    # Make a figure explicitly.
    plt.axis([-15,15,-15,15])
                                                   # Set the window limits.
    ax.set_aspect("equal")
                                                   # Make the window square.
    earth_dot, = ax.plot([],[], 'COo', ms=10)  # Blue dot for the earth.
    earth_path, = ax.plot([],[], 'CO-')
                                                   # Blue line for the earth.
    moon_dot, = ax.plot([],[], 'C2o', ms=5)
                                                  # Green dot for the moon.
    moon_path, = ax.plot([],[], 'C2-')
                                                  # Green line for the moon.
    ax.plot([0],[0],'y*', ms=20)
                                                   # Yellow star for the sun.
    def animate(index):
        earth_dot.set_data(earth[0,index], earth[1,index])
        earth_path.set_data(earth[0,:index], earth[1,:index])
        moon_dot.set_data(moon[0,index], moon[1,index])
        moon_path.set_data(moon[0,:index], moon[1,:index])
        return earth_dot, earth_path, moon_dot, moon_path,
    a = FuncAnimation(fig, animate, frames=earth.shape[1], interval=25)
    plt.show()
```

Linear Systems

Lab Objective: The fundamental problem of linear algebra is solving the linear system $A\mathbf{x} = \mathbf{b}$, given that a solution exists. There are many approaches to solving this problem, each with different pros and cons. In this lab we implement the LU decomposition and use it to solve square linear systems. We also introduce SciPy, together with its libraries for linear algebra and working with sparse matrices.

Gaussian Elimination

The standard approach for solving the linear system $A\mathbf{x} = \mathbf{b}$ on paper is reducing the augmented matrix $[A \mid \mathbf{b}]$ to row-echelon form (REF) via *Gaussian elimination*, then using back substitution. The matrix is in REF when the leading non-zero term in each row is the diagonal term, so the matrix is upper triangular.

At each step of Gaussian elimination, there are three possible operations: swapping two rows, multiplying one row by a scalar value, or adding a scalar multiple of one row to another. Many systems, like the one displayed below, can be reduced to REF using only the third type of operation. First, use multiples of the first row to get zeros below the diagonal in the first column, then use a multiple of the second row to get zeros below the diagonal in the second column.

Γ	1	1	1	1		1	1	1	1		[1	1	1	1		1	1	1	1
	1	4	2	3	\longrightarrow	0	3	1	2	\longrightarrow	0	3	1	2	\longrightarrow	0	3	1	2
	4	7	8	9		4	7	8	9		0	3	4	5		0	0	3	3

Each of these operations is equivalent to left-multiplying by a type III elementary matrix, the identity with a single non-zero non-diagonal term. If row operation k corresponds to matrix E_k , the following equation is $E_3E_2E_1A = U$.

 $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & | 1 \\ 1 & 4 & 2 & | 3 \\ 4 & 7 & 8 & | 9 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & | 1 \\ 0 & 3 & 1 & | 2 \\ 0 & 0 & 3 & | 3 \end{bmatrix}$

However, matrix multiplication is an inefficient way to implement row reduction. Instead, modify the matrix in place (without making a copy), changing only those entries that are affected by each row operation.

```
>>> import numpy as np
>>> A = np.array([[1, 1, 1, 1],
                  [1, 4, 2, 3],
. . .
                  [4, 7, 8, 9]], dtype=np.float)
. . .
# Reduce the Oth column to zeros below the diagonal.
>>> A[1,0:] -= (A[1,0] / A[0,0]) * A[0]
>>> A[2,0:] -= (A[2,0] / A[0,0]) * A[0]
# Reduce the 1st column to zeros below the diagonal.
>>> A[2,1:] -= (A[2,1] / A[1,1]) * A[1,1:]
>>> print(A)
[[ 1. 1. 1. 1.]
      3.
           1. 2.]
 [ 0.
 [ 0. 0.
           3. 3.]]
```

Note that the final row operation modifies only part of the third row to avoid spending the computation time of adding 0 to 0.

If a 0 appears on the main diagonal during any part of row reduction, the approach given above tries to divide by 0. Swapping the current row with one below it that does not have a 0 in the same column solves this problem. This is equivalent to left-multiplying by a type II elementary matrix, also called a *permutation matrix*.

ACHTUNG!

Gaussian elimination is not always numerically stable. In other words, it is susceptible to rounding error that may result in an incorrect final matrix. Suppose that, due to roundoff error, the matrix A has a very small entry on the diagonal.

$$A = \left[\begin{array}{cc} 10^{-15} & 1\\ -1 & 0 \end{array} \right]$$

Though 10^{-15} is essentially zero, instead of swapping the first and second rows to put A in REF, a computer might multiply the first row by 10^{15} and add it to the second row to eliminate the -1. The resulting matrix is far from what it would be if the 10^{-15} were actually 0.

$$\left[\begin{array}{cc} 10^{-15} & 1\\ -1 & 0 \end{array}\right] \longrightarrow \left[\begin{array}{cc} 10^{-15} & 1\\ 0 & 10^{15} \end{array}\right]$$

Round-off error can propagate through many steps in a calculation. The NumPy routines that employ row reduction use several tricks to minimize the impact of round-off error, but these tricks cannot fix every matrix. **Problem 1.** Write a function that reduces an arbitrary square matrix A to REF. You may assume that A is invertible and that a 0 will never appear on the main diagonal (so only use type III row reductions, not type II). Avoid operating on entries that you know will be 0 before and after a row operation. Use at most two nested loops.

Test your function with small test cases that you can check by hand. Consider using np.random.randint() to generate a few manageable tests cases.

The LU Decomposition

The LU decomposition of a square matrix A is a factorization A = LU where U is the **upper** triangular REF of A and L is the **lower** triangular product of the type III elementary matrices whose inverses reduce A to U. The LU decomposition of A exists when A can be reduced to REF using only type III elementary matrices (without any row swaps). However, the rows of A can always be permuted in a way such that the decomposition exists. If P is a permutation matrix encoding the appropriate row swaps, then the decomposition PA = LU always exists.

Suppose A has an LU decomposition (not requiring row swaps). Then A can be reduced to REF with k row operations, corresponding to left-multiplying the type III elementary matrices E_1, \ldots, E_k . Because there were no row swaps, each E_i is lower triangular, so each inverse E_i^{-1} is also lower triangular. Furthermore, since the product of lower triangular matrices is lower triangular, L is lower triangular:

$$E_k \dots E_2 E_1 A = U \longrightarrow A = (E_k \dots E_2 E_1)^{-1} U$$
$$= E_1^{-1} E_2^{-1} \dots E_k^{-1} U$$
$$= L U.$$

Thus, L can be computed by right-multiplying the identity by the matrices used to reduce U. However, in this special situation, each right-multiplication only changes one entry of L, matrix multiplication can be avoided altogether. The entire process, only slightly different than row reduction, is summarized below.

Algo	orithm 2.1	
1: p	rocedure LU DECOMPOSITION(A)	
2:	$m, n \leftarrow \text{shape}(A)$	\triangleright Store the dimensions of A.
3:	$U \leftarrow \operatorname{copy}(A)$	\triangleright Make a copy of A with np.copy().
4:	$L \leftarrow I_m$	\triangleright The $m \times m$ identity matrix.
5:	for $j = 0 \dots n - 1$ do	
6:	for $i = j + 1 \dots m - 1$ do	
7:	$L_{i,j} \leftarrow U_{i,j}/U_{j,j}$	
8:	$U_{i,j:} \leftarrow U_{i,j:} - L_{i,j}U_{j,j:}$	
9:	$\mathbf{return}\ L, U$	

Problem 2. Write a function that finds the LU decomposition of a square matrix. You may assume that the decomposition exists and requires no row swaps.

Forward and Backward Substitution

If PA = LU and $A\mathbf{x} = \mathbf{b}$, then $LU\mathbf{x} = PA\mathbf{x} = P\mathbf{b}$. This system can be solved by first solving $L\mathbf{y} = P\mathbf{b}$, then $U\mathbf{x} = \mathbf{y}$. Since L and U are both triangular, these systems can be solved with backward and forward substitution. We can thus compute the LU factorization of A once, then use substitution to efficiently solve $A\mathbf{x} = \mathbf{b}$ for various values of \mathbf{b} .

Since the diagonal entries of L are all 1, the triangular system $L\mathbf{y} = \mathbf{b}$ has the form

$$\begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ l_{21} & 1 & 0 & \cdots & 0 \\ l_{31} & l_{32} & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ l_{n1} & l_{n2} & l_{n3} & \cdots & 1 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ \vdots \\ b_n \end{bmatrix}.$$

Matrix multiplication yields the equations

The triangular system $U\mathbf{x} = \mathbf{y}$ yields similar equations, but in reverse order:

$$\begin{bmatrix} u_{11} & u_{12} & u_{13} & \cdots & u_{1n} \\ 0 & u_{22} & u_{23} & \cdots & u_{2n} \\ 0 & 0 & u_{33} & \cdots & u_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & u_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ \vdots \\ y_n \end{bmatrix},$$

$$u_{nn}x_{n} = y_{n}, \qquad x_{n} = \frac{1}{u_{nn}}y_{n},$$

$$u_{n-1,n-1}x_{n-1} + u_{n-1,n}x_{n} = y_{n-1}, \qquad x_{n-1} = \frac{1}{u_{n-1,n-1}}\left(y_{n-1} - u_{n-1,n}x_{n}\right),$$

$$\vdots \qquad \vdots$$

$$\sum_{j=k}^{n} u_{kj}x_{j} = y_{k}, \qquad x_{k} = \frac{1}{u_{kk}}\left(y_{k} - \sum_{j=k+1}^{n} u_{kj}x_{j}\right). \qquad (2.2)$$

Problem 3. Write a function that, given A and b, solves the square linear system $A\mathbf{x} = \mathbf{b}$. Use the function from Problem 2 to compute L and U, then use (2.1) and (2.2) to solve for \mathbf{y} , then \mathbf{x} . You may again assume that no row swaps are required (P = I in this case).

SciPy

 $SciPy [JOP^+]$ is a powerful scientific computing library built upon NumPy. It includes high-level tools for linear algebra, statistics, signal processing, integration, optimization, machine learning, and more.

SciPy is typically imported with the convention import scipy as sp. However, SciPy is set up in a way that requires its submodules to be imported individually.¹

```
>>> import scipy as sp
>>> hasattr(sp, "stats")  # The stats module isn't loaded yet.
False
>>> from scipy import stats  # Import stats explicitly. Access it
>>> hasattr(sp, "stats")  # with 'stats' or 'sp.stats'.
True
```

Linear Algebra

NumPy and SciPy both have a linear algebra module, each called linalg, but SciPy's module is the larger of the two. Some of SciPy's common linalg functions are listed below.

Function	Returns
det()	The determinant of a square matrix.
eig()	The eigenvalues and eigenvectors of a square matrix.
inv()	The inverse of an invertible matrix.
norm()	The norm of a vector or matrix norm of a matrix.
solve()	The solution to $A\mathbf{x} = \mathbf{b}$ (the system need not be square).

This library also includes routines for computing matrix decompositions.

```
>>> from scipy import linalg as la
# Make a random matrix and a random vector.
>>> A = np.random.random((1000,1000))
>>> b = np.random.random(1000)
# Compute the LU decomposition of A, including pivots.
>>> L, P = la.lu_factor(A)
# Use the LU decomposition to solve Ax = b.
>>> x = la.lu_solve((L,P), b)
# Check that the solution is legitimate.
>>> np.allclose(A @ x, b)
True
```

¹SciPy modules like linalg are really *packages*, which are not initialized when SciPy is imported alone.

As with NumPy, SciPy's routines are all highly optimized. However, some algorithms are, by nature, faster than others.

Problem 4. Write a function that times different scipy.linalg functions for solving square linear systems.

For various values of n, generate a random $n \times n$ matrix A and a random n-vector \mathbf{b} using np.random.random(). Time how long it takes to solve the system $A\mathbf{x} = \mathbf{b}$ with each of the following approaches:

- 1. Invert A with la.inv() and left-multiply the inverse to **b**.
- 2. Use la.solve().
- 3. Use la.lu_factor() and la.lu_solve() to solve the system with the LU decomposition.
- 4. Use la.lu_factor() and la.lu_solve(), but only time la.lu_solve() (not the time it takes to do the factorization with la.lu_factor()).

Plot the system size n versus the execution times. Use log scales if needed.

ACHTUNG!

Problem 4 demonstrates that computing a matrix inverse is computationally expensive. In fact, numerically inverting matrices is so costly that there is hardly ever a good reason to do it. Use a specific solver like la.lu_solve() whenever possible instead of using la.inv().

Sparse Matrices

Large linear systems can have tens of thousands of entries. Storing the corresponding matrices in memory can be difficult: a $10^5 \times 10^5$ system requires around 40 GB to store in a NumPy array (4 bytes per entry $\times 10^{10}$ entries). This is well beyond the amount of RAM in a normal laptop.

In applications where systems of this size arise, it is often the case that the system is *sparse*, meaning that most of the entries of the matrix are 0. SciPy's **sparse** module provides tools for efficiently constructing and manipulating 1- and 2-D sparse matrices. A **sparse** matrix only stores the nonzero values and the positions of these values. For sufficiently sparse matrices, storing the matrix as a **sparse** matrix may only take megabytes, rather than gigabytes.

For example, diagonal matrices are sparse. Storing an $n \times n$ diagonal matrix in the naïve way means storing n^2 values in memory. It is more efficient to instead store the diagonal entries in a 1-D array of n values. In addition to using less storage space, this allows for much faster matrix operations: the standard algorithm to multiply a matrix by a diagonal matrix involves n^3 steps, but most of these are multiplying by or adding 0. A smarter algorithm can accomplish the same task much faster.

SciPy has seven sparse matrix types. Each type is optimized either for storing sparse matrices whose nonzero entries follow certain patterns, or for performing certain computations.

Name	$\mathbf{Description}$	$\operatorname{Advantages}$
bsr_matrix	Block Sparse Row	Specialized structure.
coo_matrix	Coordinate Format	Conversion among sparse formats.
csc_matrix	Compressed Sparse Column	Column-based operations and slicing.
csr_matrix	Compressed Sparse Row	Row-based operations and slicing.
dia_matrix	${ m Diagonal} \ { m Storage}$	Specialized structure.
dok_matrix	Dictionary of Keys	Element access, incremental construction.
lil_matrix	Row-based Linked List	Incremental construction.

Creating Sparse Matrices

A regular, non-sparse matrix is called *full* or *dense*. Full matrices can be converted to each of the sparse matrix formats listed above. However, it is more memory efficient to never create the full matrix in the first place. There are three main approaches for creating sparse matrices from scratch.

• **Coordinate Format**: When all of the nonzero values and their positions are known, create the entire sparse matrix at once as a coo_matrix. All nonzero values are stored as a coordinate and a value. This format also converts quickly to other sparse matrix types.

```
>>> from scipy import sparse
# Define the rows, columns, and values separately.
>>> rows = np.array([0, 1, 0])
>>> cols = np.array([0, 1, 1])
>>> vals = np.array([3, 5, 2])
>>> A = sparse.coo_matrix((vals, (rows,cols)), shape=(3,3))
>>> print(A)
  (0, 0)
            3
  (1, 1)
            5
  (0, 1)
            2
# The toarray() method casts the sparse matrix as a NumPy array.
>>> print(A.toarray())
                                     # Note that this method forfeits
[[3 2 0]
                                     # all sparsity-related optimizations.
 [0 5 0]
 [0 0 0]]
```

• **DOK and LIL Formats**: If the matrix values and their locations are not known beforehand, construct the matrix incrementally with a dok_matrix or a lil_matrix. Indicate the size of the matrix, then change individual values with regular slicing syntax.

```
>>> B = sparse.lil_matrix((2,6))
>>> B[0,2] = 4
>>> B[1,3:] = 9
>>> print(B.toarray())
[[ 0. 0. 4. 0. 0. 0.]
[ 0. 0. 9. 9. 9.]]
```

• **DIA Format**: Use a dia_matrix to store matrices that have nonzero entries on only certain diagonals. The function sparse.diags() is one convenient way to create a dia_matrix from scratch. Additionally, every sparse matrix has a setdiags() method for modifying specified diagonals.

```
# Use sparse.diags() to create a matrix with diagonal entries.
>>> diagonals = [[1,2],[3,4,5],[6]]
                                      # List the diagonal entries.
>>> offsets = [-1,0,3]
                                      # Specify the diagonal they go on.
>>> print(sparse.diags(diagonals, offsets, shape=(3,4)).toarray())
[[ 3. 0. 0. 6.]
Γ1.
     4. 0. 0.1
[0. 2. 5. 0.]]
# If all of the diagonals have the same entry, specify the entry alone.
>>> A = sparse.diags([1,3,6], offsets, shape=(3,4))
>>> print(A.toarray())
[[ 3. 0. 0. 6.]
[1. 3. 0. 0.]
 [0. 1. 3. 0.]]
# Modify a diagonal with the setdiag() method.
>>> A.setdiag([4,4,4], 0)
>>> print(A.toarray())
[[4. 0. 0. 6.]]
[1. 4. 0. 0.]
 [0. 1.
          4. 0.]]
```

• **BSR Format**: Many sparse matrices can be formulated as block matrices, and a block matrix can be stored efficiently as a bsr_matrix. Use sparse.bmat() or sparse.block_diag() to create a block matrix quickly.

```
# Use sparse.bmat() to create a block matrix. Use 'None' for zero blocks.
>>> A = sparse.coo_matrix(np.ones((2,2)))
>>> B = sparse.coo_matrix(np.full((2,2), 2.))
>>> print(sparse.bmat([[ A , None, A ],
                      [None, B , None]], format='bsr').toarray())
[[ 1. 1.
          0.
              0. 1.
                      1.]
[ 1.
     1.
          0.
              0. 1.
                     1.]
[ 0.
      0.
          2.
              2. 0. 0.]
 [0. 0. 2. 2. 0. 0.]]
# Use sparse.block_diag() to construct a block diagonal matrix.
>>> print(sparse.block_diag((A,B)).toarray())
[[1. 1. 0. 0.]]
[ 1. 1. 0. 0.]
[0. 0. 2. 2.]
 [ 0. 0.
          2.
              2.]]
```

Note

If a sparse matrix is too large to fit in memory as an array, it can still be visualized with Matplotlib's plt.spy(), which colors in the locations of the non-zero entries of the matrix.

```
>>> from matplotlib import pyplot as plt
# Construct and show a matrix with 50 2x3 diagonal blocks.
>>> B = sparse.coo_matrix([[1,3,5],[7,9,11]])
>>> A = sparse.block_diag([B]*50)
>>> plt.spy(A, markersize=1)
>>> plt.show()
```


Problem 5. Let *I* be the $n \times n$ identity matrix, and define $A = \begin{bmatrix} B & I & & \\ I & B & I & \\ & I & \ddots & \ddots & \\ & & \ddots & \ddots & I \\ & & & & I & B \end{bmatrix}, \quad B = \begin{bmatrix} -4 & 1 & & \\ 1 & -4 & 1 & & \\ & 1 & \ddots & \ddots & \\ & & & \ddots & \ddots & 1 \\ & & & & & 1 & -4 \end{bmatrix},$

where A is $n^2 \times n^2$ and each block B is $n \times n$. The large matrix A is used in finite difference methods for solving Laplace's equation in two dimensions, $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$.

Write a function that accepts an integer n and constructs and returns A as a sparse matrix. Use plt.spy() to check that your matrix has nonzero values in the correct places.

Sparse Matrix Operations

Once a sparse matrix has been constructed, it should be converted to a csr_matrix or a csc_matrix with the matrix's tocsr() or tocsc() method. The CSR and CSC formats are optimized for row or column operations, respectively. To choose the correct format to use, determine what direction the matrix will be traversed.

For example, in the matrix-matrix multiplication AB, A is traversed row-wise, but B is traversed column-wise. Thus A should be converted to a csr_matrix and B should be converted to a csc_matrix.

```
# Initialize a sparse matrix incrementally as a lil_matrix.
>>> A = sparse.lil_matrix((10000,10000))
>>> for k in range(10000):
... A[np.random.randint(0,9999), np.random.randint(0,9999)] = k
...
>>> A
<10000x10000 sparse matrix of type '<type 'numpy.float64'>'
with 9999 stored elements in LInked List format>
# Convert A to CSR and CSC formats to compute the matrix product AA.
>>> Acsr = A.tocsr()
>>> Acsr = A.tocsc()
>>> Acsr.dot(Acsc)
<10000x10000 sparse matrix of type '<type 'numpy.float64'>'
with 10142 stored elements in Compressed Sparse Row format>
```

Beware that row-based operations on a csc_matrix are very slow, and similarly, column-based operations on a csr_matrix are very slow.

ACHTUNG!

Many familiar NumPy operations have analogous routines in the **sparse** module. These methods take advantage of the sparse structure of the matrices and are, therefore, usually significantly faster. However, SciPy's **sparse** matrices behave a little differently than NumPy arrays.

Operation	numpy	scipy.sparse
Component-wise Addition	A + B	A + B
Scalar Multiplication	2 * A	2 * A
Component-wise Multiplication	A * B	A.multiply(B)
Matrix Multiplication	A.dot(B), A @ B	A * B, A.dot(B), A @ B

Note in particular the difference between A * B for NumPy arrays and SciPy sparse matrices. Do **not** use np.dot() to try to multiply sparse matrices, as it may treat the inputs incorrectly. The syntax A.dot(B) is safest in most cases.

SciPy's sparse module has its own linear algebra library, scipy.sparse.linalg, designed for operating on sparse matrices. Like other SciPy modules, it must be imported explicitly.

Problem 6. Write a function that times regular and sparse linear system solvers.

For various values of n, generate the $n^2 \times n^2$ matrix A described in Problem 5 and a random vector **b** with n^2 entries. Time how long it takes to solve the system $A\mathbf{x} = \mathbf{b}$ with each of the following approaches:

1. Convert A to CSR format and use scipy.sparse.linalg.spsolve() (spla.spsolve()).

2. Convert A to a NumPy array and use scipy.linalg.solve() (la.solve()).

In each experiment, only time how long it takes to solve the system (not how long it takes to convert A to the appropriate format).

Plot the system size n^2 versus the execution times. As always, use log scales where appropriate and use a legend to label each line.

ACHTUNG!

Even though there are fast algorithms for solving certain sparse linear system, it is still very computationally difficult to invert sparse matrices. In fact, the inverse of a sparse matrix is usually not sparse. There is rarely a good reason to invert a matrix, sparse or dense.

See http://docs.scipy.org/doc/scipy/reference/sparse.html for additional details on SciPy's sparse module.

Additional Material

Improvements on the LU Decomposition

Vectorization

Algorithm 2.1 uses two loops to compute the LU decomposition. With a little vectorization, the process can be reduced to a single loop.

Algorithm 2.2

1:	procedure FAST LU DECOMPOSITION (A)
2:	$m, n \leftarrow \operatorname{shape}(A)$
3:	$U \leftarrow \operatorname{copy}(A)$
4:	$L \leftarrow I_m$
5:	for $k = 0 \dots n - 1$ do
6:	$L_{k+1:,k} \leftarrow U_{k+1:,k}/U_{k,k}$
7:	$U_{k+1:,k:} \leftarrow U_{k+1:,k:} - L_{k+1:,k} U_{k,k:}^{T}$
8:	$\mathbf{return}\ L, U$

Note that step 7 is an *outer product*, not the regular dot product $(\mathbf{xy}^{\mathsf{T}} \text{ instead of the usual } \mathbf{x}^{\mathsf{T}}\mathbf{y})$. Use np.outer() instead of np.dot() or @ to get the desired result.

Pivoting

Gaussian elimination iterates through the rows of a matrix, using the diagonal entry $x_{k,k}$ of the matrix at the *k*th iteration to zero out all of the entries in the column below $x_{k,k}$ ($x_{i,k}$ for $i \ge k$). This diagonal entry is called the *pivot*. Unfortunately, Gaussian elimination, and hence the LU decomposition, can be very numerically unstable if at any step the pivot is a very small number. Most professional row reduction algorithms avoid this problem via *partial pivoting*.

The idea is to choose the largest number (in magnitude) possible to be the pivot by swapping the pivot row² with another row before operating on the matrix. For example, the second and fourth rows of the following matrix are exchanged so that the pivot is -6 instead of 2.

Γ×	×	\times	×		Γ×	×	\times	×] [×	×	\times	×
0	2	\times	\times		0	-6	×	×		0	-6	×	×
0	4	\times	×	\rightarrow	0	4	×	×	\rightarrow	0	0	×	×
0	-6	×	×		0	2	Х	×		0	0	X	×

A row swap is equivalent to left-multiplying by a type II elementary matrix, also called a *permutation matrix*.

Γ.	1	0	0	0	1 [×	×	\times	×		×	×	\times	×
()	0	0	1		0	2	×	×		0	-6	×	×
()	0	1	0		0	4	×	\times	_	0	4	Х	×
)	1	0	0		0	-6	×	×		0	2	×	×

For the LU decomposition, if the permutation matrix at step k is P_k , then $P = P_k \dots P_2 P_1$ yields PA = LU. The complete algorithm is given below.

² Complete pivoting involves row and column swaps, but doing both operations is usually considered overkill.

Algorithm 2.3

1:	procedure LU Decomposition with Partial Pivoting (A)	
2:	$m, n \leftarrow \operatorname{shape}(A)$	
3:	$U \leftarrow \operatorname{copy}(A)$	
4:	$L \leftarrow I_m$	
5:	$P \leftarrow [0, 1, \ldots, n-1]$	\triangleright See tip 2 below.
6:	for $k = 0 \dots n - 1$ do	
7:	Select $i \geq k$ that maximizes $ U_{i,k} $	
8:	$U_{k,k:} \leftrightarrow U_{i,k:}$	\triangleright Swap the two rows.
9:	$L_{k,:k} \leftrightarrow L_{i,:k}$	\triangleright Swap the two rows.
10:	$P_k \leftrightarrow P_i$	\triangleright Swap the two entries.
11:	$L_{k+1:,k} \leftarrow U_{k+1:,k} / U_{k,k}$	
12:	$U_{k+1:,k:} \leftarrow U_{k+1:,k:} - L_{k+1:,k} U_{k,k:}^{T}$	
13:	return L, U, P	

The following tips may be helpful for implementing this algorithm:

- 1. Since NumPy arrays are mutable, use np.copy() to reassign the rows of an array simultaneously.
- 2. Instead of storing P as an $n \times n$ array, fancy indexing allows us to encode row swaps in a 1-D array of length n. Initialize P as the array $[0, 1, \ldots, n]$. After performing a row swap on A, perform the same operations on P. Then the matrix product PA will be the same as A[P].

```
>>> A = np.zeros(3) + np.vstack(np.arange(3))
>>> P = np.arange(3)
>>> print(A)
[[ 0. 0. 0.]
 [ 1.
      1.
           1.]
 [ 2.
      2.
           2.11
# Swap rows 1 and 2.
>>> A[1], A[2] = np.copy(A[2]), np.copy(A[1])
>>> P[1], P[2] = P[2], P[1]
>>> print(A)
                                    # A with the new row arrangement.
[[ 0.
      0. 0.]
[2. 2. 2.]
 [ 1. 1.
           1.]]
>>> print(P)
                                    # The permutation of the rows.
[0 2 1]
>>> print(A[P])
                                    # A with the original row arrangement.
[[0. 0. 0.]]
 [ 1. 1.
           1.]
 [ 2.
      2.
           2.]]
```

There are potential cases where even partial pivoting does not eliminate catastrophic numerical errors in Gaussian elimination, but the odds of having such an amazingly poor matrix are essentially zero. The numerical analyst J.H. Wilkinson captured the likelihood of encountering such a matrix in a natural application when he said, "Anyone that unlucky has already been run over by a bus!"

In Place

The LU decomposition can be performed in place (overwriting the original matrix A) by storing U on and above the main diagonal of the array and storing L below it. The main diagonal of L does not need to be stored since all of its entries are 1. This format saves an entire array of memory, and is how scipy.linalg.lu_factor() returns the factorization.

More Applications of the LU Decomposition

The LU decomposition can also be used to compute inverses and determinants with relative efficiency.

• Inverse: $(PA)^{-1} = (LU)^{-1} \implies A^{-1}P^{-1} = U^{-1}L^{-1} \implies LUA^{-1} = P$. Solve $LU\mathbf{a}_i = \mathbf{p}_i$ with forward and backward substitution (as in Problem 3) for every column \mathbf{p}_i of P. Then

$$A^{-1} = \left[\begin{array}{c|c} \mathbf{a}_1 & \mathbf{a}_2 & \cdots & \mathbf{a}_n \end{array} \right],$$

the matrix where \mathbf{a}_k is the kth column.

• **Determinant**: $det(A) = det(P^{-1}LU) = \frac{det(L) det(U)}{det(P)}$. The determinant of a triangular matrix is the product of its diagonal entries. Since every diagonal entry of L is 1, det(L) = 1. Also, P is just a row permutation of the identity matrix (which has determinant 1), and a single row swap negates the determinant. Then if S is the number of row swaps, the determinant is

$$\det(A) = (-1)^{S} \prod_{i=1}^{n} u_{ii}.$$

The Cholesky Decomposition

A square matrix A is called *positive definite* if $\mathbf{z}^{\mathsf{T}} A \mathbf{z} > 0$ for all nonzero vectors \mathbf{z} . In addition, A is called *Hermitian* if $A = A^{\mathsf{H}} = \overline{A^{\mathsf{T}}}$. If A is Hermitian positive definite, it has a *Cholesky Decomposition* $A = U^{\mathsf{H}}U$ where U is upper triangular with real, positive entries on the diagonal. This is the matrix equivalent to taking the square root of a positive real number.

The Cholesky decomposition takes advantage of the conjugate symmetry of A to simultaneously reduce the columns and rows of A to zeros (except for the diagonal). It thus requires only half of the calculations and memory of the LU decomposition. Furthermore, the algorithm is numerically stable, which means, roughly speaking, that round-off errors do not propagate throughout the computation.

Algorithm 2.4

1: p	1: procedure Cholesky Decomposition(A)		
2:	$n, n \leftarrow \operatorname{shape}(A)$		
3:	$U \leftarrow \texttt{np.triu}(A)$	\triangleright Get the upper-triangular part of A.	
4:	for $i = 0 \dots n - 1$ do		
5:	for $j = i + 1 \dots n - 1$ do		
6:	$U_{j,j:} \leftarrow U_{j,j:} - U_{i,j:} \overline{U_{ij}} / U_{ii}$		
7:	$U_{i,i:} \leftarrow U_{i,i:} / \sqrt{U_{ii}}$		
8:	$\mathbf{return} \ U$		

As with the LU decomposition, SciPy's linalg module has optimized routines, la.cho_factor() and la.cho_solve(), for using the Cholesky decomposition.
C The QR Decomposition

Lab Objective: The QR decomposition is a fundamentally important matrix factorization. It is straightforward to implement, is numerically stable, and provides the basis of several important algorithms. In this lab we explore several ways to produce the QR decomposition and implement a few immediate applications.

The QR decomposition of a matrix A is a factorization A = QR, where Q is has orthonormal columns and R is upper triangular. Every $m \times n$ matrix A of rank $n \leq m$ has a QR decomposition, with two main forms.

- Reduced QR: Q is $m \times n$, R is $n \times n$, and the columns $\{\mathbf{q}_j\}_{j=1}^n$ of Q form an orthonormal basis for the column space of A.
- Full QR: Q is $m \times m$ and R is $m \times n$. In this case, the columns $\{\mathbf{q}_j\}_{j=1}^m$ of Q form an orthonormal basis for all of \mathbb{F}^m , and the last m-n rows of R only contain zeros. If m=n, this is the same as the reduced factorization.

We distinguish between these two forms by writing \widehat{Q} and \widehat{R} for the reduced decomposition and Q and R for the full decomposition.

QR via Gram-Schmidt

The classical Gram-Schmidt algorithm takes a linearly independent set of vectors and constructs an orthonormal set of vectors with the same span. Applying Gram-Schmidt to the columns of A, which are linearly independent since A has rank n, results in the columns of Q.

Let $\{\mathbf{x}_j\}_{j=1}^n$ be the columns of A. Define

$$\mathbf{q}_{1} = \frac{\mathbf{x}_{1}}{\|\mathbf{x}_{1}\|}, \qquad \mathbf{q}_{k} = \frac{\mathbf{x}_{k} - \mathbf{p}_{k-1}}{\|\mathbf{x}_{k} - \mathbf{p}_{k-1}\|}, \quad k = 2, \dots, n,$$
$$\mathbf{p}_{0} = \mathbf{0}, \qquad \mathbf{p}_{k-1} = \sum_{j=1}^{k-1} \langle \mathbf{q}_{j}, \mathbf{x}_{k} \rangle \mathbf{q}_{j}, \quad k = 2, \dots, n.$$

Each \mathbf{p}_{k-1} is the projection of \mathbf{x}_k onto the span of $\{\mathbf{q}_j\}_{j=1}^{k-1}$, so $\mathbf{q}'_k = \mathbf{x}_k - \mathbf{p}_{k-1}$ is the residual vector of the projection. Thus \mathbf{q}'_k is orthogonal to each of the vectors in $\{\mathbf{q}_j\}_{j=1}^{k-1}$. Therefore, normalizing each \mathbf{q}'_k produces an orthonormal set $\{\mathbf{q}_j\}_{j=1}^n$.

To construct the reduced QR decomposition, let \widehat{Q} be the matrix with columns $\{\mathbf{q}_j\}_{j=1}^n$, and let \widehat{R} be the upper triangular matrix with entries

$$r_{kk} = \|\mathbf{x}_k - \mathbf{p}_{k-1}\|, \qquad \qquad r_{jk} = \langle \mathbf{q}_j, \mathbf{x}_k \rangle = \mathbf{q}_j^\mathsf{T} \mathbf{x}_k, \ j < k.$$

This clever choice of entries for \widehat{R} reverses the Gram-Schmidt process and ensures that $\widehat{Q}\widehat{R} = A$.

Modified Gram-Schmidt

If the columns of A are close to being linearly dependent, the classical Gram-Schmidt algorithm often produces a set of vectors $\{\mathbf{q}_j\}_{j=1}^n$ that are not even close to orthonormal due to rounding errors. The modified Gram-Schmidt algorithm is a slight variant of the classical algorithm which more consistently produces a set of vectors that are "very close" to orthonormal.

Let \mathbf{q}_1 be the normalization of \mathbf{x}_1 as before. Instead of making just \mathbf{x}_2 orthogonal to \mathbf{q}_1 , make **each** of the vectors $\{\mathbf{x}_j\}_{j=2}^n$ orthogonal to \mathbf{q}_1 :

$$\mathbf{x}_k = \mathbf{x}_k - \langle \mathbf{q}_1, \mathbf{x}_k \rangle \mathbf{q}_1, \quad k = 2, \ldots, n.$$

Next, define $\mathbf{q}_2 = \frac{\mathbf{x}_2}{\|\mathbf{x}_2\|}$. Proceed by making each of $\{\mathbf{x}_j\}_{j=3}^n$ orthogonal to \mathbf{q}_2 :

$$\mathbf{x}_k = \mathbf{x}_k - \langle \mathbf{q}_2, \mathbf{x}_k \rangle \mathbf{q}_2, \quad k = 3, \dots, n.$$

Since each of these new vectors is a linear combination of vectors orthogonal to \mathbf{q}_1 , they are orthogonal to \mathbf{q}_1 as well. Continuing this process results in the desired orthonormal set $\{\mathbf{q}_j\}_{j=1}^n$. The entire modified Gram-Schmidt algorithm is described below.

Algorithm 3.1

1: p	rocedure Modified Gram-Schmidt(A)	
2:	$m, n \leftarrow \operatorname{shape}(A)$	\triangleright Store the dimensions of A.
3:	$Q \leftarrow \operatorname{copy}(A)$	\triangleright Make a copy of A with np.copy().
4:	$R \leftarrow \operatorname{zeros}(n, n)$	\triangleright An $n \times n$ array of all zeros.
5:	for $i = 0 \dots n - 1$ do	
6:	$R_{i,i} \leftarrow \ Q_{:,i}\ $	
7:	$Q_{:,i} \leftarrow Q_{:,i}/R_{i,i}$	\triangleright Normalize the <i>i</i> th column of Q .
8:	for $j = i + 1 \dots n - 1$ do	
9:	$R_{i,j} \leftarrow Q_{:,i}^{T} Q_{:,i}$	
10:	$Q_{:,j} \leftarrow Q_{:,j} - R_{i,j}Q_{:,i}$	\triangleright Orthogonalize the <i>j</i> th column of Q .
11:	$\mathbf{return}Q,R$	

Problem 1. Write a function that accepts an $m \times n$ matrix A of rank n. Use Algorithm 3.1 to compute the reduced QR decomposition of A.

Consider the following tips for implementing the algorithm.

- Use scipy.linalg.norm() to compute the norm of the vector in step 6.
- Note that steps 7 and 10 employ scalar multiplication or division, while step 9 uses vector multiplication.

To test your function, generate test cases with NumPy's np.random module. Verify that R is upper triangular, Q is orthonormal, and QR = A. You may also want to compare your results to SciPy's QR factorization routine, scpiy.linalg.qr().

```
>>> import numpy as np
>>> from scipy import linalg as la
# Generate a random matrix and get its reduced QR decomposition via SciPy.
>>> A = np.random.random((6,4))
>>> Q,R = la.qr(A, mode="economic") # Use mode="economic" for reduced QR.
>>> print(A.shape, Q.shape, R.shape)
(6,4) (6,4) (4,4)
# Verify that R is upper triangular, Q is orthonormal, and QR = A.
>>> np.allclose(np.triu(R), R)
True
>>> np.allclose(Q.T @ Q, np.identity(4))
True
>>> np.allclose(Q @ R, A)
True
```

Consequences of the QR Decomposition

The special structures of Q and R immediately provide some simple applications.

Determinants

Let A be $n \times n$. Then Q and R are both $n \times n$ as well.¹ Since Q is orthonormal and R is uppertriangular,

$$\det(Q) = \pm 1$$
 and $\det(R) = \prod_{i=1}^{n} r_{i,i}$.

Then since det(AB) = det(A) det(B),

$$|\det(A)| = |\det(QR)| = |\det(Q)\det(R)| = |\det(Q)| |\det(R)| = \left|\prod_{i=1}^{n} r_{i,i}\right|.$$
(3.1)

¹An $n \times n$ orthonormal matrix is sometimes called *unitary* in other texts.

Problem 2. Write a function that accepts an invertible matrix A. Use the QR decomposition of A and (3.1) to calculate $|\det(A)|$. You may use your QR decomposition algorithm from Problem 1 or SciPy's QR routine. Can you implement this function in a single line? (Hint: np.diag() and np.prod() may be useful.)

Check your answer against la.det(), which calculates the determinant.

Linear Systems

The LU decomposition is usually the matrix factorization of choice to solve the linear system $A\mathbf{x} = \mathbf{b}$ because the triangular structures of L and U facilitate forward and backward substitution. However, the QR decomposition avoids the potential numerical issues that come with Gaussian elimination.

Since Q is orthonormal, $Q^{-1} = Q^{\mathsf{T}}$. Therefore, solving $A\mathbf{x} = \mathbf{b}$ is equivalent to solving the system $R\mathbf{x} = Q^{\mathsf{T}}\mathbf{b}$. Since R is upper-triangular, $R\mathbf{x} = Q^{\mathsf{T}}\mathbf{b}$ can be solved quickly with back substitution.²

Problem 3. Write a function that accepts an invertible $n \times n$ matrix A and a vector **b** of length n. Use the QR decomposition to solve $A\mathbf{x} = \mathbf{b}$ in the following steps:

1. Compute Q and R.

- 2. Calculate $\mathbf{y} = Q^{\mathsf{T}} \mathbf{b}$.
- 3. Use back substitution to solve $R\mathbf{x} = \mathbf{y}$ for \mathbf{x} .

QR via Householder

The Gram-Schmidt algorithm orthonormalizes A using a series of transformations that are stored in an upper triangular matrix. Another way to compute the QR decomposition is to take the opposite approach: triangularize A through a series of orthonormal transformations. Orthonormal transformations are numerically stable, meaning that they are less susceptible to rounding errors. In fact, this approach is usually faster and more accurate than Gram-Schmidt methods.

The idea is for the kth orthonormal transformation Q_k to map the kth column of A to the span of $\{\mathbf{e}_j\}_{j=1}^k$, where the \mathbf{e}_j are the standard basis vectors in \mathbb{R}^m . In addition, to preserve the work of the previous transformations, Q_k should not modify any entries of A that are above or to the left of the kth diagonal term of A. For a 4×3 matrix A, the process can be visualized as follows.

$Q_3Q_2Q_1$	Γ	*	*	*		*	*	*		[*	*	*		*	*	*]
		* * *	$=Q_3Q_2$	0	*	*	$=Q_3$	0	* 0	*	=	0	$\hat{0}$	*		
	L	*	*	*		0	*	*		0	0	*		0	0	0

Thus $Q_3Q_2Q_1A = R$, so that $A = Q_1^{\mathsf{T}}Q_2^{\mathsf{T}}Q_3^{\mathsf{T}}R$ since each Q_k is orthonormal. Furthermore, the product of square orthonormal matrices is orthonormal, so setting $Q = Q_1^{\mathsf{T}}Q_2^{\mathsf{T}}Q_3^{\mathsf{T}}$ yields the full QR decomposition.

How to correctly construct each Q_k isn't immediately obvious. The ingenious solution lies in one of the basic types of linear transformations: reflections.

 $^{^{2}}$ See the Linear Systems lab for details on back substitution.

Householder Transformations

The orthogonal complement of a nonzero vector $\mathbf{v} \in \mathbb{R}^n$ is the set of all vectors $\mathbf{x} \in \mathbb{R}^n$ that are orthogonal to \mathbf{v} , denoted $\mathbf{v}^{\perp} = \{\mathbf{x} \in \mathbb{R}^n \mid \langle \mathbf{x}, \mathbf{v} \rangle = 0\}$. A Householder transformation is a linear transformation that reflects a vector \mathbf{x} across the orthogonal complement \mathbf{v}^{\perp} for some specified \mathbf{v} .

The matrix representation of the Householder transformation corresponding to \mathbf{v} is given by $H_{\mathbf{v}} = I - 2 \frac{\mathbf{v} \mathbf{v}^{\mathsf{T}}}{\mathbf{v}^{\mathsf{T}} \mathbf{v}}$. Since $H_{\mathbf{v}}^{\mathsf{T}} H_{\mathbf{v}} = I$, Householder transformations are orthonormal.

Figure 3.1: The vector \mathbf{v} defines the orthogonal complement \mathbf{v}^{\perp} , which in this case is a line. Applying the Householder transformation $H_{\mathbf{v}}$ to \mathbf{x} reflects \mathbf{x} across \mathbf{v}^{\perp} .

Householder Triangularization

The Householder algorithm uses Householder transformations for the orthonormal transformations in the QR decomposition process described on the previous page. The goal in choosing Q_k is to send \mathbf{x}_k , the kth column of A, to the span of $\{\mathbf{e}_j\}_{j=1}^k$. In other words, if $Q_k \mathbf{x}_k = \mathbf{y}_k$, the last m-k entries of \mathbf{y}_k should be 0, i.e.,

$$Q_k \mathbf{x}_k = Q_k \begin{bmatrix} z_1 \\ \vdots \\ z_k \\ z_{k+1} \\ \vdots \\ z_m \end{bmatrix} = \begin{bmatrix} y_1 \\ \vdots \\ y_k \\ 0 \\ \vdots \\ 0 \end{bmatrix} = \mathbf{y}_k.$$

To begin, decompose \mathbf{x}_k into $\mathbf{x}_k = \mathbf{x}'_k + \mathbf{x}''_k$, where \mathbf{x}'_k and \mathbf{x}''_k are of the form

 $\mathbf{x}'_{k} = \begin{bmatrix} z_{1} & \cdots & z_{k-1} & 0 & \cdots & 0 \end{bmatrix}^{\mathsf{T}}, \qquad \mathbf{x}''_{k} = \begin{bmatrix} 0 & \cdots & 0 & z_{k} & \cdots & z_{m} \end{bmatrix}^{\mathsf{T}}.$

Because \mathbf{x}'_k represents elements of A that lie above the diagonal, only \mathbf{x}''_k needs to be altered by the reflection.

The two vectors $\mathbf{x}_k'' \pm \|\mathbf{x}_k''\| \mathbf{e}_k$ both yield Householder transformations that send \mathbf{x}_k'' to the span of \mathbf{e}_k (see Figure 3.2). Between the two, the one that reflects \mathbf{x}_k'' further is more numerically stable. This reflection corresponds to

$$\mathbf{v}_k = \mathbf{x}_k'' + \operatorname{sign}(z_k) \|\mathbf{x}_k''\| \mathbf{e}_k,$$

where z_k is the first nonzero component of \mathbf{x}_k'' (the kth component of \mathbf{x}_k).

Figure 3.2: There are two reflections that map \mathbf{x} into the span of \mathbf{e}_1 , defined by the vectors \mathbf{v}_1 and \mathbf{v}_2 . In this illustration, $H_{\mathbf{v}_2}$ is the more stable transformation since it reflects \mathbf{x} further than $H_{\mathbf{v}_1}$.

After choosing \mathbf{v}_k , set $\mathbf{u}_k = \frac{\mathbf{v}_k}{\|\mathbf{v}_k\|}$. Then $H_{\mathbf{v}_k} = I - 2\frac{\mathbf{v}_k \mathbf{v}_k^{\mathsf{T}}}{\|\mathbf{v}_k\|^2} = I - 2\mathbf{u}_k \mathbf{u}_k^{\mathsf{T}}$, and hence Q_k is given by the block matrix

$$Q_k = \begin{bmatrix} I_{k-1} & \mathbf{0} \\ \mathbf{0} & H_{\mathbf{v}_k} \end{bmatrix} = \begin{bmatrix} I_{k-1} & \mathbf{0} \\ \mathbf{0} & I_{m-k+1} - 2\mathbf{u}_k \mathbf{u}_k^\mathsf{T} \end{bmatrix}.$$

Here I_p denotes the $p \times p$ identity matrix, and thus each Q_k is $m \times m$.

It is apparent from its form that Q_k does not affect the first k-1 rows and columns of any matrix that it acts on. Then by starting with R = A and Q = I, at each step of the algorithm we need only multiply the entries in the lower right $(m-k+1) \times (m-k+1)$ submatrices of R and Q by $I - 2\mathbf{u}_k \mathbf{u}_k^{\mathsf{T}}$. This completes the Householder algorithm, detailed below.

Algorithm 3.2

1: **procedure** HOUSEHOLDER(A) $m, n \leftarrow \text{shape}(A)$ 2:3: $R \leftarrow \operatorname{copy}(A)$ $Q \leftarrow I_m$ \triangleright The $m \times m$ identity matrix. 4:for k = 0 ... n - 1 do 5: $\mathbf{u} \leftarrow \operatorname{copy}(R_{k:,k})$ 6: 7: $u_0 \leftarrow u_0 + \operatorname{sign}(u_0) \|\mathbf{u}\|$ $\triangleright u_0$ is the first entry of **u**. $\mathbf{u} \leftarrow \mathbf{u} / \| \mathbf{u} \|$ \triangleright Normalize **u**. 8: $R_{k:,k:} \leftarrow R_{k:,k:} - 2\mathbf{u} \left(\mathbf{u}^{\mathsf{T}} R_{k:,k:} \right)$ \triangleright Apply the reflection to R. 9: $Q_{k:,:} \leftarrow Q_{k:,:} - 2\mathbf{u} \left(\mathbf{u}^{\mathsf{T}} Q_{k:,:} \right)$ \triangleright Apply the reflection to Q. 10: return Q^{T}, R 11:

Problem 4. Write a function that accepts as input a $m \times n$ matrix A of rank n. Use Algorithm 3.2 to compute the full QR decomposition of A.

Consider the following implementation details.

• NumPy's np.sign() is an easy way to implement the sign() operation in step 7. However, np.sign(0) returns 0, which will cause a problem in the rare case that $u_0 = 0$ (which is possible if the top left entry of A is 0 to begin with). The following code defines a function that returns the sign of a single number, counting 0 as positive.

sign = lambda x: 1 if x >= 0 else -1

• In steps 9 and 10, the multiplication of **u** and $(\mathbf{u}^{\mathsf{T}}X)$ is an *outer product* $(\mathbf{x}\mathbf{y}^{\mathsf{T}}$ instead of the usual $\mathbf{x}^{\mathsf{T}}\mathbf{y}$). Use np.outer() instead of np.dot() to handle this correctly.

Use NumPy and SciPy to generate test cases and validate your function.

```
>>> A = np.random.random((5, 3))
>>> Q,R = la.qr(A)  # Get the full QR decomposition.
>>> print(A.shape, Q.shape, R.shape)
(5,3) (5,5) (5,3)
>>> np.allclose(Q @ R, A)
True
```

Upper Hessenberg Form

An upper Hessenberg matrix is a square matrix that is nearly upper triangular, with zeros below the first subdiagonal. Every $n \times n$ matrix A can be written $A = QHQ^{\mathsf{T}}$ where Q is orthonormal and H, called the Hessenberg form of A, is an upper Hessenberg matrix. Putting a matrix in upper Hessenberg form is an important first step to computing its eigenvalues numerically.

This algorithm also uses Householder transformations. To find orthogonal Q and upper Hessenberg H such that $A = QHQ^{\mathsf{T}}$, it suffices to find such matrices that satisfy $Q^{\mathsf{T}}AQ = H$. Thus, the strategy is to multiply A on the left and right by a series of orthonormal matrices until it is in Hessenberg form.

Using the same Q_k as in the *k*th step of the Householder algorithm introduces n - k zeros in the *k*th column of *A*, but multiplying $Q_k A$ on the right by Q_k^{T} destroys all of those zeros. Instead, choose a Q_1 that fixes \mathbf{e}_1 and reflects the first column of *A* into the span of \mathbf{e}_1 and \mathbf{e}_2 . The product $Q_1 A$ then leaves the first row of *A* alone, and the product $(Q_1 A)Q_1^{\mathsf{T}}$ leaves the first column of $(Q_1 A)$ alone.

Continuing the process results in the upper Hessenberg form of A.

$$Q_{3}Q_{2}Q_{1}AQ_{1}^{\mathsf{T}}Q_{2}^{\mathsf{T}}Q_{3}^{\mathsf{T}} = \begin{bmatrix} * & * & * & * & * \\ * & * & * & * & * \\ 0 & * & * & * & * \\ 0 & 0 & * & * & * \\ 0 & 0 & 0 & * & * \end{bmatrix}$$

This implies that $A = Q_1^{\mathsf{T}} Q_2^{\mathsf{T}} Q_3^{\mathsf{T}} H Q_3 Q_2 Q_1$, so setting $Q = Q_1^{\mathsf{T}} Q_2^{\mathsf{T}} Q_3^{\mathsf{T}}$ results in the desired factorization $A = Q H Q^{\mathsf{T}}$.

Constructing the Reflections

Constructing the Q_k uses the same approach as in the Householder algorithm, but shifted down one element. Let $\mathbf{x}_k = \mathbf{y}'_k + \mathbf{y}''_k$ where \mathbf{y}'_k and \mathbf{y}''_k are of the form

$$\mathbf{y}'_{k} = [z_{1} \cdots z_{k} \ 0 \cdots 0]^{\mathsf{T}}, \qquad \mathbf{y}''_{k} = [0 \cdots 0 \ z_{k+1} \cdots z_{m}]^{\mathsf{T}}.$$

Because \mathbf{y}'_k represents elements of A that lie above the first subdiagonal, only \mathbf{y}''_k needs to be altered. This suggests using the reflection

$$Q_{k} = \begin{bmatrix} I_{k} & \mathbf{0} \\ \mathbf{0} & H_{\mathbf{v}_{k}} \end{bmatrix} = \begin{bmatrix} I_{k} & \mathbf{0} \\ \mathbf{0} & I_{m-k} - 2\mathbf{u}_{k}\mathbf{u}_{k}^{\mathsf{T}} \end{bmatrix}, \text{ where}$$
$$\mathbf{v}_{k} = \mathbf{y}_{k}^{\prime\prime} + \operatorname{sign}(z_{k}) \|\mathbf{y}_{k}^{\prime\prime}\| \mathbf{e}_{k}, \qquad \mathbf{u}_{k} = \frac{\mathbf{v}_{k}}{\|\mathbf{v}_{k}\|}.$$

The complete algorithm is given below. Note how similar it is to Algorithm 3.2.

Algorithm 3.3

1: **procedure** HESSENBERG(A) $m, n \leftarrow \text{shape}(A)$ 2: $H \leftarrow \operatorname{copy}(A)$ 3: $Q \leftarrow I_m$ 4:for k = 0 ... n - 3 do 5: $\mathbf{u} \leftarrow \operatorname{copy}(H_{k+1:k})$ 6: 7: $u_0 \leftarrow u_0 + \operatorname{sign}(u_0) \|\mathbf{u}\|$ $\mathbf{u} \leftarrow \mathbf{u} / \|\mathbf{u}\|$ 8: $H_{k+1:,k:} \leftarrow H_{k+1:,k:} - 2\mathbf{u}(\mathbf{u}^\mathsf{T} H_{k+1:,k:})$ \triangleright Apply Q_k to H. 9: $H_{:,k+1:} \leftarrow H_{:,k+1:} - 2(H_{:,\underline{k}+1:}\mathbf{u})\mathbf{u}^{\mathsf{T}}$ \triangleright Apply Q_k^{T} to H. 10: $Q_{k+1:,:} \leftarrow Q_{k+1:,:} - 2\mathbf{u}(\mathbf{u}^{\mathsf{T}}Q_{k+1:,:})$ \triangleright Apply Q_k to Q. 11:return H, Q^{T} 12:

Problem 5. Write a function that accepts a nonsingular $n \times n$ matrix A. Use Algorithm 3.3 to compute the upper Hessenberg H and orthogonal Q satisfying $A = QHQ^{\mathsf{T}}$.

Compare your results to scipy.linalg.hessenberg().

```
# Generate a random matrix and get its upper Hessenberg form via SciPy.
>>> A = np.random.random((8,8))
>>> H, Q = la.hessenberg(A, calc_q=True)
# Verify that H has all zeros below the first subdiagonal and QHQ^T = A.
>>> np.allclose(np.triu(H, -1), H)
True
>>> np.allclose(Q @ H @ Q.T, A)
True
```

Additional Material

Complex QR Decomposition

The QR decomposition also exists for matrices with complex entries. The standard inner product in \mathbb{R}^m is $\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x}^T \mathbf{y}$, but the (more general) standard inner product in \mathbb{C}^m is $\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x}^H \mathbf{y}$. The ^H stands for the *Hermitian conjugate*, the conjugate of the transpose. Making a few small adjustments in the implementations of Algorithms 3.1 and 3.2 accounts for using the complex inner product.

1. Replace any transpose operations with the conjugate of the transpose.

2. Conjugate the first entry of vector or matrix multiplication before multiplying with np.dot().

```
>>> x = np.arange(2) + 1j*np.arange(2)
>>> print(x)
[ 0.+0.j 1.+1.j]
>>> np.dot(x, x)  # Standard real inner product.
2j
>>> np.dot(x.conj(), y)  # Standard complex inner product.
(2 + 0j)
```

3. In the complex plane, there are infinitely many reflections that map a vector \mathbf{x} into the span of \mathbf{e}_k , not just the two displayed in Figure 3.2. Using $\operatorname{sign}(z_k)$ to choose one is still a valid method, but it requires updating the sign() function so that it can handle complex numbers.

sign = lambda x: 1 if np.real(x) >= 0 else -1

QR with Pivoting

The LU decomposition can be improved by employing Gaussian elimination with partial pivoting, where the rows of A are strategically permuted at each iteration. The QR factorization can be similarly improved by permuting the columns of A at each iteration. The result is the factorization AP = QR, where P is a permutation matrix that encodes the column swaps. To compute the pivoted QR decomposition with scipy.linalg.qr(), set the keyword pivoting to True.

```
# Get the decomposition AP = QR for a random matrix A.
>>> A = np.random.random((8,10))
>>> Q,R,P = la.qr(A, pivoting=True)
# P is returned as a 1-D array that encodes column ordering,
# so A can be reconstructed with fancy indexing.
>>> np.allclose(Q @ R, A[:,P])
True
```

QR via Givens

The Householder algorithm uses reflections to triangularize A. However, A can also be made upper triangular using rotations. To illustrate the idea, recall that the matrix for a counterclockwise rotation of θ radians is given by

$$R_{\theta} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}.$$

This transformation is orthonormal. Given $\mathbf{x} = [a, b]^{\mathsf{T}}$, if θ is the angle between \mathbf{x} and \mathbf{e}_1 , then $R_{-\theta}$ maps \mathbf{x} to the span of \mathbf{e}_1 .

Figure 3.3: Rotating clockwise by θ sends the vector $[a, b]^{\mathsf{T}}$ to the span of \mathbf{e}_1 .

In terms of a and b, $\cos \theta = \frac{a}{\sqrt{a^2 + b^2}}$ and $\sin \theta = \frac{b}{\sqrt{a^2 + b^2}}$. Therefore,

$$R_{-\theta}\mathbf{x} = \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} \frac{a}{\sqrt{a^2+b^2}} & \frac{b}{\sqrt{a^2+b^2}} \\ -\frac{b}{\sqrt{a^2+b^2}} & \frac{a}{\sqrt{a^2+b^2}} \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} \sqrt{a^2+b^2} \\ 0 \end{bmatrix}.$$

The matrix R_{θ} above is an example of a 2 × 2 *Givens rotation matrix*. In general, the Givens matrix $G(i, j, \theta)$ represents the orthonormal transformation that rotates the 2-dimensional span of \mathbf{e}_i and \mathbf{e}_j by θ radians. The matrix representation of this transformation is a generalization of R_{θ} .

$$G(i, j, \theta) = \begin{bmatrix} I & 0 & 0 & 0 & 0 \\ 0 & c & 0 & -s & 0 \\ 0 & 0 & I & 0 & 0 \\ 0 & s & 0 & c & 0 \\ 0 & 0 & 0 & 0 & I \end{bmatrix}$$

Here I represents the identity matrix, $c = \cos \theta$, and $s = \sin \theta$. The c's appear on the *i*th and *j*th diagonal entries.

Givens Triangularization

As demonstrated, θ can be chosen such that $G(i, j, \theta)$ rotates a vector so that its *j*th-component is 0. Such a transformation will only affect the *i*th and *j*th entries of any vector it acts on (and thus the *i*th and *j*th rows of any matrix it acts on).

To compute the QR decomposition of A, iterate through the subdiagonal entries of A in the order depicted by Figure 3.4. Zero out the *ij*th entry with a rotation in the plane spanned by \mathbf{e}_{i-1} and \mathbf{e}_i , represented by the Givens matrix $G(i-1, i, \theta)$.

Figure 3.4: The order in which to zero out subdiagonal entries in the Givens triangularization algorithm. The heavy black line is the main diagonal of the matrix. Entries should be zeroed out from bottom to top in each column, beginning with the leftmost column.

On a 2×3 matrix, the process can be visualized as follows.

At each stage, the boxed entries are those modified by the previous transformation. The final transformation $G(2, 3, \theta_3)$ operates on the bottom two rows, but since the first two entries are zero, they are unaffected.

Assuming that at the *ij*th stage of the algorithm a_{ij} is nonzero, Algorithm 3.4 computes the Givens triangularization of a matrix. Notice that the algorithm does not actually form the entire matrices $G(i, j, \theta)$; instead, it modifies only those entries of the matrix that are affected by the transformation.

Algorithm 3.4

1: procedure GIVENS TRIANGULARIZATION(A) $m, n \leftarrow \text{shape}(A)$ 2:3: $R \leftarrow \operatorname{copy}(A)$ 4: $Q \leftarrow I_m$ for j = 0 ... n - 1 do 5:6: for $i = m - 1 \dots j + 1$ do $a, b \leftarrow R_{i-1,j}, R_{i,j}$ 7: $G \leftarrow [[a,b], [-b,a]]/\sqrt{a^2+b^2}$ 8: $R_{i-1:i+1,j:} \leftarrow GR_{i-1:i+1,j:}$ 9: $Q_{i-1:i+1,:} \leftarrow GQ_{i-1:i+1,:}$ 10: return Q^{T}, R 11:

QR of a Hessenberg Matrix via Givens

The Givens algorithm is particularly efficient for computing the QR decomposition of a matrix that is already in upper Hessenberg form, since only the first subdiagonal needs to be zeroed out. Algorithm 3.5 details this process.

Algorithm 3.5

1: procedure Givens Triangularization of Hessenberg(H) $m, n \leftarrow \text{shape}(H)$ 2:3: $R \leftarrow \operatorname{copy}(H)$ 4: $Q \leftarrow I_m$ for $j = 0 \dots \min\{n - 1, m - 1\}$ do 5:6: i = i + 1 $a, b \leftarrow R_{i-1,j}, R_{i,j}$ 7: $G \leftarrow [[a,b],[-b,a]]/\sqrt{a^2+b^2}$ 8: 9: $R_{i-1:i+1,j:} \leftarrow GR_{i-1:i+1,j:}$ $Q_{i-1:i+1,:i+1} \leftarrow GQ_{i-1:i+1,:i+1}$ 10:return Q^{T}, R 11:

Note

When A is symmetric, its upper Hessenberg form is a *tridiagonal* matrix, meaning its only nonzero entries are on the main diagonal, the first subdiagonal, and the first superdiagonal. This is because the Q_k 's zero out everything below the first subdiagonal of A and the Q_k^{T} 's zero out everything to the right of the first superdiagonal. Tridiagonal matrices make computations fast, so computing the Hessenberg form of a symmetric matrix is very useful.

Least Squares and Computing Eigenvalues

Lab Objective: Because of its numerical stability and convenient structure, the QR decomposition is the basis of many important and practical algorithms. In this lab we introduce linear least squares problems, tools in Python for computing least squares solutions, and two fundamental algorithms for computing eigenvalue. The QR decomposition makes solving several of these problems quick and numerically stable.

Least Squares

A linear system $A\mathbf{x} = \mathbf{b}$ is *overdetermined* if it has more equations than unknowns. In this situation, there is no true solution, and \mathbf{x} can only be approximated.

The least squares solution of $A\mathbf{x} = \mathbf{b}$, denoted $\hat{\mathbf{x}}$, is the "closest" vector to a solution, meaning it minimizes the quantity $||A\hat{\mathbf{x}} - \mathbf{b}||_2$. In other words, $\hat{\mathbf{x}}$ is the vector such that $A\hat{\mathbf{x}}$ is the projection of **b** onto the range of A, and can be calculated by solving the normal equations,¹

$$A^{\mathsf{T}}A\widehat{\mathbf{x}} = A^{\mathsf{T}}\mathbf{b}.$$

If A is full rank (which it usually is in applications) its QR decomposition provides an efficient way to solve the normal equations. Let $A = \widehat{Q}\widehat{R}$ be the reduced QR decomposition of A, so \widehat{Q} is $m \times n$ with orthonormal columns and \widehat{R} is $n \times n$, invertible, and upper triangular. Since $\widehat{Q}^{\mathsf{T}}\widehat{Q} = I$, and since \widehat{R}^{T} is invertible, the normal equations can be reduced as follows (we omit the hats on \widehat{Q} and \widehat{R} for clarity).

$$A^{\mathsf{T}}A\widehat{\mathbf{x}} = A^{\mathsf{T}}\mathbf{b}$$

$$(QR)^{\mathsf{T}}QR\widehat{\mathbf{x}} = (QR)^{\mathsf{T}}\mathbf{b}$$

$$R^{\mathsf{T}}Q^{\mathsf{T}}QR\widehat{\mathbf{x}} = R^{\mathsf{T}}Q^{\mathsf{T}}\mathbf{b}$$

$$R^{\mathsf{T}}R\widehat{\mathbf{x}} = R^{\mathsf{T}}Q^{\mathsf{T}}\mathbf{b}$$

$$R\widehat{\mathbf{x}} = Q^{\mathsf{T}}\mathbf{b}$$

$$(4.1)$$

Thus $\hat{\mathbf{x}}$ is the least squares solution to $A\mathbf{x} = \mathbf{b}$ if and only if $\widehat{R}\hat{\mathbf{x}} = \widehat{Q}^{\mathsf{T}}\mathbf{b}$. Since \widehat{R} is upper triangular, this equation can be solved quickly with back substitution.

¹See Volume 1 for a formal derivation of the normal equations.

Problem 1. Write a function that accepts an $m \times n$ matrix A of rank n and a vector **b** of length m. Use the reduced QR decomposition of A and (4.1) to solve the normal equations corresponding to $A\mathbf{x} = \mathbf{b}$.

You may use either SciPy's reduced QR routine (la.qr() with mode="economic") or one of your own reduced QR routines. In addition, you may use la.solve_triangular(), SciPy's optimized routine for solving triangular systems.

Fitting a Line

The least squares solution can be used to find the best fit curve of a chosen type to a set of points. Consider the problem of finding the line y = ax + b that best fits a set of m points $\{(x_k, y_k)\}_{k=1}^m$. Ideally, we seek a and b such that $y_k = ax_k + b$ for all k. These equations can be simultaneously represented by the linear system

$$A\mathbf{x} = \begin{bmatrix} x_1 & 1\\ x_2 & 1\\ x_3 & 1\\ \vdots & \vdots\\ x_m & 1 \end{bmatrix} \begin{bmatrix} a\\ b \end{bmatrix} = \begin{bmatrix} y_1\\ y_2\\ y_3\\ \vdots\\ y_m \end{bmatrix} = \mathbf{b}.$$
(4.2)

Note that A has full column rank as long as not all of the x_k values are the same.

Because this system has two unknowns, it is guaranteed to have a solution if it has two or fewer equations. However, if there are more than two data points, the system is overdetermined if any set of three points is not collinear. We therefore seek a least squares solution, which in this case means finding the slope \hat{a} and y-intercept \hat{b} such that the line $y = \hat{a}x + \hat{b}$ best fits the data.

Figure 4.1 is a typical example of this idea where $\hat{a} \approx \frac{1}{2}$ and $\hat{b} \approx -3$.

Figure 4.1: A linear least squares fit.

Problem 2. The file housing.npy contains the purchase-only housing price index, a measure of how housing prices are changing, for the United States from 2000 to 2010.^{*a*} Each row in the array is a separate measurement; the columns are the year and the price index, in that order. To avoid large numerical computations, the year measurements start at 0 instead of 2000.

Find the least squares line that relates the year to the housing price index (i.e., let year be the x-axis and index the y-axis).

- Construct the matrix A and the vector b described by (4.2).
 (Hint: np.vstack(), np.column_stack(), and/or np.ones() may be helpful.)
- 2. Use your function from Problem 1 to find the least squares solution.
- 3. Plot the data points as a scatter plot.
- 4. Plot the least squares line with the scatter plot.

 $^a\mathrm{See}$ http://www.fhfa.gov/DataTools/Downloads/Pages/House-Price-Index.aspx.

Note

The least squares problem of fitting a line to a set of points is often called *linear regression*, and the resulting line is called the *linear regression line*. SciPy's specialized tool for linear regression is scipy.stats.linregress(). This function takes in an array of x-coordinates and a corresponding array of y-coordinates, and returns the slope and intercept of the regression line, along with a few other statistical measurements.

For example, the following code produces Figure 4.1.

```
>>> import numpy as np
>>> from scipy.stats import linregress
# Generate some random data close to the line y = .5x - 3.
>>> x = np.linspace(0, 10, 20)
>>> y = .5*x - 3 + np.random.randn(20)
# Use linregress() to calculate m and b, as well as the correlation
# coefficient, p-value, and standard error. See the documentation for
# details on each of these extra return values.
>>> a, b, rvalue, pvalue, stderr = linregress(x, y)
>>> plt.plot(x, y, 'k*', label="Data Points")
>>> plt.plot(x, a*x + b, label="Least Squares Fit")
>>> plt.legend(loc="upper left")
>>> plt.show()
```

Fitting a Polynomial

Least squares can also be used to fit a set of data to the best fit polynomial of a specified degree. Let $\{(x_k, y_k)\}_{k=1}^m$ be the set of m data points in question. The general form for a polynomial of degree n is

$$p_n(x) = c_n x^n + c_{n-1} x^{n-1} + \dots + c_2 x^2 + c_1 x + c_0 = \sum_{i=0}^n c_i x^i$$

Note that the polynomial is uniquely determined by its n + 1 coefficients $\{c_i\}_{i=0}^n$. Ideally, then, we seek the set of coefficients $\{c_i\}_{i=0}^n$ such that

$$y_k = c_n x_k^n + c_{n-1} x_k^{n-1} + \dots + c_2 x_k^2 + c_1 x_k + c_0$$

for all values of k. These m linear equations yield the linear system

$$A\mathbf{x} = \begin{bmatrix} x_1^n & x_1^{n-1} & \cdots & x_1^2 & x_1 & 1\\ x_2^n & x_2^{n-1} & \cdots & x_2^2 & x_2 & 1\\ x_3^n & x_3^{n-1} & \cdots & x_3^2 & x_3 & 1\\ \vdots & \vdots & & \vdots & \vdots & \vdots\\ x_m^n & x_m^{n-1} & \cdots & x_m^2 & x_m & 1 \end{bmatrix} \begin{bmatrix} c_n \\ c_{n-1} \\ \vdots \\ c_2 \\ c_1 \\ c_0 \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ \vdots \\ y_m \end{bmatrix} = \mathbf{b}.$$
(4.3)

If m > n + 1 this system is overdetermined, requiring a least squares solution.

Working with Polynomials in NumPy

The $m \times (n+1)$ matrix A of (4.3) is called a Vandermonde matrix.² NumPy's np.vander() is a convenient tool for quickly constructing a Vandermonde matrix, given the values $\{x_k\}_{k=1}^m$ and the number of desired columns.

```
>>> print(np.vander([2, 3, 5], 2))
                                     # [[2**1, 2**0]
[[2 1]
 [3 1]
                                        [3**1, 3**0]
                                     #
                                         [5**1, 5**0]]
 [5 1]]
                                     #
>>> print(np.vander([2, 3, 5, 4], 3))
[[ 4 2 1]
                                     # [[2**2, 2**1, 2**0]
                                        [3**2, 3**1, 3**0]
      3 1]
 [9
                                     #
                                         [5**2, 5**1, 5**0]
 [25 5 1]
                                     #
                                         [4**2, 4**1, 4**0]
      4 1]]
 <u>ا</u>
                                     #
```

NumPy also has powerful tools for working efficiently with polynomials. The class np.poly1d represents a 1-dimensional polynomial. Instances of this class are callable like a function.³ The constructor accepts the polynomial's coefficients, from largest degree to smallest.

Table 4.1 lists some attributes and methods of the np.poly1d class.

 $^{^{2}}$ Vandermonde matrices have many special properties and are useful for many applications, including polynomial interpolation and discrete Fourier analysis.

³Class instances can be made callable by implementing the __call__() magic method.

$\operatorname{Attribute}$	Description
coeffs	The $n + 1$ coefficients, from greatest degree to least.
order	The polynomial degree (n) .
roots	The $n-1$ roots.
Method	Returns
deriv()	The coefficients of the polynomial after being differentiated.
integ()	The coefficients of the polynomial after being integrated (with $c_0 = 0$).

Table 4.1: Attributes and methods of the np.poly1d class.

Problem 3. The data in housing.npy is nonlinear, and might be better fit by a polynomial than a line.

Write a function that uses (4.3) to calculate the polynomials of degree 3, 6, 9, and 12 that best fit the data. Plot the original data points and each least squares polynomial together in individual subplots.

(Hint: define a separate, refined domain with np.linspace() and use this domain to smoothly plot the polynomials.)

Instead of using Problem 1 to solve the normal equations, you may use SciPy's least squares routine, scipy.linalg.lstsq().

```
>>> from scipy import linalg as la
# Define A and b appropriately.
# Solve the normal equations using SciPy's least squares routine.
# The least squares solution is the first of four return values.
>>> x = la.lstsq(A, b)[0]
```

Compare your results to np.polyfit(). This function receives an array of x values, an array of y values, and an integer for the polynomial degree, and returns the coefficients of the best fit polynomial of that degree.

ACHTUNG!

Having more parameters in a least squares model is not always better. For a set of m points, the best fit polynomial of degree m-1 interpolates the data set, meaning that $p(x_k) = y_k$ exactly for each k. In this case there are enough unknowns that the system is no longer overdetermined. However, such polynomials are highly subject to numerical errors and are unlikely to accurately represent true patterns in the data.

Choosing to have too many unknowns in a fitting problem is (fittingly) called *overfitting*, and is an important issue to avoid in any statistical model.

Fitting a Circle

Suppose the set of *m* points $\{(x_k, y_k)\}_{k=1}^m$ are arranged in a nearly circular pattern. The general equation of a circle with radius *r* and center (c_1, c_2) is

$$(x - c_1)^2 + (y - c_2)^2 = r^2. (4.4)$$

The circle is uniquely determined by r, c_1 , and c_2 , so these are the parameters that should be solved for in a least squares formulation of the problem. However, (4.4) is not linear in any of these variables.

$$(x - c_1)^2 + (y - c_2)^2 = r^2$$

$$x^2 - 2c_1x + c_1^2 + y^2 - 2c_2y + c_2^2 = r^2$$

$$x^2 + y^2 = 2c_1x + 2c_2y + r^2 - c_1^2 - c_2^2$$
(4.5)

The quadratic terms x^2 and y^2 are acceptable because the points $\{(x_k, y_k)\}_{k=1}^m$ are given. To eliminate the nonlinear terms in the unknown parameters r, c_1 , and c_2 , define a new variable $c_3 = r^2 - c_1^2 - c_2^2$. Then for each point (x_k, y_k) , (4.5) becomes

$$2c_1x_k + 2c_2y_k + c_3 = x_k^2 + y_k^2$$

These m equations are linear in c_1 , c_2 , and c_3 , and can be written as the linear system

$$\begin{bmatrix} 2x_1 & 2y_1 & 1\\ 2x_2 & 2y_2 & 1\\ \vdots & \vdots & \vdots\\ 2x_m & 2y_m & 1 \end{bmatrix} \begin{bmatrix} c_1\\ c_2\\ c_3 \end{bmatrix} = \begin{bmatrix} x_1^2 + y_1^2\\ x_2^2 + y_2^2\\ \vdots\\ x_m^2 + y_m^2 \end{bmatrix}.$$
(4.6)

After solving for the least squares solution, r can be recovered with the relation $r = \sqrt{c_1^2 + c_2^2 + c_3}$. Finally, plotting a circle is best done with polar coordinates. Using the same variables as before, the circle can be represented in polar coordinates by setting

$$x = r\cos(\theta) + c_1, \qquad y = r\sin(\theta) + c_2, \qquad \theta \in [0, 2\pi].$$

$$(4.7)$$

To plot the circle, solve the least squares system for c_1 , c_2 , and r, define an array for θ , then use (4.7) to calculate the coordinates of the points the circle.

```
# Load some data and construct the matrix A and the vector b.
>>> xk, yk = np.load("circle.npy").T
>>> A = np.column_stack((2*xk, 2*yk, np.ones_like(xk)))
>>> b = xk**2 + yk**2
# Calculate the least squares solution and solve for the radius.
>>> c1, c2, c3 = la.lstsq(A, b)[0]
>>> r = np.sqrt(c1**2 + c2**2 + c3)
# Plot the circle using polar coordinates.
>>> theta = np.linspace(0, 2*np.pi, 200)
>>> x = r*np.cos(theta) + c1
>>> y = r*np.sin(theta) + c2
>>> plt.plot(x, y)
                                    # Plot the circle.
>>> plt.plot(xk, yk, 'k*')
                                    # Plot the data points.
>>> plt.axis("equal")
```


Problem 4. The general equation for an ellipse is

$$ax^{2} + bx + cxy + dy + ey^{2} = 1.$$

Write a function that calculates the parameters for the ellipse that best fits the data in the file ellipse.npy. Plot the original data points and the ellipse together, using the following function to plot the ellipse.

```
def plot_ellipse(a, b, c, d, e):
    """Plot an ellipse of the form ax^2 + bx + cxy + dy + ey^2 = 1."""
    theta = np.linspace(0, 2*np.pi, 200)
    cos_t, sin_t = np.cos(theta), np.sin(theta)
```

```
A = a*(cos_t**2) + c*cos_t*sin_t + e*(sin_t**2)
B = b*cos_t + d*sin_t
r = (-B + np.sqrt(B**2 + 4*A)) / (2*A)
plt.plot(r*cos_t, r*sin_t, lw=2)
plt.gca().set_aspect("equal", "datalim")
```

Computing Eigenvalues

The eigenvalues of an $n \times n$ matrix A are the roots of its characteristic polynomial det $(A - \lambda I)$. Thus, finding the eigenvalues of A amounts to computing the roots of a polynomial of degree n. However, for $n \ge 5$, it is provably impossible to find an algebraic closed-form solution to this problem.⁴ In addition, numerically computing the roots of a polynomial is a famously ill-conditioned problem, meaning that small changes in the coefficients of the polynomial (brought about by small changes in the entries of A) may yield wildly different results. Instead, eigenvalues must be computed with iterative methods.

The Power Method

The dominant eigenvalue of the $n \times n$ matrix A is the unique eigenvalue of greatest magnitude, if such an eigenvalue exists. The power method iteratively computes the dominant eigenvalue of A and its corresponding eigenvector.

Begin by choosing a vector \mathbf{x}_0 such that $\|\mathbf{x}_0\|_2 = 1$, and define

$$\mathbf{x}_{k+1} = \frac{A\mathbf{x}_k}{\|A\mathbf{x}_k\|_2}.$$

If A has a dominant eigenvalue λ , and if the projection of \mathbf{x}_0 onto the subspace spanned by the eigenvectors corresponding to λ is nonzero, then the sequence of vectors $(x_k)_{k=0}^{\infty}$ converges to an eigenvector \mathbf{x} of A corresponding to λ .

Since \mathbf{x} is an eigenvector of A, $A\mathbf{x} = \lambda \mathbf{x}$. Left multiplying by \mathbf{x}^{T} on each side results in $\mathbf{x}^{\mathsf{T}}A\mathbf{x} = \lambda \mathbf{x}^{\mathsf{T}}\mathbf{x}$, and hence $\lambda = \frac{\mathbf{x}^{\mathsf{T}}A\mathbf{x}}{\mathbf{x}^{\mathsf{T}}\mathbf{x}}$. This ratio is called the *Rayleigh quotient*. However, since each \mathbf{x}_k is normalized, $\mathbf{x}^{\mathsf{T}}\mathbf{x} = \|\mathbf{x}\|_2^2 = 1$, so $\lambda = \mathbf{x}^{\mathsf{T}}A\mathbf{x}$.

The entire algorithm is summarized below.

Α	lg	or	\mathbf{it}	hm	4.1
		~-			

1: **procedure** POWERMETHOD(A) $\triangleright A$ is square so m = n. $m, n \leftarrow \text{shape}(A)$ 2: \triangleright A random vector of length n $\mathbf{x}_0 \leftarrow \operatorname{random}(n)$ 3: $\mathbf{x}_0 \leftarrow \mathbf{x}_0 / \|\mathbf{x}_0\|_2$ 4: \triangleright Normalize \mathbf{x}_0 for $k = 0, 1, \ldots, N - 1$ do 5: $\mathbf{x}_{k+1} \leftarrow A\mathbf{x}_k$ 6: $\mathbf{x}_{k+1} \leftarrow \mathbf{x}_{k+1} / \|\mathbf{x}_{k+1}\|_2$ 7:8: return $\mathbf{x}_N^\mathsf{T} A \mathbf{x}_N$, \mathbf{x}_N

⁴This result, called *Abel's impossibility theorem*, was first proven by Niels Heinrik Abel in 1824.

The power method is limited by a few assumptions. First, not all square matrices A have a dominant eigenvalue. However, the Perron-Frobenius theorem guarantees that if all entries of A are positive, then A has a dominant eigenvalue. Second, there is no way to choose an \mathbf{x}_0 that is guaranteed to have a nonzero projection onto the span of the eigenvectors corresponding to λ , though a random \mathbf{x}_0 will almost surely satisfy this condition. Even with these assumptions, a rigorous proof that the power method converges is most convenient with tools from spectral calculus.

Problem 5. Write a function that accepts an $n \times n$ matrix A, a maximum number of iterations N, and a stopping tolerance tol. Use Algorithm 4.1 to compute the dominant eigenvalue of A and a corresponding eigenvector. Continue the loop in step 5 until either $\|\mathbf{x}_{k+1} - \mathbf{x}_k\|_2$ is less than the tolerance tol, or until iterating the maximum number of times N.

Test your function on square matrices with all positive entries, verifying that $A\mathbf{x} = \lambda \mathbf{x}$. Use SciPy's eigenvalue solver, scipy.linalg.eig(), to compute all of the eigenvalues and corresponding eigenvectors of A and check that λ is the dominant eigenvalue of A.

```
# Construct a random matrix with positive entries.
>>> A = np.random.random((10,10))
# Compute the eigenvalues and eigenvectors of A via SciPy.
>>> eigs, vecs = la.eig(A)
# Get the dominant eigenvalue and eigenvector of A.
# The eigenvector of the kth eigenvalue is the kth column of 'vecs'.
>>> loc = np.argmax(eigs)
>>> loc = np.argmax(eigs)
>>> lamb, x = eigs[loc], vecs[:,loc]
# Verify that Ax = lambda x.
>>> np.allclose(A @ x, lamb * x)
True
```

The QR Algorithm

An obvious shortcoming of the power method is that it only computes one eigenvalue and eigenvector. The QR algorithm, on the other hand, attempts to find all eigenvalues of A.

Let $A_0 = A$, and for arbitrary k let $Q_k R_k = A_k$ be the QR decomposition of A_k . Since A is square, so are Q_k and R_k , so they can be recombined in reverse order:

$$A_{k+1} = R_k Q_k.$$

This recursive definition establishes an important relation between the A_k :

$$Q_k^{-1}A_kQ_k = Q_k^{-1}(Q_kR_k)Q_k = (Q_k^{-1}Q_k)(R_kQ_k) = A_{k+1}.$$

Thus, A_k is orthonormally similar to A_{k+1} , and similar matrices have the same eigenvalues. The series of matrices $(A_k)_{k=0}^{\infty}$ converges to the block matrix

$$S = \begin{bmatrix} S_1 & * & \cdots & * \\ \mathbf{0} & S_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & * \\ \mathbf{0} & \cdots & \mathbf{0} & S_m \end{bmatrix}.$$
 For example, $S = \begin{bmatrix} s_1 & * & * & \cdots & * \\ 0 & s_{2,1} & s_{2,2} & \cdots & * \\ s_{2,3} & s_{2,4} & \cdots & * \\ & & & \ddots & \vdots \\ & & & & s_m \end{bmatrix}.$

Each S_i is either a 1×1 or 2×2 matrix.⁵ In the example above on the right, since the first subdiagonal entry is zero, S_1 is the 1×1 matrix with a single entry, s_1 . But as $s_{2,3}$ is not zero, S_2 is 2×2 .

Since S is block upper triangular, its eigenvalues are the eigenvalues of its diagonal S_i blocks. Then because A is similar to each A_k , those eigenvalues of S are the eigenvalues of A.

When A has real entries but complex eigenvalues, $2 \times 2 S_i$ blocks appear in S. Finding eigenvalues of a 2×2 matrix is equivalent to finding the roots of a 2nd degree polynomial,

$$\det(S_i - \lambda I) = \begin{vmatrix} a - \lambda & b \\ c & d - \lambda \end{vmatrix} = (a - \lambda)(d - \lambda) - bc = \lambda^2 - (a + d)\lambda + (ad - bc),$$
(4.8)

which has a closed form solution via the quadratic equation. This implies that complex eigenvalues come in conjugate pairs.

Hessenberg Preconditioning

The QR algorithm works more accurately and efficiently on matrices that are in upper Hessenberg form, as upper Hessenberg matrices are already close to triangular. Furthermore, if H = QR is the QR decomposition of upper Hessenberg H then RQ is also upper Hessenberg, so the almost-triangular form is preserved at each iteration. Putting a matrix in upper Hessenberg form before applying the QR algorithm is called *Hessenberg preconditioning*.

e 11

Algo	rithm 4.2	
1: P	procedure $QR_Algorithm(A, N)$	
2:	$m, n \leftarrow \operatorname{shape}(A)$	
3:	$S \leftarrow \text{hessenberg}(A)$	\triangleright Put A in upper Hessenberg form
4:	for $k = 0, 1,, N - 1$ do	
5:	$Q, R \leftarrow S$	\triangleright Get the QR decomposition of A_k .
6:	$S \leftarrow RQ$	\triangleright Recombine R_k and Q_k into A_{k+1} .
7:	$eigs \leftarrow []$	\triangleright Initialize an empty list of eigenvalues.
8:	$i \leftarrow 0$	
9:	while $i < n$ do	
10:	if S_i is 1×1 then	
11:	Append the only entry s_i of S_i to eigs	
12:	else if S_i is 2×2 then	
13:	Calculate the eigenvalues of S_i	
14:	Append the eigenvalues of S_i to eigs	
15:	$i \leftarrow i + 1$	
16:	$i \leftarrow i + 1$	\triangleright Move to the next S_i .
17:	return eigs	

Problem 6. Write a function that accepts an $n \times n$ matrix A, a number of iterations N, and a tolerance tol. Use Algorithm 4.2 to implement the QR algorithm with Hessenberg preconditioning, returning the eigenvalues of A.

Consider the following implementation details.

- Use scipy.linalg.hessenberg() or your own Hessenburg algorithm to reduce A to upper Hessenberg form in step 3.
- The loop in step 4 should run for N total iterations.
- Use scipy.linalg.qr() or one of your own QR factorization routines to compute the QR decomposition of S in step 5. Note that since S is in upper Hessenberg form, Givens rotations are the most efficient way to produce Q and R.
- Assume that S_i is 1×1 in step 10 if one of two following criteria hold:
 - $-S_i$ is the last diagonal entry of S.
 - The absolute value of element below the *i*th main diagonal entry of S (the lower left element of the 2×2 block) is less than tol.
- If S_i is 2×2 , use the quadratic formula and (4.8) to compute its eigenvalues. Use the function cmath.sqrt() to correctly compute the square root of a negative number.

Test your function on small random symmetric matrices, comparing your results to SciPy's scipy.linalg.eig(). To construct a random symmetric matrix, note that $A + A^{\mathsf{T}}$ is always symmetric.

Note

Algorithm 4.2 is theoretically sound, but can still be greatly improved. Most modern computer packages instead use the *implicit QR algorithm*, an improved version of the QR algorithm, to compute eigenvalues.

For large matrices, there are other iterative methods besides the power method and the QR algorithm for efficiently computing eigenvalues. They include the Arnoldi iteration, the Jacobi method, the Rayleigh quotient method, and others.

Additional Material

Variations on the Linear Least Squares Problem

If W is an $n \times n$ is symmetric positive-definite matrix, then the function $\|\cdot\|_{W^2} : \mathbb{R}^n \to \mathbb{R}$ given by

$$\|\mathbf{x}\|_{W^2} = \|W\mathbf{x}\|_2 = \sqrt{\mathbf{x}^\mathsf{T} W^\mathsf{T} W \mathbf{x}}$$

defines a norm and is called a *weighted 2-norm*. Given the overdetermined system $A\mathbf{x} = \mathbf{b}$, the problem of choosing $\hat{\mathbf{x}}$ to minimize $||A\hat{\mathbf{x}} - \mathbf{b}||_{W^2}$ is called a *weighted least squares* (WLS) problem. This problem has a slightly different set of normal equations,

$$A^{\mathsf{T}}W^{\mathsf{T}}WA\widehat{\mathbf{x}} = A^{\mathsf{T}}W^{\mathsf{T}}W\mathbf{b}.$$

However, letting C = WA and $\mathbf{z} = W\mathbf{b}$, this equation reduces to the usual normal equations,

$$C^{\mathsf{T}}C\widehat{\mathbf{x}} = C^{\mathsf{T}}\mathbf{z}.$$

so a WLS problem can be solved in the same way as an ordinary least squares (OLS) problem.

Weighted least squares is useful when some points in a data set are more important than others. Typically W is chosen to be a diagonal matrix, and each positive diagonal entry $W_{i,i}$ indicate how much weight should be given to the *i*th data point. For example, Figure 4.2a shows OLS and WLS fits of an exponential curve $y = ae^{kx}$ to data that gets more sparse as x increases, where the matrix W is chosen to give more weight to the data with larger x values.

Alternatively, the least squares problem can be formulated with other common vector norms, but such problems cannot be solved via the normal equations. For example, minimizing $||A\mathbf{x} - \mathbf{b}||_1$ or $||A\mathbf{x} - \mathbf{b}||_{\infty}$ is usually done by solving an equivalent *linear program*, a type of constrained optimization problem. These norms may be better suited to a particular application than the regular 2-norm. Figure 4.2b illustrates how different norms give slightly different results in the context of Problem 4.

(a) Ordinary and weighted least squares fits for exponential data.

(b) Best fits for elliptical data with respect to different vector norms.

Figure 4.2: Variations on the ordinary least squares problem.

The Inverse Power Method

The major drawback of the power method is that it only computes a single eigenvector-eigenvalue pair, and it is always the eigenvalue of largest magnitude. The *inverse power method*, sometimes simply called the *inverse iteration*, is a way of computing an eigenvalue that is closest in magnitude to an initial guess. They key observation is that if λ is an eigenvalue of A, then $1/(\lambda - \mu)$ is an eigenvalue of $(A - \mu I)^{-1}$, so applying the power method to $(A - \mu I)^{-1}$ yields the eigenvalue of Athat is closest in magnitude to μ . The inverse power method is more expensive than the regular power method because at each iteration, instead of a matrix-vector multiplication (step 6 of Algorithm 4.1), a system of the form $(A - \mu I)\mathbf{x} = \mathbf{b}$ must be solved. To speed this step up, start by taking the LU or QR factorization of $A - \mu I$ before the loop, then use the factorization and back substitution to solve the system quickly within the loop. For instance, if $QR = A - \mu I$, then since $Q^{-1} = Q^{\mathsf{T}}$,

$$\mathbf{b} = (A - \mu I)\mathbf{x} = QR\mathbf{x} \quad \Leftrightarrow \quad R\mathbf{x} = Q^{\mathsf{T}}\mathbf{b},$$

which is a triangular system. This version of the algorithm is described below.

Algo	rithm 4.3	
1: p	rocedure INVERSEPOWERMETHOD (A, μ)	
2:	$m, n \leftarrow \operatorname{shape}(A)$	
3:	$\mathbf{x}_0 \leftarrow \operatorname{random}(n)$	
4:	$\mathbf{x}_0 \leftarrow \mathbf{x}_0 / \ \mathbf{x}_0\ $	
5:	$Q, R \leftarrow A - \mu I$	\triangleright Factor $A - \mu I$ with la.qr().
6:	for $k = 0, 1, 2,, N - 1$ do	
7:	Solve $R\mathbf{x}_{k+1} = Q^{T}\mathbf{x}_k$	\triangleright Use la.solve_triangular().
8:	$\mathbf{x}_{k+1} \leftarrow \mathbf{x}_{k+1} / \ \mathbf{x}_{k+1}\ $	
9:	$\mathbf{return} \ \mathbf{x}_N^T A \mathbf{x}_N, \ \mathbf{x}_N$	

It is worth noting that the QR algorithm can be improved with a similar technique: instead of computing the QR factorization of A_k , factor the shifted matrix $A_k - \mu_k I$, where μ_k is a guess for an eigenvalue of A, and unshift the recombined factorization accordingly. That is, compute

$$Q_k R_k = A_k - \mu_k I,$$
$$A_{k+1} = R_k Q_k + \mu_k I.$$

This technique yields the single-shift QR algorithm. Another variant, the practical QR algorithm, uses intelligent shifts and recursively operates on smaller blocks of A_{k+1} where possible. See [QSS10, TB97] for further discussion.

Lab 4. Least Squares and Computing Eigenvalues

Image Segmentation

Lab Objective: Graph theory has a variety of applications. A graph (or network) can be represented in many ways on a computer. In this lab we study a common matrix representation for graphs and show how certain properties of the matrix representation correspond to inherent properties of the original graph. We also introduce tools for working with images in Python, and conclude with an application of using graphs and linear algebra to segment images.

Graphs as Matrices

A graph is a mathematical structure that represents relationships between objects. Graphs are defined by G = (V, E), where V is a set of *vertices* (or *nodes*) and E is a set of *edges*, each of which connects one node to another. A graph can be classified in several ways.

- The edges of an *undirected* graph are bidirectional: if an edge goes from node A to node B, then that same edge also goes from B to A. For example, the graphs G_1 and G_2 in Figure 5.1 are both undirected. In a *directed graph*, edges only go one way, usually indicated by an arrow pointing from one node to another. In this lab, we focus on undirected graphs.
- The edges of a weighted graph have a weight assigned to them, such as G_2 . A weighted graph could represent a collection of cities with roads connecting them: each vertex would represent a city, and the edges would represent roads between the cities. The length of each road could be the weight of the corresponding edge. An unweighted graph like G_1 does not have weights assigned to its edges, but any unweighted graph can be thought of as a weighted graph by assigning a weight of 1 to every edge.

(a) G_1 , an unweighted undirected graph.

(b) G_2 , a weighted undirected graph.

Figure 5.1

Adjacency, Degree, and Laplacian Matrices

For computation and analysis, graphs are commonly represented by a few special matrices. For these definitions, let G be a graph with N nodes and let w_{ij} be the weight of the edge connecting node i to node j (if such an edge exists).

1. The adjacency matrix of G is the $N \times N$ matrix A with entries

$$a_{ij} = \begin{cases} w_{ij} & \text{if an edge connects node i and node j} \\ 0 & \text{otherwise.} \end{cases}$$

The adjacency matrices A_1 of G_1 and A_2 of G_2 are

	Γ0	1	0	0	1	1			Γ0	3	0	0	0	0]
	1	0	1	0	1	0		$A_2 =$	3	0	0	0	0	0
٨	0	1	0	1	0	0			0	0	0	1	0	0
$A_1 =$	0	0	1	0	1	1	,		0	0	1	0	2	.5
	1	1	0	1	0	0			0	0	0	2	0	1
	1	0	0	1	0	0			0	0	0	.5	1	0

Notice that these adjacency matrices are symmetric. This is always the case for undirected graphs since the edges are bidirectional.

2. The degree matrix of G is the $N \times N$ diagonal matrix D whose ith diagonal entry is

$$d_{ii} = \sum_{j=1}^{N} w_{ij}.$$
 (5.1)

The degree matrices D_1 of G_1 and D_2 of G_2 are

$$D_1 = \begin{bmatrix} 3 & 0 & 0 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 3 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 2 \end{bmatrix}, \qquad D_2 = \begin{bmatrix} 3 & 0 & 0 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 3.5 & 0 & 0 \\ 0 & 0 & 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1.5 \end{bmatrix}.$$

The *i*th diagonal entry of D is called the *degree* of node i, the sum of the weights of the edges leaving node i.

3. The Laplacian matrix of G is the $N \times N$ matrix L defined as

$$L = D - A,\tag{5.2}$$

where D is the degree matrix of G and A is the adjacency matrix of G. For G_1 and G_2 , the Laplacian matrices L_1 and L_2 are

$$L_{1} = \begin{bmatrix} 3 & -1 & 0 & 0 & -1 & -1 \\ -1 & 3 & -1 & 0 & -1 & 0 \\ 0 & -1 & 2 & -1 & 0 & 0 \\ 0 & 0 & -1 & 3 & -1 & -1 \\ -1 & -1 & 0 & -1 & 3 & 0 \\ -1 & 0 & 0 & -1 & 0 & 2 \end{bmatrix}, \qquad L_{2} = \begin{bmatrix} 3 & -3 & 0 & 0 & 0 & 0 \\ -3 & 3 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & -1 & 0 & 0 \\ 0 & 0 & -1 & 3.5 & -2 & -.5 \\ 0 & 0 & 0 & -2 & 3 & -1 \\ 0 & 0 & 0 & -.5 & -1 & 1.5 \end{bmatrix}.$$

Problem 1. Write a function that accepts the adjacency matrix A of a graph G. Use (5.1) and (5.2) to compute the Laplacian matrix L of G.

(Hint: The diagonal entries of D can be computed in one line by summing A over an axis.) Test your function on the graphs G_1 and G_2 from Figure 5.1 and validate your results

with scipy.sparse.csgraph.laplacian().

Connectivity

A connected graph is a graph where every vertex is connected to every other vertex by at least one path. For example, G_1 is connected, whereas G_2 is not because there is no path from node 1 (or node 2) to node 3 (or nodes 4, 5, or 6). The naïve brute-force algorithm for determining if a graph is connected is to check that there is a path from each edge to every other edge. While this may work for very small graphs, most interesting graphs have thousands of vertices, and for such graphs this approach is prohibitively expensive. Luckily, an interesting result from algebraic graph theory relates the connectivity of a graph to its Laplacian matrix.

If L is the Laplacian matrix of a graph, then the definition of D and the construction L = D - A guarantees that the rows (and columns) of L must each sum to 0. Therefore L cannot have full rank, so $\lambda = 0$ must be an eigenvalue of L. Furthermore, if L represents a graph that is **not** connected, more than one of the eigenvalues of L must be zero. To see this, let $J \subset \{1, 2, \ldots, N\}$ such that the vertices $\{v_j\}_{j \in J}$ form a connected component of the graph, meaning that there is a path between each pair of vertices in the set. Next, let \mathbf{x} be the vector with entries

$$x_k = \begin{cases} 1, & k \in J \\ 0, & k \notin J. \end{cases}$$

Then **x** is an eigenvector of L corresponding to the eigenvalue $\lambda = 0$.

For example, the example graph G_2 has two connected components.

1. $J_1 = \{1, 2\}$ so that $\mathbf{x}_1 = [1, 1, 0, 0, 0, 0]^{\mathsf{T}}$. Then

$$L_{2}\mathbf{x}_{1} = \begin{bmatrix} 3 & -3 & 0 & 0 & 0 & 0 \\ -3 & 3 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & -1 & 0 & 0 \\ 0 & 0 & -1 & 3.5 & -2 & -.5 \\ 0 & 0 & 0 & -2 & 3 & -1 \\ 0 & 0 & 0 & -.5 & -1 & 1.5 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} = \mathbf{0}.$$

2. $J_2 = \{3, 4, 5, 6\}$ and hence $\mathbf{x}_2 = [0, 0, 1, 1, 1, 1]^{\mathsf{T}}$. Then

$$L_2 \mathbf{x}_2 = \begin{bmatrix} 3 & -3 & 0 & 0 & 0 & 0 \\ -3 & 3 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & -1 & 0 & 0 \\ 0 & 0 & -1 & 3.5 & -2 & -.5 \\ 0 & 0 & 0 & -2 & 3 & -1 \\ 0 & 0 & 0 & -.5 & -1 & 1.5 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} = \mathbf{0}$$

In fact, it can be shown that the number of zero eigenvalues of the Laplacian exactly equals the number of connected components. This makes calculating how many connected components are in a graph only as hard as calculating the eigenvalues of its Laplacian. A Laplacian matrix L is always a positive semi-definite matrix when all weights in the graph are positive, meaning that its eigenvalues are each nonnegative. The second smallest eigenvalue of L is called the *algebraic connectivity* of the graph. It is clearly 0 for non-connected graphs, but for a connected graph, the algebraic connectivity provides useful information about its sparsity or "connectedness." A higher algebraic connectivity indicates that the graph is more strongly connected.

Problem 2. Write a function that accepts the adjacency matrix A of a graph G and a small tolerance value to1. Compute the number of connected components in G and its algebraic connectivity. Consider all eigenvalues that are less than the given to1 to be zero.

Use scipy.linalg.eig() or scipy.linalg.eigvals() to compute the eigenvalues of the Laplacian matrix. These functions return complex eigenvalues (with negligible imaginary parts); use np.real() to extract the real parts.

Images as Matrices

Computer images are stored as arrays of integers that indicate pixel values. Most $m \times n$ grayscale (black and white) images are stored in Python as a $m \times n$ NumPy arrays, while most $m \times n$ color images are stored as 3-dimensional $m \times n \times 3$ arrays. Color image arrays can be thought of as a stack of three $m \times n$ arrays, one each for red, green, and blue values. The datatype for an image array is np.uint8, unsigned 8-bit integers that range from 0 to 255. A 0 indicates a black pixel while a 255 indicates a white pixel.

Use imageio.imread() to read an image from a file and imageio.imwrite() to save an image. Matplotlib's plt.imshow() displays an image array, but it displays arrays of floats between 0 and 1 more cleanly than arrays of 8-bit integers. Therefore it is customary to scale the array by dividing each entry by 255 before processing or showing the image. In this case, a 0 still indicates a black pixel, but now a 1 indicates pure white.

```
>>> from imageio import imread
>>> from matplotlib import pyplot as plt
>>> image = imread("dream.png")
                                   # Read a (very) small image.
>>> print(image.shape)
                                    # Since the array is 3-dimensional,
(48, 48, 3)
                                    # this is a color image.
# The image is read in as integers from 0 to 255.
>>> print(image.min(), image.max(), image.dtype)
0 254 uint8
# Scale the image to floats between 0 and 1 for Matplotlib.
>>> scaled = image / 255.
>>> print(scaled.min(), scaled.max(), scaled.dtype)
0.0 0.996078431373 float64
# Display the scaled image.
>>> plt.imshow(scaled)
>>> plt.axis("off")
```

A color image can be converted to grayscale by averaging the RGB values of each pixel, resulting in a 2-D array called the *brightness* of the image. To properly display a grayscale image, specify the keyword argument cmap="gray" in plt.imshow().

```
# Average the RGB values of a colored image to obtain a grayscale image.
>>> brightness = scaled.mean(axis=2)  # Average over the last axis.
>>> print(brightness.shape)  # Note that the array is now 2-D.
(48, 48)
# Display the image in gray.
>>> plt.imshow(brightness, cmap="gray")
>>> plt.axis("off")
```

Finally, it is often important in applications to flatten an image matrix into a large 1-D array. Use np.ravel() to convert a $m \times n$ array into a 1-D array with mn entries.

```
>>> import numpy as np
>>> A = np.random.randint(0, 10, (3,4))
>>> print(A)
[[4 4 7 7]
 [8 1 2 0]
 [7 0 0 9]]
# Unravel the 2-D array (by rows) into a 1-D array.
>>> np.ravel(A)
array([4, 4, 7, 7, 8, 1, 2, 0, 7, 0, 0, 9])
# Unravel a grayscale image into a 1-D array and check its size.
>>> M,N = brightness.shape
>>> flat_brightness = np.ravel(brightness)
>>> M*N == flat_brightness.size
True
>>> print(flat_brightness.shape)
(2304,)
```

Problem 3. Define a class called ImageSegmenter.

- 1. Write the constructor so that it accepts the name of an image file. Read the image, scale it so that it contains floats between 0 and 1, then store it as an attribute. If the image is in color, compute its brightness matrix by averaging the RGB values at each pixel (if it is a grayscale image, the image array itself is the brightness matrix). Flatten the brightness matrix into a 1-D array and store it as an attribute.
- 2. Write a method called show_original() that displays the original image. If the original image is grayscale, remember to use cmap="gray" as part of plt.imshow().

ACHTUNG!

Matplotlib's plt.imread() also reads image files. However, this function automatically scales PNG image entries to floats between 0 and 1, but it still reads non-PNG image entries as 8-bit integers. To avoid this inconsistent behavior, always use imageio.imread() to read images and divide by 255 when scaling is desired.

Graph-based Image Segmentation

Image segmentation is the process of finding natural boundaries in an image and partitioning the image along those boundaries (see Figure 5.2). Though humans can easily pick out portions of an image that "belong together," it takes quite a bit of work to teach a computer to recognize boundaries and sections in an image. However, segmenting an image often makes it easier to analyze, so image segmentation is ongoing area of research in computer vision and image processing.

Figure 5.2: The image dream.png and its segments.

There are many ways to approach image segmentation. The following algorithm, developed by Jianbo Shi and Jitendra Malik in 2000 [SM00], converts the image to a graph and "cuts" it into two connected components.

Constructing the Image Graph

Let G be a graph whose vertices are the mn pixels of an $m \times n$ image (either grayscale or color). Each vertex i has a brightness B(i), the grayscale or average RGB value of the pixel, as well as a coordinate location X(i), the indices of the pixel in the original image array.

Define w_{ij} , the weight of the edge between pixels i and j, by

$$w_{ij} = \begin{cases} \exp\left(-\frac{|B(i) - B(j)|}{\sigma_B^2} - \frac{\|X(i) - X(j)\|}{\sigma_X^2}\right) & \text{if } \|X(i) - X(j)\| < r\\ 0 & \text{otherwise,} \end{cases}$$
(5.3)

where r, σ_B^2 and σ_X^2 are constants for tuning the algorithm. In this context, $\|\cdot\|$ is the standard *euclidean norm*, meaning that $\|X(i) - X(j)\|$ is the physical distance between vertices i and j, measured in pixels.

With this definition for w_{ij} , pixels that are farther apart than the radius r are not connected at all in G. Pixels within r of each other are more strongly connected if they are similar in brightness and close together (the value in the exponential is negative but close to zero). On the other hand, highly contrasting pixels where |B(i) - B(j)| is large have weaker connections (the value in the exponential is highly negative).

Figure 5.3: The grid on the left represents a 4×4 $(m \times n)$ image with 16 pixels. On the right is the corresponding 16×16 $(mn \times mn)$ adjacency matrix with all nonzero entries shaded. For example, in row 5, entries 1, 4, 5, 6, and 9 are nonzero because those pixels are within radius r = 1.2 of pixel 5.

Since there are mn total pixels, the adjacency matrix A of G with entries w_{ij} is $mn \times mn$. With a relatively small radius r, A is relatively sparse, and should therefore be constructed and stored as a sparse matrix. The degree matrix D is diagonal, so it can be stored as a regular 1-dimensional NumPy array. The procedure for constructing these matrices can be summarized in just a few steps.

- 1. Initialize A as a sparse $mn \times mn$ matrix and D as a vector with mn entries.
- 2. For each vertex $i \ (i = 0, 1, \dots, mn 1)$,
 - (a) Find the set of all vertices J_i such that ||X(i) X(j)|| < r for each $j \in J_i$. For example, in Figure 5.3 i = 5 and $J_i = \{1, 4, 5, 6, 9\}$.
 - (b) Calculate the weights w_{ij} for each $j \in J_i$ according to (5.3) and store them in A.
 - (c) Set the *i*th element of D to be the sum of the weights, $d_i = \sum_{i \in J_i} w_{ij}$.

The most difficult part to implement efficiently is step 2a, computing the neighborhood J_i of the current pixel *i*. However, the computation only requires knowing the current index *i*, the radius *r*, and the height and width *m* and *n* of the original image. The following function takes advantage of this fact and returns (as NumPy arrays) both J_i and the distances ||X(i) - X(j)|| for each $j \in J_i$.

```
def get_neighbors(index, radius, height, width):
    """Calculate the flattened indices of the pixels that are within the given
   distance of a central pixel, and their distances from the central pixel.
   Parameters:
        index (int): The index of a central pixel in a flattened image array
            with original shape (radius, height).
        radius (float): Radius of the neighborhood around the central pixel.
        height (int): The height of the original image in pixels.
        width (int): The width of the original image in pixels.
   Returns:
        (1-D ndarray): the indices of the pixels that are within the specified
            radius of the central pixel, with respect to the flattened image.
        (1-D ndarray): the euclidean distances from the neighborhood pixels to
            the central pixel.
    0.0.0
    # Calculate the original 2-D coordinates of the central pixel.
   row, col = index // width, index % width
   # Get a grid of possible candidates that are close to the central pixel.
   r = int(radius)
   x = np.arange(max(col - r, 0), min(col + r + 1, width))
   y = np.arange(max(row - r, 0), min(row + r + 1, height))
   X, Y = np.meshgrid(x, y)
   # Determine which candidates are within the given radius of the pixel.
   R = np.sqrt(((X - col)**2 + (Y - row)**2))
   mask = R < radius</pre>
   return (X[mask] + Y[mask]*width).astype(np.int), R[mask]
```

To see how this works, consider Figure 5.3 where the original image is 4×4 and the goal is to compute the neighborhood of the pixel i = 5.

```
# Compute the neighbors and corresponding distances from the figure.
>>> neighbors_1, distances_1 = get_neighbors(5, 1.2, 4, 4)
>>> print(neighbors_1, distances_1, sep='\n')
[1 4 5 6 9]
[ 1. 1. 0. 1. 1.]
# Increasing the radius from 1.2 to 1.5 results in more neighbors.
>>> neighbors_2, distances_2 = get_neighbors(5, 1.5, 4, 4)
>>> print(neighbors_2, distances_2, sep='\n')
[ 0 1 2 4 5 6 8 9 10]
[ 1.41421356 1. 1.41421356 1. 0. 1.
1.41421356 1. 1.41421356]
```

Problem 4. Write a method for the ImageSegmenter class that accepts floats r defaulting to 5, σ_B^2 defaulting to .02, and σ_X^2 defaulting to 3. Compute the adjacency matrix A and the degree matrix D according to the weights specified in (5.3).

Initialize A as a scipy.sparse.lil_matrix, which is optimized for incremental construction. Fill in the nonzero elements of A one row at a time. Use get_neighbors() at each step to help compute the weights.

(Hint: Try to compute and store an entire row of weights at a time. What does the command A[5, np.array([1, 4, 5, 6, 9])] = weights do?)

Finally, convert A to a scipy.sparse.csc_matrix, which is faster for computations. Then return A and D.

Segmenting the Graph

With an image represented as a graph G, the goal is to now split G into two distinct connected components by removing edges from the existing graph. This is called *cutting* G, and the set of edges that are removed is called the *cut*. The cut with the least weight will best segment the image.

Let D be the degree matrix and L be the Laplacian matrix of G. Shi and Malik [SM00] proved that the eigenvector corresponding to the second smallest¹ eigenvalue of $D^{-1/2}LD^{-1/2}$ can be used to minimize the cut: the indices of its positive entries are the indices of the pixels in the flattened image which belong to one segment, and the indices of its negative entries are the indices of the pixels which belong to the other segment. In this context $D^{-1/2}$ refers to element-wise exponentiation, so the (i, j)th entry of $D^{-1/2}$ is $1/\sqrt{d_{ij}}$.

Because A is $mn \times mn$, the desired eigenvector has mn entries. Reshaping the eigenvector to be $m \times n$ allows it to align with the original image. Use the reshaped eigenvector to create a boolean mask that indexes one of the segments. That is, construct a $m \times n$ array where the entries belonging to one segment are **True** and the other entries are **False**.

```
>>> x = np.arange(-5,5).reshape((5,2)).T
>>> print(x)
[[-5 -3 -1 1 3]
    [-4 -2 0 2 4]]
# Construct a boolean mask of x describing which entries of x are positive.
>>> mask = x > 0
>>> print(mask)
[[False False False True True]
    [False False False True True]]
# Use the mask to zero out all of the nonpositive entries of x.
>>> x * mask
array([[0, 0, 0, 1, 3],
        [0, 0, 0, 2, 4]])
```

¹Both D and L are symmetric matrices, so all eigenvalues of $D^{-1/2}LD^{-1/2}$ are real, and therefore "the second smallest one" is well-defined.

Problem 5. Write a method for the ImageSegmenter class that accepts an adjacency matrix A as a scipy.sparse.csc_matrix and a degree matrix D as a 1-D NumPy array. Construct an $m \times n$ boolean mask describing the segments of the image.

- 1. Compute the Laplacian L with scipy.sparse.csgraph.laplacian() or by converting D to a sparse diagonal matrix and computing L = D A (do not use your function from Problem 1 unless it works correctly and efficiently for sparse matrices).
- 2. Construct $D^{-1/2}$ as a sparse diagonal matrix using D and scipy.sparse.diags(), then compute $D^{-1/2}LD^{-1/2}$. Use c or the dot() method of the sparse matrix for the matrix multiplication, not np.dot().
- 3. Use scipy.sparse.linalg.eigsh() to compute the eigenvector corresponding to the second-smallest eigenvalue of $D^{-1/2}LD^{-1/2}$. Set the keyword arguments which="SM" and k=2 to compute only the two smallest eigenvalues and their eigenvectors.
- 4. Reshape the eigenvector as a $m \times n$ matrix and use this matrix to construct the desired boolean mask. Return the mask.

Multiplying the boolean mask component-wise by the original image array produces the *positive* segment, a copy of the original image where the entries that aren't in the segment are set to 0. Computing the negative segment requires inverting the boolean mask, then multiplying the inverted mask with the original image array. Finally, if the original image is a $m \times n \times 3$ color image, the mask must be stacked into a $m \times n \times 3$ array to facilitate entry-wise multiplication.

```
>>> mask = np.arange(-5,5).reshape((5,2)).T > 0
>>> print(mask)
[[False False False True True]
  [False False False True True]]
# The mask can be negated with the tilde operator ~.
>>> print(~mask)
[[ True True True False False]
  [ True True True False False]]
# Stack a mask into a 3-D array with np.dstack().
>>> print(mask.shape, np.dstack((mask, mask, mask)).shape)
(2, 5) (2, 5, 3)
```

Problem 6. Write a method for the ImageSegmenter class that accepts floats r, σ_B^2 , and σ_X^2 , with the same defaults as in Problem 4. Call your methods from Problems 4 and 5 to obtain the segmentation mask. Plot the original image, the positive segment, and the negative segment side-by-side in subplots. Your method should work for grayscale or color images.

Use dream.png as a test file and compare your results to Figure 5.2.
The SVD and Image Compression

Lab Objective: The Singular Value Decomposition (SVD) is an incredibly useful matrix factorization that is widely used in both theoretical and applied mathematics. The SVD is structured in a way that makes it easy to construct low-rank approximations of matrices, and it is therefore the basis of several data compression algorithms. In this lab we learn to compute the SVD and use it to implement a simple image compression routine.

The SVD of a matrix A is a factorization $A = U\Sigma V^{\mathsf{H}}$ where U and V have orthonormal columns and Σ is diagonal. The diagonal entries of Σ are called the *singular values* of A and are the square roots of the eigenvalues of $A^{\mathsf{H}}A$. Since $A^{\mathsf{H}}A$ is always positive semidefinite, its eigenvalues are all real and nonnegative, so the singular values are also real and nonnegative. The singular values σ_i are usually sorted in decreasing order so that $\Sigma = \operatorname{diag}(\sigma_1, \sigma_2, \ldots, \sigma_n)$ with $\sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_n \geq 0$. The columns \mathbf{u}_i of U, the columns \mathbf{v}_i of V, and the singular values of A satisfy $A\mathbf{v}_i = \sigma_i \mathbf{u}_i$.

Every $m \times n$ matrix A of rank r has an SVD with exactly r nonzero singular values. Like the QR decomposition, the SVD has two main forms.

- Full SVD: Denoted $A = U\Sigma V^{\mathsf{H}}$. U is $m \times m$, V is $n \times n$, and Σ is $m \times n$. The first r columns of U span $\mathscr{R}(A)$, and the remaining n r columns span $\mathscr{N}(A^{\mathsf{H}})$. Likewise, the first r columns of V span $\mathscr{R}(A^{\mathsf{H}})$, and the last m r columns span $\mathscr{N}(A)$.
- Compact (Reduced) SVD: Denoted $A = U_1 \Sigma_1 V_1^{\mathsf{H}}$. U_1 is $m \times r$ (the first r columns of U), V_1 is $n \times r$ (the first r columns of V), and Σ_1 is $r \times r$ (the first $r \times r$ block of Σ). This smaller version of the SVD has all of the information needed to construct A and nothing more. The zero singular values and the corresponding columns of U and V are neglected.

Finally, the SVD yields an *outer product expansion* of A in terms of the singular values and the columns of U and V,

$$A = \sum_{i=1}^{r} \sigma_i \mathbf{u}_i \mathbf{v}_i^{\mathsf{H}}.$$
 (6.1)

Note that only terms from the compact SVD are needed for this expansion.

Computing the Compact SVD

It is difficult to compute the SVD from scratch because it is an eigenvalue-based decomposition. However, given an eigenvalue solver such as scipy.linalg.eig(), the algorithm becomes much simpler. First, obtain the eigenvalues and eigenvectors of $A^{H}A$, and use these to compute Σ . Since $A^{H}A$ is normal, it has an orthonormal eigenbasis, so set the columns of V to be the eigenvectors of $A^{H}A$. Then, since $A\mathbf{v}_{i} = \sigma_{i}\mathbf{u}_{i}$, construct U by setting its columns to be $\mathbf{u}_{i} = \frac{1}{\sigma_{i}}A\mathbf{v}_{i}$.

The key is to sort the singular values and the corresponding eigenvectors in the same manner. In addition, it is computationally inefficient to keep track of the entire matrix Σ since it is a matrix of mostly zeros, so we need only store the singular values as a vector $\boldsymbol{\sigma}$. The entire procedure for computing the compact SVD is given below.

Alg	Algorithm 6.1					
1:	1: procedure COMPACT SVD(A)					
2:	$\boldsymbol{\lambda}, V \leftarrow \operatorname{eig}(A^{H}A)$	\triangleright Calculate the eigenvalues and eigenvectors of $A^{H}A$.				
3:	$\boldsymbol{\sigma} \leftarrow \sqrt{\boldsymbol{\lambda}}$	\triangleright Calculate the singular values of A.				
4:	$oldsymbol{\sigma} \leftarrow \operatorname{sort}(oldsymbol{\sigma})$	\triangleright Sort the singular values from greatest to least.				
5:	$V \leftarrow \operatorname{sort}(V)$	\triangleright Sort the eigenvectors the same way as in the previous step.				
6:	$r \leftarrow \operatorname{count}(\boldsymbol{\sigma} \neq 0)$	\triangleright Count the number of nonzero singular values (the rank of A).				
7:	$\boldsymbol{\sigma}_1 \leftarrow \boldsymbol{\sigma}_{:r}$	\triangleright Keep only the positive singular values.				
8:	$V_1 \leftarrow V_{:,:r}$	\triangleright Keep only the corresponding eigenvectors.				
9:	$U_1 \leftarrow AV_1/\boldsymbol{\sigma}_1$	\triangleright Construct U with array broadcasting.				
10:	$\mathbf{return} \ U_1, \boldsymbol{\sigma}_1, V_1^{H}$					

Problem 1. Write a function that accepts a matrix A and a small error tolerance tol. Use Algorithm 6.1 to compute the compact SVD of A. In step 6, compute r by counting the number of singular values that are greater than tol.

Consider the following tips for implementing the algorithm.

- The Hermitian A^{H} can be computed with A.conj().T.
- In step 4, the way that σ is sorted needs to be stored so that the columns of V can be sorted the same way. Consider using np.argsort() and fancy indexing to do this, but remember that by default it sorts from least to greatest (not greatest to least).
- Step 9 can be done by looping over the columns of V, but it can be done more easily and efficiently with array broadcasting.

Test your function by calculating the compact SVD for random matrices. Verify that U and V are orthonormal, that $U\Sigma V^{\mathsf{H}} = A$, and that the number of nonzero singular values is the rank of A. You may also want to compre your results to SciPy's SVD algorithm.

```
>>> import numpy as np
>>> from scipy import linalg as la
# Generate a random matrix and get its compact SVD via SciPy.
>>> A = np.random.random((10,5))
>>> U,s,Vh = la.svd(A, full_matrices=False)
>>> print(U.shape, s.shape, Vh.shape)
(10, 5) (5,) (5, 5)
# Verify that U is orthonormal, U Sigma Vh = A, and the rank is correct.
>>> np.allclose(U.T @ U, np.identity(5))
True
>>> np.allclose(U @ np.diag(s) @ Vh, A)
True
>>> np.linalg.matrix_rank(A) == len(s)
True
```

Visualizing the SVD

An $m \times n$ matrix A defines a linear transformation that sends points from \mathbb{R}^n to \mathbb{R}^m . The SVD decomposes a matrix into two rotations and a scaling, so that any linear transformation can be easily described geometrically. Specifically, V^{H} represents a rotation, Σ a rescaling along the principal axes, and U another rotation.

Problem 2. Write a function that accepts a 2×2 matrix A. Generate a 2×200 matrix S representing a set of 200 points on the unit circle, with x-coordinates on the top row and y-coordinates on the bottom row (recall the equation for the unit circle in polar coordinates: $x = \cos(\theta), y = \sin(\theta), \theta \in [0, 2\pi]$). Also define the matrix

$$E = \begin{bmatrix} \mathbf{e}_1 & \mathbf{0} & \mathbf{e}_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix},$$

so that plotting the first row of S against the second row of S displays the unit circle, and plotting the first row of E against its second row displays the standard basis vectors in \mathbb{R}^2 .

Compute the full SVD $A = U\Sigma V^{\mathsf{H}}$ using scipy.linalg.svd(). Plot four subplots to demonstrate each step of the transformation, plotting S and E, $V^{\mathsf{H}}S$ and $V^{\mathsf{H}}E$, $\Sigma V^{\mathsf{H}}S$ and $\Sigma V^{\mathsf{H}}E$, then $U\Sigma V^{\mathsf{H}}S$ and $U\Sigma V^{\mathsf{H}}E$.

For the matrix

$$A = \left[\begin{array}{cc} 3 & 1 \\ 1 & 3 \end{array} \right],$$

your function should produce Figure 6.1.

(Hint: Use plt.axis("equal") to fix the aspect ratio so that the circles don't appear elliptical.)

Figure 6.1: Each step in transforming the unit circle and two unit vectors using the matrix A.

Using the SVD for Data Compression

Low-Rank Matrix Approximations

If A is a $m \times n$ matrix of rank $r < \min\{m, n\}$, then the compact SVD offers a way to store A with less memory. Instead of storing all mn values of A, storing the matrices U_1 , Σ_1 and V_1 only requires saving a total of mr + r + nr values. For example, if A is 100×200 and has rank 20, then A has 20,000 values, but its compact SVD only has total 6,020 entries, a significant decrease.

The truncated SVD is an approximation to the compact SVD that allows even greater efficiency at the cost of a little accuracy. Instead of keeping all of the nonzero singular values, the truncated SVD only keeps the first s < r singular values, plus the corresponding columns of U and V. In this case, (6.1) becomes

$$A_s = \sum_{i=1}^s \sigma_i \mathbf{u}_i \mathbf{v}_i^\mathsf{H}.$$

More precisely, the truncated SVD of A is $A_s = \widehat{U}\widehat{\Sigma}\widehat{V}^{\mathsf{H}}$, where \widehat{U} is $m \times s$, \widehat{V} is $n \times s$, and $\widehat{\Sigma}$ is $s \times s$. The resulting matrix A_s has rank s and is only an approximation to A, since r - s nonzero singular values are neglected.

The beauty of the SVD is that it makes it easy to select the information that is most important. Larger singular values correspond to columns of U and V that contain more information, so dropping the smallest singular values retains as much information as possible. In fact, given a matrix A, its rank-s truncated SVD approximation A_s is the best rank s approximation of A with respect to both the induced 2-norm and the Frobenius norm. This result is called the Schmidt, Mirsky, Eckhart-Young theorem, a very significant concept that appears in signal processing, statistics, machine learning, semantic indexing (search engines), and control theory.

Problem 3. Write a function that accepts a matrix A and a positive integer s.

- 1. Use your function from Problem 1 or scipy.linalg.svd() to compute the compact SVD of A, then form the truncated SVD by stripping off the appropriate columns and entries from U_1 , Σ_1 , and V_1 . Return the best rank s approximation A_s of A (with respect to the induced 2-norm and Frobenius norm).
- 2. Also return the number of entries required to store the truncated form $\widehat{U}\widehat{\Sigma}\widehat{V}^{\mathsf{H}}$ (where $\widehat{\Sigma}$ is stored as a one-dimensional array, not the full diagonal matrix). The number of entries stored in NumPy array can be accessed by its **size** attribute.

```
>>> A = np.random.random((20, 20))
>>> A.size
400
```

3. If s is greater than the number of nonzero singular values of A (meaning $s > \operatorname{rank}(A)$), raise a ValueError.

Use np.linalg.matrix_rank() to verify the rank of your approximation.

Error of Low-Rank Approximations

Another result of the Schmidt, Mirsky, Eckhart-Young theorem is that the exact 2-norm error of the best rank-s approximation A_s for the matrix A is the (s + 1)th singular value of A:

$$\|A - A_s\|_2 = \sigma_{s+1}.\tag{6.2}$$

This offers a way to approximate A within a desired error tolerance ε : choose s such that σ_{s+1} is the largest singular value that is less than ε , then compute A_s . This A_s throws away as much information as possible without violating the property $||A - A_s||_2 < \varepsilon$.

Problem 4. Write a function that accepts a matrix A and an error tolerance ε .

- 1. Compute the compact SVD of A, then use (6.2) to compute the lowest rank approximation A_s of A with 2-norm error less than ε . Avoid calculating the SVD more than once. (Hint: np.argmax(), np.where(), and/or fancy indexing may be useful.)
- 2. As in the previous problem, also return the number of entries needed to store the resulting approximation A_s via the truncated SVD.
- 3. If ε is less than or equal to the smallest singular value of A, raise a ValueError; in this case, A cannot be approximated within the tolerance by a matrix of lesser rank.

This function should be close to identical to the function from Problem 3, but with the extra step of identifying the appropriate s. Construct test cases to validate that $||A - A_s||_2 < \varepsilon$.

Image Compression

Images are stored on a computer as matrices of pixel values. Sending an image over the internet or a text message can be expensive, but computing and sending a low-rank SVD approximation of the image can considerably reduce the amount of data sent while retaining a high level of image detail. Successive levels of detail can be sent after the initial low-rank approximation by sending additional singular values and the corresponding columns of V and U.

Examining the singular values of an image gives us an idea of how low-rank the approximation can be. Figure 6.2 shows the image in hubble_gray.jpg and a log plot of its singular values. The plot in 6.2b is typical for a photograph—the singular values start out large but drop off rapidly. In this rank 1041 image, 913 of the singular values are 100 or more times smaller than the largest singular value. By discarding these relatively small singular values, we can retain all but the finest image details, while storing only a rank 128 image. This is a huge reduction in data size.

Figure 6.3 shows several low-rank approximations of the image in Figure 6.2a. Even at a low rank the image is recognizable. By rank 120, the approximation differs very little from the original.

(a) Rank 2

(b) Rank 20

(c) Rank 120

Figure 6.3

Grayscale images are stored on a computer as 2-dimensional arrays, while color images are stored as 3-dimensional arrays—one layer each for red, green, and blue arrays. To read and display images, use imageio.imread() and plt.imshow(). Images are read in as integer arrays with entries between 0 and 255 (dtype=np.uint8), but plt.imshow() works better if the image is an array of floats in the interval [0, 1]. Scale the image properly by dividing the array by 255.

```
>>> from imageio import imread
>>> from matplotlib import pyplot as plt
# Send the RGB values to the interval (0,1).
>>> image_gray = imread("hubble_gray.jpg") / 255.
>>> image_gray.shape
                                # Grayscale images are 2-d arrays.
(1158, 1041)
>>> image_color = imread("hubble.jpg") / 255.
>>> image_color.shape
                               # Color images are 3-d arrays.
(1158, 1041, 3)
# The final axis has 3 layers for red, green, and blue values.
>>> red_layer = image_color[:,:,0]
>>> red_layer.shape
(1158, 1041)
# Display a gray image.
>>> plt.imshow(red_layer, cmap="gray")
>>> plt.axis("off")
                                # Turn off axis ticks and labels.
>>> plt.show()
# Display a color image.
>>> plt.imshow(image_color)
                              # cmap=None by default.
>>> plt.axis("off")
>>> plt.show()
```

Problem 5. Write a function that accepts the name of an image file and an integer s. Use your function from Problem 3, to compute the best rank-s approximation of the image. Plot the original image and the approximation in separate subplots. In the figure title, report the difference in number of entries required to store the original image and the approximation (use plt.suptitle()).

Your function should be able to handle both grayscale and color images. Read the image in and check its dimensions to see if it is color or not. Grayscale images can be approximated directly since they are represented by 2-dimensional arrays. For color images, let R, G, and Bbe the matrices for the red, green, and blue layers of the image, respectively. Calculate the lowrank approximations R_s , G_s , and B_s separately, then put them together in a new 3-dimensional array of the same shape as the original image.

(Hint: np.dstack() may be useful for putting the color layers back together.)

Finally, it is possible for the low-rank approximations to have values slightly outside the valid range of RGB values. Set any values outside of the interval [0, 1] to the closer of the two boundary values.

(Hint: fancy indexing and/or np.clip() may be useful here.)

To check, compressing hubble_gray.jpg with a rank 20 approximation should appear similar to Figure 6.3b and save 1, 161, 478 matrix entries.

Additional Material

More on Computing the SVD

For an $m \times n$ matrix A of rank $r < \min\{m, n\}$, the compact SVD of A neglects last m - r columns of U and the last n - r columns of V. The remaining columns of each matrix can be calculated by using Gram-Schmidt orthonormalization. If m < r < n or n < r < m, only one of U_1 and V_1 will need to be filled in to construct the full U or V. Computing these extra columns is one way to obtain a basis for $\mathcal{N}(A^{\mathsf{H}})$ or $\mathcal{N}(A)$.

Algorithm 6.1 begins with the assumption that we have a way to compute the eigenvalues and eigenvectors of $A^{H}A$. Computing eigenvalues is a notoriously difficult problem, and computing the SVD from scratch without an eigenvalue solver is much more difficult than the routine described by Algorithm 6.1. The procedure involves two phases:

- 1. Factor A into $A = U_a B V_a^{\mathsf{H}}$ where B is bidiagonal (only nonzero on the diagonal and the first superdiagonal) and U_a and V_a are orthonormal. This is usually done via *Golub-Kahan Bidiagonalization*, which uses Householder reflections, or *Lawson-Hanson-Chan bidiagonalization*, which relies on the QR decomposition.
- 2. Factor B into $B = U_b \Sigma V_b^{\mathsf{H}}$ by the QR algorithm or a divide-and-conquer algorithm. Then the SVD of A is given by $A = (U_a U_b) \Sigma (V_a V_b)^{\mathsf{H}}$.

For more details, see Lecture 31 of [TB97] or Section 5.4 of Applied Numerical Linear Algebra by James W. Demmel.

Animating Images with Matplotlib

Matplotlib can be used to animate images that change over time. For instance, we can show how the low-rank approximations of an image change as the rank s increases, showing how the image is recovered as more ranks are added. Try using the following code to create such an animation.

```
from matplotlib import pyplot as plt
from matplotlib.animation import FuncAnimation
def animate_images(images):
    """Animate a sequence of images. The input is a list where each
    entry is an array that will be one frame of the animation.
    0.0.0
    fig = plt.figure()
    plt.axis("off")
    im = plt.imshow(images[0], animated=True)
    def update(index):
        plt.title("Rank {} Approximation".format(index))
        im.set_array(images[index])
                                # Note the comma!
        return im,
    a = FuncAnimation(fig, update, frames=len(images), blit=True)
    plt.show()
```

See https://matplotlib.org/examples/animation/dynamic_image.html for another example.

Lab 6. The SVD and Image Compression

Facial Recognition

Lab Objective: Facial recognition algorithms attempt to match a person's portrait to a database of many portraits. Facial recognition is becoming increasingly important in security, law enforcement, artificial intelligence, and other areas. Though humans can easily match pictures to people, computers are beginning to surpass humans at facial recognition. In this lab, we implement a basic facial recognition system that relies on eigenvectors and the SVD to efficiently determine the difference between faces.

Preparing an Image Database

The faces94 face image dataset¹ contains several photographs of 153 people, organized into folders by person. To perform facial recognition on this dataset, select one image per person and convert these images into a database. For this particular facial recognition algorithm, the entire database can be stored in just a few NumPy arrays.

Digital images are stored on computers as arrays of pixels. Therefore, an $m \times n$ image can be stored in memory as an $m \times n$ matrix or, equivalently, as an *mn*-vector by concatenating the rows of the matrix. Then a collection of k images can be stored as a single $mn \times k$ matrix F, where each column of F represents a single image. That is, if

$$F = \left[\begin{array}{cc} \mathbf{f}_1 & \mathbf{f}_2 & \cdots & \mathbf{f}_k \end{array} \right],$$

then each \mathbf{f}_i is a *mn*-vector representing a single image.

The following function obtains one image for each person in the faces94 dataset and converts the collection of images into an $mn \times k$ matrix F described above.

 $^{^{1}{\}rm See \ http://cswww.essex.ac.uk/mv/allfaces/faces94.html.}$

Problem 1. Write a function that accepts an image as a flattened mn-vector, along with its original dimensions m and n. Use np.reshape() to convert the flattened image into its original $m \times n$ shape and display the result with plt.imshow().

(Hint: use cmap="gray" in plt.imshow() to display images in grayscale.)

Unzip the faces94.zip archive and use get_faces() to construct F. Each faces94 image is 200×180 , and there are 153 people in the dataset, so F should be 36000×153 . Use your function to display one of the images stored in F.

The Eigenfaces Method

With the image database F, we could construct a simple facial recognition system with the following strategy. Let \mathbf{g} be an *mn*-vector representing an unknown face that is not part of the database F. Then the \mathbf{f}_i that minimizes $\|\mathbf{g} - \mathbf{f}_i\|_2$ is the matching face. Unfortunately, computing $\|\mathbf{g} - \mathbf{f}_i\|_2$ for each i is very computationally expensive, especially if the images are high-resolution and/or the database contains a large number of images. The *eigenfaces method* is a way to reduce the computational cost of finding the closest matching face by focusing on only the most important features of each face. Because the method ignores less significant facial features, it is also usually more accurate than the naïve method.

The first step of the algorithm is to shift the images by the *mean face*. Shifting a set of data by the mean exaggerates the distinguishing features of each entry. In the context of facial recognition, shifting by the mean accentuates the unique features of each face. For the images vectors stored in F, the mean face μ is the defined to be the element-wise average of the \mathbf{f}_i :

$$\boldsymbol{\mu} = \frac{1}{k} \sum_{i=1}^{k} \mathbf{f}_i.$$

Hence, the *i*th mean-shifted face vector $\mathbf{\bar{f}}_i$ is given by

$$\bar{\mathbf{f}}_i = \mathbf{f}_i - \boldsymbol{\mu}.$$

Next, define \overline{F} as the $mn \times k$ matrix whose columns are given by the mean-shifted face vectors,

$$\bar{F} = \left[\begin{array}{c|c} \bar{\mathbf{f}}_1 & \bar{\mathbf{f}}_2 & \cdots & \bar{\mathbf{f}}_k \end{array} \right].$$

(a) The mean face.

- (b) An original face.
- (c) A mean-shifted face.

Problem 2. Write a class called FacialRec whose constructor accepts a path to a directory of images. In the constructor, use get_faces() to construct F, then compute the mean face μ and the shifted faces \bar{F} . Store each array as an attribute.

(Hint: Both μ and \bar{F} can be computed in a single line of code by using NumPy functions and/or array broadcasting.)

Use your function from Problem 1 to visualize the mean face, and compare it to Figure 7.1a. Also display an original face and its corresponding mean-shifted face. Compare your results with Figures 7.1b and 7.1c.

To increase computational efficiency and minimize storage, the face vectors can be represented with fewer values by projecting \overline{F} onto a lower-dimensional subspace. Let s be a natural number such that s < r, where r is the rank of \overline{F} . By projecting \overline{F} onto an s-dimensional subspace, each face can be stored with only s values.

Specifically, let $U\Sigma V^{\mathsf{H}}$ be the compact SVD of \overline{F} with rank r, which can also be represented by

$$\bar{F} = \sum_{i=1}^{r} \sigma_i \mathbf{u}_i \mathbf{v}_i^{\mathsf{H}}.$$

The first r columns of U form a basis for the range of \overline{F} . Recall that the Schmidt, Mirsky, Eckart-Young Theorem states that the matrix

$$\bar{F}_s = \sum_{i=1}^s \sigma_i \mathbf{u}_i \mathbf{v}_i^\mathsf{H}$$

is the best rank-s approximation of \bar{F} for each s < r. This means that $\|\bar{F} - \bar{F}_s\|$ is minimized against all other $\|\bar{F} - B\|$ where B has rank s. As a consequence of this theorem, the first s columns of U form a basis that provides the "best" s-dimensional subspace for approximating \bar{F} .

The s basis vectors $\mathbf{u}_1, \ldots, \mathbf{u}_s$ are are commonly called the *eigenfaces* because they are eigenvectors of $\bar{F}\bar{F}^{\mathsf{T}}$ and because they resemble face images. Each original face image can be efficiently represented in terms of these eigenfaces. See Figure 7.2 for visualizations of the some of the eigenfaces for the **facesd94** data set.

Figure 7.2: The first, 50th, and 100th eigenfaces.

In general, the lower eigenfaces provide a more general information of a face and higher-ordered eigenfaces provide the details necessary to distinguish particular faces [MMH04]. These eigenfaces will be used to construct the face images in the dataset. The more eigenfaces used, the more detailed the resulting image will be.

Next, let U_s be the matrix with the first s eigenfaces as columns. Since the eigenfaces $\{\mathbf{u}_i\}_{i=1}^s$ form an orthonormal set, U_s is an orthonormal matrix (independent of s) and hence $U_s^{\mathsf{T}}U_s = I$. The matrix $P_s = U_s U_s^{\mathsf{T}}$ projects vectors in \mathbb{R}^{mn} to the subspace spanned by the orthonormal basis $\{\mathbf{u}_i\}_{i=1}^s$, and the change of basis matrix U_s^{T} puts the projection in terms of the basis of eigenfaces. Thus the projection $\hat{\mathbf{f}}_i$ of $\bar{\mathbf{f}}_i$ in terms of the basis of eigenfaces is given by

$$\widehat{\mathbf{f}}_i = U_s^{\mathsf{T}} P_s \overline{\mathbf{f}}_i = U_s^{\mathsf{T}} U_s U_s^{\mathsf{T}} \overline{\mathbf{f}}_i = U_s^{\mathsf{T}} \overline{\mathbf{f}}_i.$$
(7.1)

Note carefully that though the shifted image \mathbf{f}_i has mn entries, the projection \mathbf{f}_i has only s entries since U_s is $mn \times s$. Likewise, the matrix \hat{F} that has the projections \mathbf{f}_i as columns is $s \times k$, and

$$\widehat{F} = U_s^{\mathsf{T}} F. \tag{7.2}$$

Problem 3. In the constructor of FacialRec, calculate the compact SVD of \overline{F} and save the matrix U as an attribute. Compare the computed eigenfaces (the columns of U) to Figure 7.2.

Also write a method that accepts a vector of length mn or an $mn \times \ell$ matrix, as well as an integer s < mn. Construct U_s by taking the first s columns of U, then use (7.1) or (7.2) to calculate the projection of the input vector or matrix onto the span of the first s eigenfaces. (Hint: this method should be implemented with a single line of code.)

Reducing the mean-shifted face image \mathbf{f}_i to the lower-dimensional projection \mathbf{f}_i drastically reduces the computational cost of the facial recognition algorithm, but this efficiency gain comes at a price. A projection image only approximates the corresponding original image, but as long as s isn't too small, the approximation is usually good enough for the algorithm to work well. Before completing the facial recognition system, we reconstruct some of these projections to visualize the amount of information lost.

From (7.1), since U_s^{T} projects $\mathbf{\bar{f}}_i$ and performs a change of basis to get $\mathbf{\hat{f}}_i$, its transpose U_s puts $\mathbf{\hat{f}}_i$ back into the original basis with as little error as possible. That is,

$$U_s \mathbf{f}_i \approx \overline{\mathbf{f}}_i = \mathbf{f}_i - \boldsymbol{\mu},$$

so that we have the approximation

$$\widetilde{\mathbf{f}}_i = U_s \widehat{\mathbf{f}}_i + \boldsymbol{\mu} \approx \mathbf{f}_i. \tag{7.3}$$

This $\widetilde{\mathbf{f}}_i$ is called the *reconstruction* of \mathbf{f}_i .

(a) A reconstruction with s = 5. (b) A reconstruction with s = 19. (c) A reconstruction with s = 75.

Figure 7.3: An image rebuilt with various numbers of eigenfaces. The image is already recognizable when it is reconstructed with only 19 eigenfaces, less than an eighth of the 153 eigenfaces corresponding to nonzero eigenvalues or $\bar{F}\bar{F}^{\mathsf{T}}$. Note the similarities between this method and regular image compression via the truncated SVD.

Problem 4. Instantiate a FacialRec object that draws from the faces94 dataset. Select one of the shifted images $\overline{\mathbf{f}}_i$. For at least 4 values of s, use your method from Problem 3 to compute the corresponding s-projection $\widehat{\mathbf{f}}_i$, then use (7.3) to compute the reconstruction $\widetilde{\mathbf{f}}_i$. Display the various reconstructions and the original image. Compare your results to Figure 7.3

Matching Faces

Let **g** be a vector representing an unknown face that is not part of the database. We determine which image in the database is most like **g** by comparing $\hat{\mathbf{g}}$ to each of the $\hat{\mathbf{f}}_i$. First, shift **g** by the mean to obtain $\bar{\mathbf{g}}$, then project $\bar{\mathbf{g}}$ using a given number of eigenfaces:

$$\widehat{\mathbf{g}} = U_s^{\mathsf{T}} \overline{\mathbf{g}} = U_s^{\mathsf{T}} (\mathbf{g} - \boldsymbol{\mu}) \tag{7.4}$$

Next, determine which $\hat{\mathbf{f}}_i$ is closest to $\hat{\mathbf{g}}$. Since the columns of U_s are an orthonormal basis, the computation in this basis yields the same result as computing in the standard Euclidean basis would. Then setting

$$j = \underset{i}{\operatorname{argmin}} \|\widehat{\mathbf{f}}_{i} - \widehat{\mathbf{g}}\|_{2}, \tag{7.5}$$

we have that the *j*th face image \mathbf{f}_j is the best match for \mathbf{g} . Again, since $\hat{\mathbf{f}}_i$ and $\hat{\mathbf{g}}_i$ only have *s* entries, the computation in (7.5) is much cheaper than comparing the raw \mathbf{f}_i to \mathbf{g} .

Problem 5. Write a method for the FacialRec class that accepts an image vector \mathbf{g} and an integer s. Use your method from Problem 3 to compute \hat{F} and $\hat{\mathbf{g}}$ for the given s, then use (7.5) to determine the best matching face in the database. Return the index of the matching face. (Hint: scipy.linalg.norm() and np.argmin() may be useful.)

Note

This facial recognition system works by solving a *nearest neighbor search*, since the goal is to find the \mathbf{f}_i that is "nearest" to the input image \mathbf{g} . Nearest neighbor searches can be performed more efficiently with the use of a k-d tree, a binary search tree for storing vectors. The system could also be called a k-neighbors classifier with k = 1.

Problem 6. Write a method for the FacialRec class that accepts an flat image vector \mathbf{g} , an integer s, and the original dimensions of \mathbf{g} . Use your method from Problem 5 to find the index j of the best matching face, then display the original face \mathbf{g} alongside the best match \mathbf{f}_j .

The following generator yields random faces from $\tt faces 94$ that can be used as test cases.

```
def sample_faces(num_faces, path="./faces94"):
    # Get the list of possible images.
    files = []
    for (dirpath, dirnames, filenames) in os.walk(path):
        for fname in filenames:
            if fname[-3:]=="jpg": # Only get jpg images.
                files.append(dirpath+"/"+fname)

# Get a subset of the image names and yield the images one at a time.
    test_files = np.random.choice(files, num_faces, replace=False)
    for fname in test_files:
            yield np.ravel(imread(fname, as_gray=True))
```

The **yield** keyword is like a **return** statement, but the next time the generator is called, it will resume immediately after the last **yield** statement.^{*a*}

Use sample_faces() to get at least 5 random faces from faces94, and match each random face to the database with s = 38. Iterate through the random faces with the following syntax.

```
for test_image in sample_faces(5):
    # 'test_image' is a now flattened face vector.
```

^aSee the Python Essentials lab on Profiling for more on generators.

Although there are other approaches to facial recognition that utilize more complex techniques, the method of eigenfaces remains a wonderfully simple and effective solution.

Additional Material

Improvements on the Facial Recognition System with Eigenfaces

The FacialRec class does its job well, but it could be improved in several ways. Here are a few ideas.

- The most computationally intensive part of the algorithm is computing \widehat{F} . Instead of recomputing \widehat{F} every time the method from Problem 5 is called, store \widehat{F} and s as attributes the first time the method is called. In subsequent calls, only recompute \widehat{F} if the user specifies a different value for s.
- Load a scipy.spatial.KDTree object with \widehat{F} and use its query() method to compute (7.5). Building a kd-tree is expensive, so be sure to only build a new tree when necessary (i.e., the user specifies a new value for s).
- Include an error tolerance ε in the method for Problem 5. If $\|\mathbf{f}_j \mathbf{g}\| > \varepsilon$, print a message or raise an exception to indicate that there is no suitable match for \mathbf{g} in the database. In this case, add \mathbf{g} to the database for future reference.
- Generalize the system by turning it into a k-neighbors classifier. In the constructor, add several faces per person to the database (this requires modifying get_faces()). Assign each individual a unique ID so that the system knows which faces correspond to the same person. Modify the method from Problem 5 so that it also accepts an integer k, then use scipy.spatial.KDTree to find the k nearest images to g. Choose the ID that belongs to the most nearest neighbors, then return an index that corresponds to an individual with that ID.

In other words, choose the k faces \mathbf{f}_i that give the smallest values of $\|\mathbf{f}_i - \hat{\mathbf{g}}\|_2$. These faces then get to vote on which person \mathbf{g} belongs to.

• Improve the user interface of the class by modifying the method from Problem 6 so that it accepts a file name to read from instead of an array. A few lines of code from get_faces() or sample_faces() might be helpful for this.

Other Methods for Facial Recognition

The method of facial recognition presented here is more formally called *principal component analysis* (*PCA*) using eigenfaces. Several other machine learning and optimization techniques, such as linear discriminant analysis (LDA), elastic matching, dynamic link matching, and hidden Markov models (HMMs) have also been applied to the facial recognition problem. Other techniques focus on getting better information about the faces in the first place, the most prevalent being 3-dimensional recognition and thermal imaging. See https://en.wikipedia.org/wiki/Facial_recognition_system for a good survey of different approaches to the facial recognition problem.

Differentiation

Lab Objective: Derivatives are central in many applications. Depending on the application and on the available information, the derivative may be calculated symbolically, numerically, or with differentiation software. In this lab we explore these three ways to take a derivative, discuss what settings they are each appropriate for, and demonstrate their strengths and weaknesses.

Symbolic Differentiation

The derivative of a known mathematical function can be calculated symbolically with SymPy. This method is the most precise way to take a derivative, but it is computationally expensive and requires knowing the closed form formula of the function. Use sy.diff() to take a symbolic derivative.

```
>>> import sympy as sy
>>> x = sy.symbols('x')
>>> sy.diff(x**3 + x, x)  # Differentiate x^3 + x with respect to x.
3*x**2 + 1
```

Problem 1. Write a function that defines $f(x) = (\sin(x) + 1)^{\sin(\cos(x))}$ and takes its symbolic derivative with respect to x using SymPy. Lambdify the resulting function so that it can accept NumPy arrays and return the resulting function handle.

To check your function, plot f and its derivative f' over the domain $[-\pi, \pi]$. It may be helpful to move the bottom spine to 0 so you can see where the derivative crosses the x-axis.

```
>>> from matplotlib import pyplot as plt
>>> ax = plt.gca()
>>> ax.spines["bottom"].set_position("zero")
```

Numerical Differentiation

One definition for the derivative of a function $f : \mathbb{R} \to \mathbb{R}$ at a point x_0 is

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

Since this definition relies on h approaching 0, choosing a small, fixed value for h approximates $f'(x_0)$:

$$f'(x_0) \approx \frac{f(x_0+h) - f(x_0)}{h}.$$
 (8.1)

This approximation is called the *first order forward difference quotient*. Using the points x_0 and $x_0 - h$ in place of $x_0 + h$ and x_0 , respectively, results in the *first order backward difference quotient*,

$$f'(x_0) \approx \frac{f(x_0) - f(x_0 - h)}{h}.$$
 (8.2)

Forward difference quotients use values of f at x_0 and points greater than x_0 , while backward difference quotients use the values of f at x_0 and points less than x_0 . A centered difference quotient uses points on either side of x_0 , and typically results in a better approximation than the one-sided quotients. Combining (8.1) and (8.2) yields the second order centered difference quotient,

$$f'(x_0) = \frac{1}{2}f'(x_0) + \frac{1}{2}f'(x_0) \approx \frac{f(x_0+h) - f(x_0)}{2h} + \frac{f(x_0) - f(x_0-h)}{2h} = \frac{f(x_0+h) - f(x_0-h)}{2h}$$

Note

The finite difference quotients in this section all approximate the first derivative of a function. The terms *first order* and *second order* refers to how quickly the approximation converges on the actual value of $f'(x_0)$ as h approaches 0, not to how many derivatives are being taken.

There are finite difference quotients for approximating higher order derivatives, such as f'' or f'''. For example, the centered difference quotient

$$f''(x_0) \approx \frac{f(x_0 - h) - 2f(x_0) + f(x_0 + h)}{h^2}$$

approximates the second derivative. This particular quotient is important for finite difference methods that approximate numerical solutions to some partial differential equations. While we do not derive them here, there are other finite difference quotients that use more points to approximate the derivative, some of which are listed below. Using more points generally results in better convergence properties.

Type	Order	Formula
Forward	1	$\frac{f(x_0+h)-f(x_0)}{h}$
	2	$\frac{-3f(x_0)+4f(x_0+h)-f(x_0+2h)}{2h}$
Backward	1	$\frac{f(x_0) - f(x_0 - h)}{h}$
	2	$\frac{3f(x_0) - 4f(x_0 - h) + f(x_0 - 2h)}{2h}$
Centered	2	$\frac{f(x_0+h)-f(x_0-h)}{2h}$
	4	$\frac{f(x_0-2h)-8f(x_0-h)+8f(x_0+h)-f(x_0+2h)}{12h}$

Table 8.1: Common finite difference quotients for approximating $f'(x_0)$.

Problem 2. Write a function for each of the finite difference quotients listed in Table 8.1. Each function should accept a function handle f, an array of points \mathbf{x} , and a float h; each should return an array of the difference quotients evaluated at each point in \mathbf{x} .

To test your functions, approximate the derivative of $f(x) = (\sin(x) + 1)^{\sin(\cos(x))}$ at each point of a domain over $[-\pi, \pi]$. Plot the results and compare them to the results of Problem 1.

Convergence of Finite Difference Quotients

Finite difference quotients are typically derived using Taylor's formula. This method also shows how the accuracy of the approximation increases as $h \rightarrow 0$:

$$f(x_0+h) = f(x_0) + f'(x_0)h + R_2(h) \implies \frac{f(x_0+h) - f(x_0)}{h} - f'(x_0) = \frac{R_2(h)}{h}, \quad (8.3)$$

where $R_2(h) = h^2 \int_0^1 (1-t) f''(x_0+th) dt$. Thus the absolute error of the first order forward difference quotient is

$$\left|\frac{R_2(h)}{h}\right| = |h| \left|\int_0^1 (1-t)f''(x_0+th) \, dt\right| \le |h| \int_0^1 |1-t| |f''(x_0+th)| \, dt.$$

If f'' is continuous, then for any $\delta > 0$, setting $M = \sup_{x \in (x_0 - \delta, x_0 + \delta)} f''(x)$ guarantees that

$$\left|\frac{R_2(h)}{h}\right| \leq |h| \int_0^1 M dt = M |h| \in O(h).$$

whenever $|h| < \delta$. That is, the error decreases at the same rate as h. If h gets twice as small, the error does as well. This is what is meant by a *first order* approximation. In a *second order* approximation, the absolute error is $O(h^2)$, meaning that if h gets twice as small, the error gets four times smaller.

Note

The notation O(f(n)) is commonly used to describe the temporal or spatial complexity of an algorithm. In that context, a $O(n^2)$ algorithm is much worse than a O(n) algorithm. However, when referring to error, a $O(h^2)$ algorithm is **better** than a O(h) algorithm because it means that the accuracy improves faster as h decreases.

Problem 3. Write a function that accepts a point x_0 at which to compute the derivative of $f(x) = (\sin(x) + 1)^{\sin(\cos(x))}$. Use your function from Problem 1 to compute the exact value of $f'(x_0)$. Then use each your functions from Problem 2 to get an approximate derivative $\tilde{f}'(x_0)$ for $h = 10^{-8}, 10^{-7}, \ldots, 10^{-1}, 1$. Track the absolute error $|f'(x_0) - \tilde{f}'(x_0)|$ for each trial, then plot the absolute error against h on a log-log scale (use plt.loglog()).

Instead of using np.linspace() to create an array of h values, use np.logspace(). This function generates logarithmically spaced values between two powers of 10.

>>> import numpy as np
>>> np.logspace(-3, 0, 4) # Get 4 values from 1e-3 to 1e0.
array([0.001, 0.01 , 0.1 , 1.])

For $x_0 = 1$, your plot should resemble the following figure.

ACHTUNG!

Mathematically, choosing smaller h values results in tighter approximations of $f'(x_0)$. However, Problem 3 shows that when h gets too small, the error stops decreasing. This numerical error is due to the denominator in each finite difference quotient becoming very small. The optimal value of h is usually one that is small, but not too small.

Problem 4. The radar stations A and B, separated by the distance a = 500 m, track a plane C by recording the angles α and β at one-second intervals. Your goal, back at air traffic control, is to determine the speed of the plane.^a

Let the position of the plane at time t be given by (x(t), y(t)). The speed at time t is the magnitude of the velocity vector, $\|\frac{d}{dt}(x(t), y(t))\| = \sqrt{x'(t)^2 + y'(t)^2}$. The closed forms of the functions x(t) and y(t) are unknown (and may not exist at all), but we can still use numerical methods to estimate x'(t) and y'(t). For example, at t = 3, the second order centered difference quotient for x'(t) is

$$x'(3) \approx \frac{x(3+h) - x(3-h)}{2h} = \frac{1}{2}(x(4) - x(2))$$

In this case h = 1 since data comes in from the radar stations at 1 second intervals.

Successive readings for α and β at integer times $t = 7, 8, \dots, 14$ are stored in the file **plane.npy**. Each row in the array represents a different reading; the columns are the observation time t, the angle α (in degrees), and the angle β (also in degrees), in that order. The Cartesian coordinates of the plane can be calculated from the angles α and β as follows.

$$x(\alpha,\beta) = a \frac{\tan(\beta)}{\tan(\beta) - \tan(\alpha)} \qquad y(\alpha,\beta) = a \frac{\tan(\beta)\tan(\alpha)}{\tan(\beta) - \tan(\alpha)}$$
(8.4)

Load the data, convert α and β to radians, then compute the coordinates x(t) and y(t) at each given t using 8.4. Approximate x'(t) and y'(t) using a first order forward difference quotient for t = 7, a first order backward difference quotient for t = 14, and a second order centered difference quotient for $t = 8, 9, \ldots, 13$ (see Figure 8.1). Return the values of the speed $\sqrt{x'(t)^2 + y'(t)^2}$ at each t.

(Hint: np.deg2rad() will be helpful.)

^aThis problem is adapted from an exercise in [Kiu13].

Numerical Differentiation in Higher Dimensions

Finite difference quotients can also be used to approximate derivatives in higher dimensions. The *Jacobian matrix* of a function $f : \mathbb{R}^n \to \mathbb{R}^m$ at a point $\mathbf{x}_0 \in \mathbb{R}^n$ is the $m \times n$ matrix J whose entries are given by

$$J_{ij} = \frac{\partial f_i}{\partial x_j}(\mathbf{x}_0).$$

For example, the Jacobian for a function $f : \mathbb{R}^3 \to \mathbb{R}^2$ is defined by

$$J = \begin{bmatrix} \frac{\partial f}{\partial x_1} & \frac{\partial f}{\partial x_2} & \frac{\partial f}{\partial x_3} \end{bmatrix} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \frac{\partial f_1}{\partial x_3} \\ & & \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \frac{\partial f_2}{\partial x_3} \end{bmatrix}, \quad \text{where} \quad f(\mathbf{x}) = \begin{bmatrix} f_1(\mathbf{x}) \\ f_2(\mathbf{x}) \end{bmatrix}, \quad \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}.$$

The difference quotients in this case resemble directional derivatives. The first order forward difference quotient for approximating a partial derivative is

$$\frac{\partial f}{\partial x_j}(\mathbf{x}_0) \approx \frac{f(\mathbf{x}_0 + h\mathbf{e}_j) - f(\mathbf{x}_0)}{h},$$

where \mathbf{e}_i is the *j*th standard basis vector. The second order centered difference approximation is

$$\frac{\partial f}{\partial x_j}(\mathbf{x}_0) \approx \frac{f(\mathbf{x}_0 + h\mathbf{e}_j) - f(\mathbf{x}_0 - h\mathbf{e}_j)}{2h}.$$
(8.5)

Problem 5. Write a function that accepts a function $f : \mathbb{R}^n \to \mathbb{R}^m$, a point $\mathbf{x}_0 \in \mathbb{R}^n$, and a float h. Approximate the Jacobian matrix of f at \mathbf{x} using the second order centered difference quotient in (8.5).

(Hint: the standard basis vector \mathbf{e}_j is the *j*th column of the $n \times n$ identity matrix *I*.)

To test your function, define a simple function like $f(x, y) = [x^2, x^3 - y]^T$ where the Jacobian is easy to find analytically, then check the results of your function against SymPy or your own scratch work.

Differentiation Software

Many machine learning algorithms and structures, especially neural networks, rely on the gradient of a cost or objective function. To facilitate their research, several organizations have recently developed Python packages for numerical differentiation. For example, the Harvard Intelligent Probabilistic Systems Group (HIPS) started developing autograd in 2014 (https://github.com/HIPS/autograd) and Google released tangent in 2017 (https://github.com/google/tangent). These tools are incredibly robust: they can differentiate functions with NumPy routines,¹ if statements, while loops, and even recursion. We conclude with a brief introduction to Autograd.²

Autograd's grad() accepts a scalar-valued function and returns its gradient as a function that accepts the same parameters as the original. To support most of the NumPy features, Autograd comes with its own thinly-wrapped version of Numpy, autograd.numpy. Import this version of NumPy as anp to avoid confusion.

```
>>> from autograd import numpy as anp  # Use autograd's version of NumPy.
>>> from autograd import grad
>>> g = lambda x: anp.exp(anp.sin(anp.cos(x)))
>>> dg = grad(g)  # dg() is a callable function.
>>> dg(1.)  # Use floats as input, not ints.
-1.2069777039799139
```

Functions that grad() produces do not support array broadcasting, meaning they do not accept arrays as input. Autograd's elementwise_grad() returns functions that can accept arrays, like using "numpy" as an argument in SymPy's sy.lambdify().

```
>>> from autograd import elementwise_grad
>>> pts = anp.array([1, 2, 3], dtype=anp.float)
>>> dg = elementwise_grad(g)  # Calculate g'(x) with array support.
>>> dg(pts)  # Evaluate g'(x) at each of the points.
array([-1.2069777 , -0.55514144, -0.03356146])
```

SymPy would have no trouble differentiating g(x) in these examples. However, Autograd can also differentiate Python functions that look nothing like traditional mathematical functions. For example, the following code computes the Taylor series of e^x with a loop.

```
>>> from sympy import factorial
>>> def taylor_exp(x, tol=.0001):
... """Compute the Taylor series of e^x with terms greater than tol."""
... result, i, term = 0, 0, x
... while anp.abs(term) > tol:
... term = x**i / int(factorial(i))
... result, i = result + term, i + 1
... return result
...
```

¹See https://github.com/HIPS/autograd/blob/master/docs/tutorial.md for which features Autograd supports. ²Autograd is not included in Anaconda; install it with pip install autograd.

```
>>> d_exp = grad(taylor_exp)
>>> print(d_exp(2., .1), d_exp(2., .0001))
7.2666666666667 7.38899470899
```

Problem 6. The Chebyshev Polynomials satisfy the recursive relation

 $T_0(x) = 1,$ $T_1(x) = x,$ $T_n(x) = 2xT_{n-1}(x) - T_{n-2}(x).$

Write a function that accepts an array x and an integer n and recursively computes $T_n(x)$. Use Autograd and your first function to create a function for $T'_n(x)$. Use this last function to plot each $T'_n(x)$ over the domain [-1, 1] for n = 0, 1, 2, 3, 4. (Hint: Use anp.ones_like(x) to handle the case when n = 0.)

Problem 7. Let $f(x) = (\sin(x) + 1)^{\sin(\cos(x))}$ as in Problems 1 and 3. Write a function that accepts an integer N and performs the following experiment N times.

- 1. Choose a random value x_0 .
- 2. Use your function from Problem 1 to calculate the "exact" value of $f'(x_0)$. Time how long the entire process takes, including calling your function (each iteration).
- 3. Time how long it takes to get an approximation $\tilde{f}'(x_0)$ of $f'(x_0)$ using the fourth-order centered difference quotient from Problem 3. Record the absolute error $|f'(x_0) \tilde{f}'(x_0)|$ of the approximation.
- 4. Time how long it takes to get an approximation $\bar{f}'(x_0)$ of $f'(x_0)$ using Autograd (calling grad() every time). Record the absolute error $|f'(x_0) \bar{f}'(x_0)|$ of the approximation.

Plot the computation times versus the absolute errors on a log-log plot with different colors for SymPy, the difference quotient, and Autograd. For SymPy, assume an absolute error of 1e-18 (since only positive values can be shown on a log plot).

For N = 200, your plot should resemble the following figure. Note that SymPy has the least error but the most computation time, and that the difference quotient takes the least amount of time but has the most error. Autograd might be considered a "happy medium," a least for this problem.

Additional Material

More Autograd

For scalar-valued functions with multiple inputs, the parameter **argnum** specifies the variable that the derivative is computed with respect to. Providing a list for **argnum** gives several outputs.

```
>>> f = lambda x,y: 3*x*y + 2*y - x
# Take the derivative of f with respect to the first variable, x.
>>> dfdx = grad(f, argnum=0)  # Should be dfdx(x,y) = 3y - 1,
>>> dfdx(5., 1.)  # so dfdx(5,1) = 3 - 1 = 2.
2.0
# Take the gradient with respect to the second variable, y.
>>> dfdy = grad(f, argnum=1)  # Should be dfdy(x,y) = 3x + 2,
>>> dfdy(5., 1.)  # so dfdy(5,1) = 15 + 2 = 17.
17.0
# Get the full gradient.
>>> grad_f = grad(f, argnum=[0,1])
>>> anp.array(grad_f(5., 1.))
array([ 2., 17.])
```

Finally, Autograd's jacobian() can differentiate vector-valued functions.

```
>>> from autograd import jacobian
>>> f = lambda x: anp.array([x[0]**2, x[0]+x[1]])
>>> f_jac = jacobian(f)
>>> f_jac(anp.array([1., 1.]))
array([[ 2., 0.],
        [ 1., 1.]])
```

Google Tangent

Google's tangent package is similar to Autograd, both in purpose and syntax. However, Tangent differentiates code ahead of time, while Autograd waits until the last second to actually do any calculations. Tangent also tends to be slightly faster than Autograd.

```
>>> import tangent  # Install with 'pip install tangent'.
>>> def f(x):  # Tangent does not support lambda functions,
...
>>> df = tangent.grad(f)
>>> df(10)  # ...but the functions do accept integers.
19.0
```

Newton's Method

Lab Objective: Newton's method, the classical method for finding the zeros of a function, is one of the most important algorithms of all time. In this lab we implement Newton's method in arbitrary dimensions and use it to solve a few interesting problems. We also explore in some detail the convergence (or lack of convergence) of the method under various circumstances.

Iterative Methods

An *iterative method* is an algorithm that must be applied repeatedly to obtain a result. The general idea behind any iterative method is to make an initial guess at the solution to a problem, apply a few easy computations to better approximate the solution, use that approximation as the new initial guess, and repeat until done. More precisely, let F be some function used to approximate the solution to a problem. Starting with an initial guess of x_0 , compute

$$x_{k+1} = F(x_k) \tag{9.1}$$

for successive values of k to generate a sequence $(x_k)_{k=0}^{\infty}$ that hopefully converges to the true solution. If the terms of the sequence are vectors, they are denoted by \mathbf{x}_k .

In the best case, the iteration converges to the true solution x, written $\lim_{k\to\infty} x_k = x$ or $x_k \to x$. In the worst case, the iteration continues forever without approaching the solution. In practice, iterative methods require carefully chosen *stopping criteria* to guarantee that the algorithm terminates at some point. The general approach is to continue iterating until the difference between two consecutive approximations is sufficiently small, and to iterate no more than a specific number of times. That is, choose a very small $\varepsilon > 0$ and an integer $N \in \mathbb{N}$, and update the approximation using (9.1) until either

$$|x_k - x_{k-1}| < \varepsilon \qquad \text{or} \qquad k > N. \tag{9.2}$$

The choices for ε and N are significant: a "large" ε (such as 10^{-6}) produces a less accurate result than a "small" ε (such 10^{-16}), but demands less computations; a small N (10) also potentially lowers accuracy, but detects and halts nonconvergent iterations sooner than a large N (10,000). In code, ε and N are often named tol and maxiter, respectively (or similar).

While there are many ways to structure the code for an iterative method, probably the cleanest way is to combine a for loop with a break statement. As a very simple example, let $F(x) = \frac{x}{2}$. This method converges to x = 0 independent of starting point.

```
>>> F = lambda x: x / 2
>>> x0, tol, maxiter = 10, 1e-9, 8
>>> for k in range(maxiter):
                                        # Iterate at most N times.
        print(x0, end=' ')
        x1 = F(x0)
                                         # Compute the next iteration.
. . .
        if abs(x1 - x0) < tol:
                                         # Check for convergence.
            break
                                         # Upon convergence, stop iterating.
. . .
                                         # Otherwise, continue iterating.
        x0 = x1
. . .
10 5.0 2.5 1.25 0.625 0.3125 0.15625
                                            0.078125
```

In this example, the algorithm terminates after N = 8 iterations (the maximum number of allowed iterations) because the tolerance condition $|x_k - x_{k-1}| < 10^{-9}$ is not met fast enough. If N had been larger (say 40), the iteration would have quit early due to the tolerance condition.

Newton's Method in One Dimension

Newton's method is an iterative method for finding the zeros of a function. That is, if $f : \mathbb{R} \to \mathbb{R}$, the method attempts to find a \bar{x} such that $f(\bar{x}) = 0$. Beginning with an initial guess x_0 , calculate successive approximations for \bar{x} with the recursive sequence

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}.$$
(9.3)

The sequence converges to the zero \bar{x} of f if three conditions hold:

- 1. f and f' exist and are continuous,
- 2. $f'(\bar{x}) \neq 0$, and
- 3. x_0 is "sufficiently close" to \bar{x} .

In applications, the first two conditions usually hold. If \bar{x} and x_0 are not "sufficiently close," Newton's method may converge very slowly, or it may not converge at all. However, when all three conditions hold, Newton's method converges quadratically, meaning that the maximum error is squared at every iteration. This is very quick convergence, making Newton's method as powerful as it is simple.

Problem 1. Write a function that accepts a function f, an initial guess x_0 , the derivative f', a stopping tolerance defaulting to 10^{-5} , and a maximum number of iterations defaulting to 15. Use Newton's method as described in (9.3) to compute a zero \bar{x} of f. Terminate the algorithm when $|x_k - x_{k-1}|$ is less than the stopping tolerance or after iterating the maximum number of allowed times. Return the last computed approximation to \bar{x} , a boolean value indicating whether or not the algorithm converged, and the number of iterations completed.

Test your function against functions like $f(x) = e^x - 2$ (see Figure 9.1) or $f(x) = x^4 - 3$. Check that the computed zero \bar{x} satisfies $f(\bar{x}) \approx 0$. Also consider comparing your function to scipy.optimize.newton(), which accepts similar arguments.

Figure 9.1: Newton's method approximates the zero of a function (blue) by choosing as the next approximation the x-intercept of the tangent line (red) that goes through the point $(x_k, f(x_k))$. In this example, $f(x) = e^x - 2$, which has a zero at $\bar{x} = \log(2)$. Setting $x_0 = 2$ and using (9.3) to iterate, we have $x_1 = x_0 - \frac{f(x_0)}{f'(x_0)} = 2 - \frac{e^2 - 2}{e^2} \approx 1.2707$. Similarly, $x_2 \approx 0.8320$, $x_3 \approx .7024$, and $x_4 \approx 0.6932$. After only a few iterations, the zero $\log(2) \approx 0.6931$ is already computed to several digits of accuracy.

Note

Newton's method can be used to find zeros of functions that are hard to solve for analytically. For example, the function $f(x) = \frac{\sin(x)}{x} - x$ is not continuous on any interval containing 0, but it can be made continuous by defining f(0) = 1. Newton's method can then be used to compute the zeros of this function.

Problem 2. Suppose that an amount of P_1 dollars is put into an account at the beginning of years $1, 2, ..., N_1$ and that the account accumulates interest at a fractional rate r (so r = .05 corresponds to 5% interest). In addition, at the beginning of years $N_1 + 1, N_1 + 2, ..., N_1 + N_2$, an amount of P_2 dollars is withdrawn from the account and that the account balance is exactly zero after the withdrawal at year $N_1 + N_2$. Then the variables satisfy

$$P_1[(1+r)^{N_1} - 1] = P_2[1 - (1+r)^{-N_2}].$$

Write a function that, given N_1 , N_2 , P_1 , and P_2 , uses Newton's method to determine r. For the initial guess, use $r_0 = 0.1$.

(Hint: Construct f(r) such that when f(r) = 0, the equation is satisfied. Also compute f'(r).) To test your function, if $N_1 = 30, N_2 = 20, P_1 = 2000$, and $P_2 = 8000$, then $r \approx 0.03878$. (From Atkinson, page 118).

Backtracking

Newton's method may not converge for a variety of reasons. One potential problem occurs when the step from x_k to x_{k+1} is so large that the zero is stepped over completely. *Backtracking* is a strategy that combats the problem of overstepping by moving only a fraction of the full step from x_k to x_{k+1} . This suggests a slight modification to (9.3),

$$x_{k+1} = x_k - \alpha \frac{f(x_k)}{f'(x_k)}, \qquad \alpha \in (0, 1].$$
(9.4)

Note that setting $\alpha = 1$ results in the exact same method defined in (9.3), but for $\alpha \in (0, 1)$, only a fraction of the step is taken at each iteration.

Problem 3. Modify your function from Problem 1 so that it accepts a parameter α that defaults to 1. Incorporate (9.4) to allow for backtracking.

To test your modified function, consider $f(x) = x^{1/3}$. The command x**(1/3.) fails when x is negative, so the function can be defined with NumPy as follows.

```
import numpy as np
f = lambda x: np.sign(x) * np.power(np.abs(x), 1./3)
```

With $x_0 = .01$ and $\alpha = 1$, the iteration should **not** converge. However, setting $\alpha = .4$, the iteration should converge to a zero that is close to 0.

The backtracking constant α is significant, as it can result in faster convergence or convergence to a different zero (see Figure 9.2). However, it is not immediately obvious how to choose an optimal value for α .

Figure 9.2: Starting at the same initial value but using different backtracking constants can result in convergence to two different solutions. The blue line converges to $\tilde{\mathbf{x}} = (0, -1)$ with $\alpha = 1$ in 5 iterations of Newton's method while the orange line converges to $\hat{\mathbf{x}} = (3.75, .25)$ with $\alpha = 0.4$ in 15 iterations. Note that the points in this example are 2-dimensional, which is discussed in the next section.

Problem 4. Write a function that accepts the same arguments as your function from Problem 3 except for α . Use Newton's method to find a zero of f using various values of α in the interval (0, 1]. Plot the values of α against the number of iterations performed by Newton's method. Return a value for α that results in the lowest number of iterations.

A good test case for this problem is the function $f(x) = x^{1/3}$ discussed in Problem 3. In this case, your plot should show that the optimal value for α is actually closer to .3 than to .4.

Newton's Method in Higher Dimensions

Newton's method can be generalized to work on functions with a multivariate domain and range. Let $f : \mathbb{R}^n \to \mathbb{R}^n$ be given by $f(\mathbf{x}) = [f_1(\mathbf{x}) \ f_2(\mathbf{x}) \ \dots \ f_k(\mathbf{x})]^\mathsf{T}$, with $f_i : \mathbb{R}^n \to \mathbb{R}$ for each *i*. The derivative $Df : \mathbb{R}^n \to \mathbb{R}^{n \times n}$ is the $n \times n$ Jacobian matrix of f.

$$Df = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_k} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_n}{\partial x_1} & \cdots & \frac{\partial f_n}{\partial x_k} \end{bmatrix}$$

In this setting, Newton's method seeks a vector $\bar{\mathbf{x}}$ such that $f(\bar{\mathbf{x}}) = \mathbf{0}$, the vector of *n* zeros. With backtracking incorporated, (9.4) becomes

$$\mathbf{x}_{k+1} = \mathbf{x}_k - \alpha D f(\mathbf{x}_k)^{-1} f(\mathbf{x}_k).$$
(9.5)

Note that if n = 1, (9.5) is exactly (9.4) because in that case, $Df(x)^{-1} = 1/f'(x)$.

This vector version of Newton's method terminates when the maximum number of iterations is reached or the difference between successive approximations is less than a predetermined tolerance ε with respect to a vector norm, that is, $||\mathbf{x}_k - \mathbf{x}_{k-1}|| < \varepsilon$.

Problem 5. Modify your function from Problems 1 and 3 so that it can compute a zero of a function $f : \mathbb{R}^n \to \mathbb{R}^n$ for any $n \in \mathbb{N}$. Take the following tips into consideration.

- If n > 1, f should be a function that accepts a 1-D NumPy array with n entries and returns another NumPy array with n entries. Similarly, Df should be a function that accepts a 1-D array with n entries and returns a $n \times n$ array. In other words, f and Df are callable functions, but $f(\mathbf{x})$ is a vector and $Df(\mathbf{x})$ is a matrix.
- np.isscalar() may be useful for determining whether or not n > 1.
- Instead of computing $Df(\mathbf{x}_k)^{-1}$ directly at each step, solve the system $Df(\mathbf{x}_k)\mathbf{y}_k = f(\mathbf{x}_k)$ and set $\mathbf{x}_{k+1} = \mathbf{x}_k - \alpha \mathbf{y}_k$. In other words, use la.solve() instead of la.inv().
- The stopping criterion now requires using a norm function instead of abs().

After your modifications, carefully verify that your function still works in the case that n = 1, and that your functions from Problems 2 and 4 also still work correctly. In addition, your function from Problem 4 should also work for any $n \in \mathbb{N}$.

Problem 6. Bioremediation involves the use of bacteria to consume toxic wastes. At a steady state, the bacterial density x and the nutrient concentration y satisfy the system of nonlinear equations

$$\gamma xy - x(1+y) = 0$$
$$-xy + (\delta - y)(1+y) = 0,$$

where γ and δ are parameters that depend on various physical features of the system.^{*a*}

For this problem, assume the typical values $\gamma = 5$ and $\delta = 1$, for which the system has solutions at (x, y) = (0, 1), (0, -1), and (3.75, .25). Write a function that finds an initial point $\mathbf{x}_0 = (x_0, y_0)$ such that Newton's method converges to either (0, 1) or (0, -1) with $\alpha = 1$, and to (3.75, .25) with $\alpha = 0.55$. As soon as a valid \mathbf{x}_0 is found, return it (stop searching). (Hint: search within the rectangle $\left[-\frac{1}{4}, 0\right] \times \left[0, \frac{1}{4}\right]$.)

^aThis problem is adapted from exercise 5.19 of [Hea02] and the notes of Homer Walker).

Basins of Attraction

When a function f has many zeros, the zero that Newton's method converges to depends on the initial guess x_0 . For example, the function $f(x) = x^2 - 1$ has zeros at -1 and 1. If $x_0 < 0$, then Newton's method converges to -1; if $x_0 > 0$ then it converges to 1 (see Figure 9.3a). The regions $(-\infty, 0)$ and $(0, \infty)$ are called the *basins of attraction* of f. Starting in one basin of attraction leads to finding one zero, while starting in another basin yields a different zero.

When f is a polynomial of degree greater than 2, the basins of attraction are much more interesting. For example, the basis of attraction for $f(x) = x^3 - x$ are shown in Figure 9.3b. The basin for the zero at the origin is connected, but the other two basins are disconnected and share a kind of symmetry.

(a) Basins of attraction for $f(x) = x^2 - 1$.

(b) Basins of attraction for $f(x) = x^3 - x$.

Figure 9.3: Basins of attraction with $\alpha = 1$. Since choosing a different value for α can change which zero Newton's method converges to, the basins of attraction may change for other values of α .

It can be shown that Newton's method converges in any Banach space with only slightly stronger hypotheses than those discussed previously. In particular, Newton's method can be performed over the complex plane \mathbb{C} to find imaginary zeros of functions. Plotting the basins of attraction over \mathbb{C} yields some interesting results.

The zeros of $f(x) = x^3 - 1$ are 1, and $-\frac{1}{2} \pm \frac{\sqrt{3}}{2}i$. To plot the basins of attraction for $f(x) = x^3 - 1$ on the square complex domain $X = \{a+bi \mid a \in [-\frac{3}{2}, \frac{3}{2}], b \in [-\frac{3}{2}, \frac{3}{2}]\}$, create an initial grid of complex points in this domain using np.meshgrid().

>>> x_real = np.linspace(-1.5, 1.5, 500)	# Real parts.			
>>> x_imag = np.linspace(-1.5, 1.5, 500)	# Imaginary parts.			
>>> X_real, X_imag = np.meshgrid(x_real, x_imag)				
>>> $X_0 = X_real + 1j * X_imag$	# Combine real and imaginary parts.			

The grid X_0 is a 500 × 500 array of complex values to use as initial points for Newton's method. Array broadcasting makes it easy to compute an iteration of Newton's method at every grid point.

>>> f = lambda x: x**3 - 1
>>> Df = lambda x: 3*x**2
>>> X_1 = X_0 - f(X_0)/Df(X_0)

After enough iterations, the (i, j)th element of the grid X_k corresponds to the zero of f that results from using the (i, j)th element of X_0 as the initial point. For example, with $f(x) = x^3 - 1$, each entry of X_k should be close to $1, -\frac{1}{2} + \frac{\sqrt{3}}{2}i$, or $-\frac{1}{2} - \frac{\sqrt{3}}{2}i$. Each entry of X_k can then be assigned a value indicating which zero it corresponds to. Some results of this process are displayed below.

Note

Notice that in some portions of Figure 9.4a, whenever red and blue try to come together, a patch of green appears in between. This behavior repeats on an infinitely small scale, producing a fractal. Because it arises from Newton's method, this kind of fractal is called a *Newton fractal*.

Newton fractals show that the long-term behavior of Newton's method is **extremely** sensitive to the initial guess x_0 . Changing x_0 by a small amount can change the output of Newton's method in a seemingly random way. This phenomenon is called *chaos* in mathematics.

Problem 7. Write a function that accepts a function $f : \mathbb{C} \to \mathbb{C}$, its derivative $f' : \mathbb{C} \to \mathbb{C}$, an array zeros of the zeros of f, bounds $[r_{\min}, r_{\max}, i_{\min}, i_{\max}]$ for the domain of the plot, an integer res that determines the resolution of the plot, and number of iterations iters to run the iteration. Compute and plot the basins of attraction of f in the complex plane over the specified domain in the following steps.

- 1. Construct a res×res grid X_0 over the domain $\{a + bi \mid a \in [r_{\min}, r_{\max}], b \in [i_{\min}, i_{\max}]\}$.
- 2. Run Newton's method (without backtracking) on X_0 iters times, obtaining the res×res array x_k . To avoid the additional computation of checking for convergence at each step, do not use your function from Problem 5.
- 3. X_k cannot be directly visualized directly because its values are complex. Solve this issue by creating another **res**×**res** array Y. To compute the (i, j)th entry $Y_{i,j}$, determine which zero of f is closest to the (i, j)th entry of X_k . Set $Y_{i,j}$ to the index of this zero in the array **zeros**. If there are R distinct zeros, each $Y_{i,j}$ should be one of $0, 1, \ldots, R-1$. (Hint: **np.argmin()** may be useful.)
- 4. Use plt.pcolormesh() to visualize the basins. Recall that this function accepts three array arguments: the x-coordinates (in this case, the real components of the initial grid), the y-coordinates (the imaginary components of the grid), and an array indicating color values (Y). Set cmap="brg" to get the same color scheme as in Figure 9.4.

Test your function using $f(x) = x^3 - 1$ and $f(x) = x^3 - x$. The resulting plots should resemble Figures 9.4a and 9.4b, respectively (perhaps with the colors permuted).
Conditioning and Stability

Lab Objective: The condition number of a function measures how sensitive that function is to changes in the input. On the other hand, the stability of an algorithm measures how accurately that algorithm computes the value of a function from exact input. Both of these concepts are important for answering the crucial question, "is my computer telling the truth?" In this lab we examine the conditioning of common linear algebra problems, including computing polynomial roots and matrix eigenvalues. We also present an example to demonstrate how two different algorithms for the same problem may not have the same level of stability.

Conditioning

The absolute condition number of a function $f : \mathbb{R}^m \to \mathbb{R}^n$ at a point $\mathbf{x} \in \mathbb{R}^m$ is defined by

$$\hat{\kappa}(\mathbf{x}) = \lim_{\delta \to 0^+} \sup_{\|\mathbf{h}\| < \delta} \frac{\|f(\mathbf{x} + \mathbf{h}) - f(\mathbf{x})\|}{\|\mathbf{h}\|}.$$
(10.1)

In other words, the absolute condition number of f is the limit of the change in output over the change of input. Similarly, the *relative condition number* of f is the limit of the relative change in output over the relative change in input,

$$\kappa(\mathbf{x}) = \lim_{\delta \to 0^+} \sup_{\|\mathbf{h}\| < \delta} \left(\frac{\|f(\mathbf{x} + \mathbf{h}) - f(\mathbf{x})\|}{\|f(\mathbf{x})\|} \middle/ \frac{\|\mathbf{h}\|}{\|\mathbf{x}\|} \right) = \frac{\|\mathbf{x}\|}{\|f(\mathbf{x})\|} \hat{\kappa}(\mathbf{x}).$$
(10.2)

A function with a large condition number is called *ill-conditioned*. Small changes to the input of an ill-conditioned function may produce large changes in output. It is important to know if a function is ill-conditioned because floating point representation almost always introduces some input error, and therefore the outputs of ill-conditioned functions cannot be trusted.

The condition number of a matrix A, $\kappa(A) = ||A|| ||A^{-1}||$, is an upper bound on the condition number for many of the common problems associated with the matrix, such as solving the system $A\mathbf{x} = \mathbf{b}$. If A is square but not invertible, then $\kappa(A) = \infty$ by convention. To compute $\kappa(A)$, we often use the matrix 2-norm, which is the largest singular value σ_{\max} of A. Recall that if σ is a singular value of A, $\frac{1}{\sigma}$ is a singular value of A^{-1} . Thus, we have that

$$\kappa(A) = \frac{\sigma_{\max}}{\sigma_{\min}},\tag{10.3}$$

which is also a valid equation for non-square matrices.

ACHTUNG!

Ill-conditioned matrices can wreak havoc in even simple applications. For example, the matrix

$$A = \begin{bmatrix} 1 & 1 \\ 1 & 1.000000001 \end{bmatrix}$$

is extremely ill-conditioned, with $\kappa(A) \approx 4 \times 10^{10}$. Solving the systems $A\mathbf{x} = \mathbf{b}_1$ and $A\mathbf{x} = \mathbf{b}_2$ can result in wildly different answers, even when \mathbf{b}_1 and \mathbf{b}_2 are extremely close.

```
>>> import numpy as np
>>> from scipy import linalg as la
>>> A = np.array([[1, 1], [1, 1+1e-10]])
>>> np.linalg.cond(A)
39999991794.058899
# Set up and solve a simple system of equations.
>>> b1 = np.array([2, 2])
>>> x1 = la.solve(A, b1)
>>> print(x1)
[2. 0.]
# Solve a system with a very slightly different vector b.
>>> b2 = np.array([2, 2+1e-5])
>>> la.norm(b1 - b2)
>>> x2 = la.solve(A, b2)
>>> print(x2)
[-99997.99172662 99999.99172662]
                                    # This solution is hugely different!
```

If you find yourself working with matrices that have large condition numbers, check your math carefully or try to reformulate the problem entirely.

Note

An orthonormal matrix U has orthonormal columns and satisfies $U^{\mathsf{T}}U = I$ and $||U||_2 = 1$. If U is square, then $U^{-1} = U^{\mathsf{T}}$ and U^{T} is also orthonormal. Therefore $\kappa(U) = ||U||_2 ||U^{-1}||_2 = 1$. Even if U is not square, all of its singular values are equal to 1, and again $\kappa(U) = \sigma_{\max}/\sigma_{\min} = 1$.

The condition number of a matrix cannot be less than 1 since $\sigma_{\max} \ge \sigma_{\min}$ by definition. Thus orthonormal matrices are, in a sense, the best kind of matrices for computations. This is one of the main reasons why numerical algorithms based on the QR decomposition or the SVD are so important. **Problem 1.** Write a function that accepts a matrix A and computes its condition number using (10.3). Use scipy.linalg.svd(), or scipy.linalg.svdvals() to compute the singular values of A. Avoid computing A^{-1} . If the smallest singular value is 0, return ∞ (np.inf).

Validate your function by comparing it to np.linalg.cond(). Check that orthonormal matrices have a condition number of 1 (use scipy.linalg.qr() to generate an orthonormal matrix) and that singular matrices have a condition number of ∞ according to your function.

The Wilkinson Polynomial

Let $f : \mathbb{C}^{n+1} \to \mathbb{C}^n$ be the function that maps a collection of n+1 coefficients $(c_n, c_{n-1}, \ldots, c_0)$ to the *n* roots of the polynomial $c_n x^n + c_{n-1} x^{n-1} + \ldots + c_2 x^2 + c_1 x + c_0$. Finding polynomial roots is an extremely ill-conditioned problem in general, so the condition number of *f* is likely very large. To see this, consider the *Wilkinson polynomial*, made famous by James H. Wilkinson in 1963:

$$w(x) = \prod_{r=1}^{20} (x-r) = x^{20} - 210x^{19} + 20615x^{18} - 1256850x^{17} + \cdots$$

Let $\tilde{w}(x)$ be w(x) where the coefficient on x^{19} is very slightly perturbed from -210 to -210.0000001. The following code computes and compares the roots of $\tilde{w}(x)$ and w(x) using NumPy and SymPy.

```
>>> import sympy as sy
>>> from matplotlib import pyplot as plt
# The roots of w are 1, 2, ..., 20.
>>> w_roots = np.arange(1, 21)
# Get the exact Wilkinson polynomial coefficients using SymPy.
>>> x, i = sy.symbols('x i')
>>> w = sy.poly_from_expr(sy.product(x-i, (i, 1, 20)))[0]
>>> w_coeffs = np.array(w.all_coeffs())
>>> print(w_coeffs[:6])
[1 -210 20615 -1256850 53327946 -1672280820]
# Perturb one of the coefficients very slightly.
>>> h = np.zeros(21)
>>> h[1]=1e-7
>>> new_coeffs = w_coeffs - h
>>> print(new_coeffs[:6])
[1 -210.000000100000 20615 -1256850 53327946 -1672280820]
# Use NumPy to compute the roots of the perturbed polynomial.
>>> new_roots = np.roots(np.poly1d(new_coeffs))
```

Figure 10.1a plots w(x) and $\tilde{w}(x)$ together, and Figure 10.1b and compares their roots in the complex plane.

(a) The original and perturbed Wilkinson polynomials. They match for about half of the domain, then differ drastically.

(b) Roots of the original and perturbed Wilkinson polynomials. About half of the perturbed roots are complex.

Figure 10.1

Figure 10.1 clearly indicates that a very small change in just a single coefficient drastically changes the nature of the polynomial and its roots. To quantify the difference, estimate the condition numbers (this example uses the ∞ norm to compute $\hat{\kappa}$ and κ).

```
# Sort the roots to ensure that they are in the same order.
>>> w_roots = np.sort(w_roots)
>>> new_roots = np.sort(new_roots)
# Estimate the absolute condition number in the infinity norm.
>>> k = la.norm(new_roots - w_roots, np.inf) / la.norm(h, np.inf)
>>> print(k)
28262391.3304
# Estimate the relative condition number in the infinity norm.
>>> k * la.norm(w_coeffs, np.inf) / la.norm(w_roots, np.inf)
1.95063629993970+25 # This is huge!!
```

There are some caveats to this example.

- 1. Computing the quotients in (10.1) and (10.2) for a fixed perturbation \mathbf{h} only approximates the condition number. The true condition number is the limit of such quotients. We hope that when $\|\mathbf{h}\|$ is small, a random quotient is at least the same order of magnitude as the limit, but there is no way to be sure.
- 2. This example assumes that NumPy's root-finding algorithm, np.roots(), is *stable*, so that the difference between w_roots and new_roots is due to the difference in coefficients, and not to problems with np.roots(). We will return to this issue in the next section.

Even with these caveats, it is apparent that root finding is a difficult problem to solve correctly. Always check your math carefully when dealing with polynomial roots. Problem 2. Write a function that carries out the following experiment 100 times.

- 1. Randomly perturb the true coefficients of the Wilkinson polynomial by replacing each coefficient c_i with $c_i * r_i$, where r_i is drawn from a normal distribution centered at 1 with standard deviation 10^{-10} (use np.random.normal()).
- 2. Plot the perturbed roots as small points in the complex plane. That is, plot the real part of the coefficients on the x-axis and the imaginary part on the y-axis. Plot on the same figure in each experiment.

(Hint: use a pixel marker, marker=',', to avoid overcrowding the figure.)

3. Compute the absolute and relative condition numbers with the ∞ norm.

Plot the roots of the unperturbed Wilkinson polynomial with the perturbed roots. Your final plot should resemble Figure 10.2. Finally, return the average computed absolute and relative condition numbers.

Calculating Eigenvalues

Let $f: M_n(\mathbb{C}) \to \mathbb{C}^n$ be the function that maps an $n \times n$ matrix with complex entries to its n eigenvalues. This problem is well-conditioned for symmetric matrices, but it can be extremely ill-conditioned for non-symmetric matrices. Let A be an $n \times n$ matrix and let λ be the vector of the n eigenvalues of A. If $\tilde{A} = A + H$ is a pertubation of A and $\tilde{\lambda}$ are its eigenvalues, then the condition numbers of f can be estimated by

$$\hat{\kappa}(A) = \frac{\|\boldsymbol{\lambda} - \tilde{\boldsymbol{\lambda}}\|}{\|H\|}, \qquad \kappa(A) = \frac{\|A\|}{\|\boldsymbol{\lambda}\|} \hat{\kappa}(A).$$
(10.4)

Problem 3. Write a function that accepts a matrix A and estimates the condition number of the eigenvalue problem using (10.4). For the perturbation H, construct a matrix with complex entries where the real and imaginary parts are drawn from normal distributions centered at 0 with standard deviation $\sigma = 10^{-10}$.

```
reals = np.random.normal(0, 1e-10, A.shape)
imags = np.random.normal(0, 1e-10, A.shape)
H = reals + 1j*imags
```

Use scipy.linalg.eig() or scipy.linalg.eigvals() to compute the eigenvalues of A and A + H, and use the 2-norm for both the vector and matrix norms. Return the absolute and relative condition numbers.

Problem 4. Write a function that accepts bounds $[x_{\min}, x_{\max}, y_{\min}, y_{\max}]$ and an integer res. Use your function from Problem 3 to compute the relative condition number of the eigenvalue problem for the 2×2 matrix

at every point of an evenly spaced $res \times res$ grid over the domain $[x_{\min}, x_{\max}] \times [y_{\min}, y_{\max}]$. Plot these estimated relative condition numbers using plt.pcolormesh() and the colormap cmap='gray_r'. With res=200, your plot should look similar to the following figure.

Problem 4 shows that the conditioning of the eigenvalue problem depends heavily on the matrix, and that it is difficult to know a priori how bad the problem will be. Luckily, most real-world problems requiring eigenvalues are symmetric. In their book on Numerical Linear Algebra, L. Trefethen and D. Bau III summed up the issue of conditioning and eigenvalues when they stated, "if the answer is highly sensitive to perturbations, you have probably asked the wrong question."

Stability

The stability of an algorithm is measured by the error in its output. Let $f : \mathbb{R}^m \to \mathbb{R}^n$ be a problem to be solved, as in the previous section, and let \tilde{f} be an actual algorithm for solving the problem. The forward error of f at \mathbf{x} is $||f(\mathbf{x}) - \tilde{f}(\mathbf{x})||$, and the relative forward error of f at \mathbf{x} is

$$\frac{||f(\mathbf{x}) - f(\mathbf{x})||}{||f(\mathbf{x})||}$$

An algorithm is called *stable* if its relative forward error is small.¹

As an example, consider again NumPy's root-finding algorithm that we used to investigate the Wilkinson polynomial. The exact roots of w(x) are clearly $1, 2, \ldots, 20$. Had we not known this, we could have tried computing the roots from the coefficients using np.roots() (without perturbing the coefficients at all).

```
# w_coeffs holds the coefficients and w_roots holds the true roots.
>>> computed_roots = np.sort(np.roots(np.poly1d(w_coeffs)))
>>> print(computed_roots[:6])
                                    # The computed roots are close to integers.
[ 1.
              2.
                          З.
                                      3.99999999 5.00000076 5.99998749]
# Compute the forward error.
>>> forward_error = la.norm(w_roots - computed_roots)
>>> print(forward_error)
0.020612653126379665
# Compute the relative forward error.
>>> forward_error / la.norm(w_roots)
0.00038476268486104599
                                    # The error is nice and small.
```

This analysis suggests that np.roots() is a stable algorithm, so large condition numbers of Problem 2 really are due to the poor conditioning of the problem, not the way in which the problem was solved.

Note

Conditioning is a property of a **problem** to be solved, such as finding the roots of a polynomial or calculating eigenvalues. Stability is a property of an **algorithm** to solve a problem, such as **np.roots()** or **scipy.linalg.eig()**. If a problem is ill-conditioned, any algorithm used to solve that problem may result in suspicious solutions, even if that algorithm is stable.

Least Squares

The ordinary least squares (OLS) problem is to find the **x** that minimizes $||A\mathbf{x} - \mathbf{b}||_2$ for fixed A and **b**. It can be shown that an equivalent problem is finding the solution of $A^{\mathsf{H}}A\mathbf{x} = A^{\mathsf{H}}\mathbf{b}$, called the normal equations. A common application of least squares is polynomial approximation. Given a set of m data points $\{(x_k, y_k)\}_{k=1}^m$, the goal is to find the set of coefficients $\{c_i\}_{i=0}^n$ such that

 $y_k \approx c_n x_k^n + c_{n-1} x_k^{n-1} + \dots + c_2 x_k^2 + c_1 x_k + c_0$

¹See the Additional Material section for alternative (and more rigorous) definitions of algorithmic stability.

for all k, with the smallest possible error. These m linear equations yield the linear system

$$A\mathbf{x} = \begin{bmatrix} x_1^n & x_1^{n-1} & \cdots & x_1^2 & x_1 & 1\\ x_2^n & x_2^{n-1} & \cdots & x_2^2 & x_2 & 1\\ x_3^n & x_3^{n-1} & \cdots & x_3^2 & x_3 & 1\\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots\\ x_m^n & x_m^{n-1} & \cdots & x_m^2 & x_m & 1 \end{bmatrix} \begin{bmatrix} c_n \\ c_{n-1} \\ \vdots \\ c_2 \\ c_1 \\ c_0 \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ \vdots \\ y_m \end{bmatrix} = \mathbf{b}.$$
(10.5)

Problem 5. Write a function that accepts an integer n. Solve for the coefficients of the polynomial of degree n that best fits the data found in stability_data.npy. Use two approaches to get the least squares solution:

- 1. Use la.inv() to solve the normal equations: $\mathbf{x} = (A^{\mathsf{T}}A)^{-1}A^{\mathsf{T}}\mathbf{b}$. Although this approach seems intuitive, it is actually highly unstable and can return an answer with a very large forward error.
- 2. Use la.qr() with mode='economic' and la.solve_triangular() to solve the system $R\mathbf{x} = Q^{\mathsf{T}}\mathbf{b}$, which is equivalent to solving the normal equations. This algorithm has the advantage of being stable.

Load the data and set up the system (10.5) with the following code.

xk, yk = np.load("stability_data.npy").T A = np.vander(xk, n+1)

Plot the resulting polynomials together with the raw data points. Return the forward error $||A\mathbf{x} - \mathbf{b}||_2$ of both approximations.

(Hint: The function np.polyval() will be helpful for plotting the resulting polynomials.)

Test your function using various values of n, taking special note of what happens for values of n near 14 (pictured below).

Catastrophic Cancellation

When a computer takes the difference of two very similar numbers, the result is often stored with a small number of significant digits and the tiniest bit of information is lost. However, these small errors can propagate into large errors later down the line. This phenomenon is called *catastrophic cancellation*, and is a common cause for numerical instability.

Catastrophic cancellation is a potential problem whenever floats or large integers that are very close to one another are subtracted. This problem can be avoided by either rewriting the program to not use subtraction, or by increasing the number of significant digits that the computer tracks.

For example, consider the simple problem of computing $\sqrt{a} - \sqrt{b}$. The computation can be done directly with subtraction, or by performing the equivalent division

 $-\sqrt{a} + \sqrt{b}$

a-b

$\sqrt{a} - \sqrt{b} = (\sqrt{a})$	$-\sqrt{b})\frac{\sqrt{a+\sqrt{b}}}{\sqrt{a}+\sqrt{b}} = \frac{1}{\sqrt{a}+\sqrt{b}}.$
>>> from math import sqrt	<pre># np.sqrt() fails for very large numbers.</pre>
>>> a = 10**20 + 1 >>> b = 10**20 >>> sqrt(a) - sqrt(b) 0.0	<pre># Do the subtraction directly. # a != b, so information has been lost.</pre>
>>> (a - b) / (sqrt(a) + sqrt(b)) 5e-11	<pre># Use the alternative formulation. # Much better!</pre>

In this example, a and b are distinct enough that the computer can still tell that a-b=1, but \sqrt{a} and \sqrt{b} are so close to each other that $\sqrt{a}-\sqrt{b}$ is computed as 0.

Problem 6. Let $I(n) = \int_0^1 x^n e^{x-1} dx$. It can be shown that for a positive integer n,

$$I(n) = (-1)^n (!n - \frac{n!}{e}),$$
(10.6)

where $!n = n! \sum_{k=0}^{n} \frac{(-1)^k}{k!}$ is the *subfactorial* of *n*. Write a function to do the following.

- Use SymPy's sy.integrate() to evaluate the integral form of I(n) for n = 5, 10, ..., 50. Convert the symbolic results of each integration to a float. Since this is done symbolically, these values can be accepted as the true values of I(n). (Hint: be careful that the values of n in the integrand are of type int.)
- 2. Use (10.6) to compute I(n) for the same values of n. Use sy.subfactorial() to compute !n and sy.factorial() to compute n!.
 (Hint: be careful to only pass Python integers to these functions.)
- 3. Plot the relative forward error of the results computed in step 2 at each of the given values of n. Use a log scale on the y-axis. Is (10.6) a stable way to compute I(n)? Why?

The examples presented in this lab are just a few of the ways that a mathematical problem can turn into a computational train wreck. Always use stable algorithms when possible, and remember to check if problems are well conditioned or not.

Additional Material

Other Notions of Stability

The definition of stability can be made more rigorous in the following way. Let f be a problem to solve and \tilde{f} an algorithm to solve it. If for every **x** in the domain there exists a $\tilde{\mathbf{x}}$ such that

$$\frac{\|\tilde{\mathbf{x}} - \mathbf{x}\|}{\|\mathbf{x}\|} \quad \text{and} \quad \frac{\|\tilde{f}(\mathbf{x}) - f(\tilde{\mathbf{x}})\|}{\|f(\tilde{\mathbf{x}})\|}$$

are small (close to $\varepsilon_{\text{machine}} \approx 10^{-16}$), then \tilde{f} is called stable. In other words, "A stable algorithm gives nearly the right answer to nearly the right question" (Trefethen, Bao, 104). Note carefully that the quantity on the right is slightly different from the plain forward error introduced earlier.

Stability is desirable, but plain stability isn't the best possible condition. For example, if for every input \mathbf{x} there exists a $\tilde{\mathbf{x}}$ such that $\|\tilde{\mathbf{x}}-\mathbf{x}\|/\|\mathbf{x}\|$ is small and $\tilde{f}(\mathbf{x}) = f(\tilde{\mathbf{x}})$ exactly, then \tilde{f} is called *backward stable*. Thus "A backward stable algorithm gives exactly the right answer to nearly the right question" (Trefethen, Bao, 104). Backward stable algorithms are generally more trustworthy than stable algorithms, but they are also less common.

Stabilty of Linear System Solvers

The algorithms presented so far in this manual have different levels of stability. The LU decomposition (with pivoting) is usually very good, but there are some pathological examples of matrices that can cause it to break down. Even so, scipy.linalg.solve() uses the LU decomposition. The QR decomposition (also with pivoting) is generally considered to be a better option than the LU decomposition and is more stable. However, solving a linear system using the SVD is even more stable than using the QR decomposition. For this reason, scipy.linalg.lstsq() uses the SVD.

Monte Carlo Integration

Lab Objective: Many important integrals cannot be evaluated symbolically because the integrand has no antiderivative. Traditional numerical integration techniques like Newton-Cotes formulas and Gaussian quadrature usually work well for one-dimensional integrals, but rapidly become inefficient in higher dimensions. Monte Carlo integration is an integration strategy that has relatively slow convergence, but that does extremely well in high-dimensional settings compared to other techniques. In this lab we implement Monte Carlo integration and apply it to a classic problem in statistics.

Volume Estimation

Since the area of a circle of radius r is $A = \pi r^2$, one way to numerically estimate π is to compute the area of the unit circle. Empirically, we can estimate the area by randomly choosing points in a domain that encompasses the unit circle. The percentage of points that land within the unit circle approximates the percentage of the area of the domain that the unit circle occupies. Multiplying this percentage by the total area of the sample domain gives an estimate for the area of the circle.

Since the unit circle has radius r = 1, consider the square domain $\Omega = [-1, 1] \times [-1, 1]$. The following code samples 2000 uniformly distributed random points in Ω , determines what percentage of those points are within the unit circle, then multiplies that percentage by 4 (the area of Ω) to get an estimate for π .

```
>>> import numpy as np
>>> from scipy import linalg as la
# Get 2000 random points in the 2-D domain [-1,1]x[-1,1].
>>> points = np.random.uniform(-1, 1, (2,2000))
# Determine how many points are within the circle.
>>> lengths = la.norm(points, axis=0)
>>> num_within = np.count_nonzero(lengths < 1)
# Estimate the circle's area.
>>> 4 * (num_within / 2000)
3.198
```


The estimate $\pi \approx 3.198$ isn't perfect, but it only differs from the true value of π by about 0.0564. On average, increasing the number of sample points decreases the estimate error.

Figure 11.1: Estimating the area of the unit circle using random points.

Problem 1. The *n*-dimensional open unit ball is the set $U_n = \{\mathbf{x} \in \mathbb{R}^n \mid ||\mathbf{x}||_2 < 1\}$. Write a function that accepts an integer *n* and a keyword argument *N* defaulting to 10^4 . Estimate the volume of U_n by drawing *N* points over the *n*-dimensional domain $[-1,1] \times [-1,1] \times \cdots \times [-1,1]$. (Hint: the volume of $[-1,1] \times [-1,1] \times \cdots \times [-1,1]$ is 2^n .)

When n = 2, this is the same experiment outlined above so your function should return an approximation of π . The volume of the U_3 is $\frac{4}{3}\pi \approx 4.18879$, and the volume of U_4 is $\frac{\pi^2}{2} \approx 4.9348$. Try increasing the number of sample points N to see if your estimates improve.

Integral Estimation

The strategy for estimating π can be formulated as an integral problem. Define $f: \mathbb{R}^2 \to \mathbb{R}$ by

$$f(\mathbf{x}) = \begin{cases} 1 & \text{if } \|\mathbf{x}\|_2 < 1 \text{ (x is within the unit circle)} \\ 0 & \text{otherwise,} \end{cases}$$

and let $\Omega = [-1, 1] \times [-1, 1]$ as before. Then

$$\int_{-1}^{1} \int_{-1}^{1} f(x, y) \, dx \, dy = \int_{\Omega} f(\mathbf{x}) \, dV = \pi.$$

To estimate the integral we chose N random points $\{\mathbf{x}_i\}_{i=1}^N$ in Ω . Since f indicates whether or not a point lies within the unit circle, the total number of random points that lie in the circle is the sum of the $f(\mathbf{x}_i)$. Then the average of these values, multiplied by the volume $V(\Omega)$, is the desired estimate:

$$\int_{\Omega} f(\mathbf{x}) \, dV \approx V(\Omega) \frac{1}{N} \sum_{i=1}^{N} f(\mathbf{x}_i).$$
(11.1)

This remarkably simple equation can be used to estimate the integral of any integrable function $f : \mathbb{R}^n \to \mathbb{R}$ over any domain $\Omega \subset \mathbb{R}^n$ and is called the general formula for *Monte Carlo integration*.

The intuition behind (11.1) is that $\frac{1}{N} \sum_{i=1}^{N} f(\mathbf{x}_i)$ approximates the average value of f on Ω , and multiplying the approximate average value by the volume of Ω yields the approximate integral of f over Ω . This is a little easier to see in one dimension: for a single-variable function $f : \mathbb{R} \to \mathbb{R}$, the Average Value Theorem states that the average value of f over an interval [a, b] is given by

$$f_{avg} = \frac{1}{b-a} \int_{a}^{b} f(x) \, dx.$$

Then using the approximation $f_{avg} \approx \frac{1}{N} \sum_{i=1}^{N} f(x_i)$, the previous equation becomes

$$\int_{a}^{b} f(x) \, dx = (b-a) f_{avg} \approx V(\Omega) \frac{1}{N} \sum_{i=1}^{N} f(x_i), \tag{11.2}$$

which is (11.1) in one dimension. In this setting $\Omega = [a, b]$ and hence $V(\Omega) = b - a$.

Problem 2. Write a function that accepts a function $f : \mathbb{R} \to \mathbb{R}$, bounds of integration a and b, and an integer N defaulting to 10^4 . Use np.random.uniform() to sample N points over the interval [a, b], then use (11.2) to estimate the integral

$$\int_{a}^{b} f(x) \, dx.$$

Test your function on the following integrals, or on other integrals that you can check by hand.

$$\int_{-4}^{2} x^{2} dx = 24 \qquad \int_{-2\pi}^{2\pi} \sin(x) dx = 0 \qquad \int_{1}^{10} \frac{1}{x} dx = \log(10) \approx 2.30259$$
$$\int_{1}^{5} \left| \sin(10x) \cos(10x) + \sqrt{x} \sin(3x) \right| dx \approx 4.502$$

ACHTUNG!

Be careful not to use Monte Carlo integration to estimate integrals that do not converge. For example, since 1/x approaches ∞ as x approaches 0 from the right, the integral

$$\int_0^1 \frac{1}{x} \, dx$$

does not converge. Even so, attempts at Monte Carlo integration still return a finite value. Use various numbers of sample points to see whether or not the integral estimate is converging.

```
>>> for N in [5000, 7500, 10000]:
... print(np.mean(1. / np.random.uniform(0, 1, N)), end='\t')
...
11.8451683722 25.5814419888 7.64364735049 # No convergence.
```

Integration in Higher Dimensions

The implementation of (11.1) for a function $f : \mathbb{R}^n \to \mathbb{R}$ with n > 1 introduces a few tricky details, but the overall procedure is the same for the case when n = 1. We consider only the case where $\Omega \subset \mathbb{R}^n$ is an *n*-dimensional box $[a_1, b_1] \times [a_2, b_2] \times \cdots \times [a_n, b_n]$.

1. If n = 1 then Ω is a line, so $V(\Omega) = b_1 - a_1$. If n = 2 then Ω is a rectangle, and hence $V(\Omega) = (b_1 - a_1)(b_2 - a_2)$, the product of the side lengths. The volume of a higher-dimensional box Ω is also the product of the side lengths,

$$V(\Omega) = \prod_{i=1}^{n} (b_i - a_i)$$
(11.3)

2. It is easy to sample uniformly over an interval [a, b] with np.random.uniform(), or even over the *n*-dimensional cube $[a, b] \times [a, b] \times \cdots \times [a, b]$ (such as in Problem 1). However, if $a_i \neq a_j$ or $b_i \neq b_j$ for any $i \neq j$, the samples need to be constructed in a slightly different way.

The interval [0, 1] can be transformed to the interval [a, b] by scaling it so that it is the same length as [a, b], then shifting it to the appropriate location.

$$[0,1] \xrightarrow{\text{scale by } b-a} [0,b-a] \xrightarrow{\text{shift by } a} [a,b]$$

This suggests a strategy for sampling over $[a_1, b_1] \times [a_2, b_2] \times \cdots \times [a_n, b_n]$: sample uniformly from the *n*-dimensional box $[0, 1] \times [0, 1] \times \cdots \times [0, 1]$, multiply the *i*th component of each sample by $b_i - a_i$, then add a_i to that component.

$$[0,1] \times \dots \times [0,1] \xrightarrow{\text{scale}} [0,b_1-a_1] \times \dots \times [0,b_n-a_n] \xrightarrow{\text{shift}} [a_1,b_1] \times \dots \times [a_n,b_n]$$
(11.4)

Problem 3. Write a function that accepts a function $f : \mathbb{R}^n \to \mathbb{R}$, a list of lower bounds $[a_1, a_2, \ldots, a_n]$, a list of upper bounds $[b_1, b_2, \ldots, b_n]$, and an integer N defaulting to 10⁴. Use (11.1), (11.3), and (11.4) with N sample points to estimate the integral

$$\int_{\Omega} f(\mathbf{x}) \, dV,$$

where $\Omega = [a_1, b_1] \times [a_2, b_2] \times \cdots \times [a_n, b_n].$ (Hint: use a list comprehension to calculate all of the $f(\mathbf{x}_i)$ quickly.)

Test your function on the following integrals.

$$\int_{0}^{1} \int_{0}^{1} x^{2} + y^{2} \, dx \, dy = \frac{2}{3} \qquad \int_{-2}^{1} \int_{1}^{3} 3x - 4y + y^{2} \, dx \, dy = 54$$
$$\int_{-4}^{4} \int_{-3}^{3} \int_{-2}^{2} \int_{-1}^{1} x + y - wz^{2} \, dx \, dy \, dz \, dw = 0$$

Note carefully how the order of integration defines the domain; in the last example, the *x-y-z-w* domain is $[-1,1] \times [-2,2] \times [-3,3] \times [-4,4]$, so the lower and upper bounds passed to your function should be [-1,-2,-3,-4] and [1,2,3,4], respectively.

Convergence

Monte Carlo integration has some obvious pros and cons. On the one hand, it is difficult to get highly precise estimates. In fact, the error of the Monte Carlo method is proportional to $1/\sqrt{N}$, where N is the number of points used in the estimation. This means that dividing the error by 10 requires using 100 times more sample points.

On the other hand, the convergence rate is independent of the number of dimensions of the problem. That is, the error converges at the same rate whether integrating a 2-dimensional function or a 20-dimensional function. This gives Monte Carlo integration a huge advantage over other methods, and makes it especially useful for estimating integrals in high dimensions where other methods become computationally infeasible.

Problem 4. The probability density function of the joint distribution of n independent normal random variables, each with mean 0 and variance 1, is the function $f : \mathbb{R}^n \to \mathbb{R}$ defined by

$$f(\mathbf{x}) = \frac{1}{(2\pi)^{n/2}} e^{-\frac{\mathbf{x}^{\mathsf{T}}\mathbf{x}}{2}}$$

Though this is a critical distribution in statistics, f does not have a symbolic antiderivative.

Integrate f several times to study the convergence properties of Monte Carlo integration.

- 1. Let n = 4 and $\Omega = \left[-\frac{3}{2}, \frac{3}{4}\right] \times [0, 1] \times [0, \frac{1}{2}] \times [0, 1] \subset \mathbb{R}^4$. Define f and Ω so that you can integrate f over Ω using your function from Problem 3.
- 2. Use scipy.stats.mvn.mvnun() to get the "exact" value of $F = \int_{\Omega} f(\mathbf{x}) dV$. As an example, the following code computes the integral over $[-1,1] \times [-1,3] \times [-2,1] \subset \mathbb{R}^3$.

```
>>> from scipy import stats
# Define the bounds of integration.
>>> mins = np.array([-1, -1, -2])
>>> maxs = np.array([ 1, 3, 1])
# The distribution has mean 0 and covariance I (the nxn identity).
>>> means, cov = np.zeros(3), np.eye(3)
# Compute the integral with SciPy.
>>> stats.mvn.mvnun(mins, maxs, means, cov)[0]
0.4694277116055261
```

- 3. Use np.logspace() to get 20 integer values of N that are roughly logarithmically spaced from 10^1 to 10^5 . For each value of N, use your function from Problem 3 to compute an estimate $\tilde{F}(N)$ of the integral with N samples. Compute the relative error $\frac{|F-\bar{F}(N)|}{|F|}$ for each value of N.
- 4. Plot the relative error against the sample size N on a log-log scale. Also plot the line $1/\sqrt{N}$ for comparison. Your results should be similar to Figure 11.2.

Figure 11.2: Monte Carlo integration converges at the same rate as $1/\sqrt{N}$ where N is the number of samples used in the estimate. However, the convergence is independent of dimension, which is why this strategy is so commonly used for high-dimensional integration.

1 2 Visualizing Complex-valued Functions

Lab Objective: Functions that map from the complex plane into the complex plane are difficult to fully visualize because the domain and range are both 2-dimensional. However, such functions can be visualized at the expense of partial information. In this lab we present methods for analyzing complex-valued functions visually, including locating their zeros and poles in the complex plane. We recommend completing the exercises in a Jupyter Notebook.

Representations of Complex Numbers

A complex number z = x + iy can be written in *polar coordinates* as $z = re^{i\theta}$ where

- $r = |z| = \sqrt{x^2 + y^2}$ is the magnitude of z, and
- $\theta = \arg(z) = \arctan(y/x)$ is the argument of z, the angle in radians between z and 0.

Conversely, Euler's formula is the relation $re^{i\theta} = r\cos(\theta) + ir\sin(\theta)$. Then setting $re^{i\theta} = x + iy$ and equating real and imaginary parts yields the equations $x = r\cos(\theta)$ and $y = r\sin(\theta)$.

Figure 12.1: The complex number z can be represented in Cartesian coordinates as z = x + iy and in polar coordinates as $z = re^{i\theta}$, when θ is in radians.

NumPy makes it easy to work with complex numbers and convert between coordinate systems. The function np.angle() returns the argument θ of a complex number (between $-\pi$ and π) and np.abs() (or np.absolute()) returns the magnitude r. These functions also operate element-wise on NumPy arrays.

Complex Functions

A function $f : \mathbb{C} \to \mathbb{C}$ is called a *complex-valued function*. Visualizing f is difficult because \mathbb{C} has 2 real dimensions, so the graph of f should be 4-dimensional. However, since it is possible to visualize 3-dimensional objects, f can be visualized by ignoring one dimension. There are two main strategies for doing this: assign a color to each point $z \in \mathbb{C}$ corresponding to either the argument θ of f(z), or to the magnitude r of f(z). The graph that uses the argument is called a *complex color wheel graph*. Figure 12.2 displays the identity function f(z) = z using these two methods.

Figure 12.2: The identity function $f : \mathbb{C} \to \mathbb{C}$ defined by f(z) = z. On the left, the color at each point z represents the angle $\theta = \arg(f(z))$. As θ goes from $-\pi$ to π , the colors cycle smoothly counterclockwise from white to blue to red and back to white (this colormap is called "twilight"). On the right, the color represents the magnitude r = |f(z)|. The further a point is from the origin, the greater its magnitude (the colormap is the default, "viridis").

The plots in Figure 12.2 use Cartesian coordinates in the domain and polar coordinates in the codomain. The procedure for plotting in this way is fairly simple. Begin by creating a grid of complex numbers: create the real and imaginary parts separately, then use np.meshgrid() to turn them into a single array of complex numbers. Pass this array to the function f, compute the angle and argument of the resulting array, and plot them using plt.pcolormesh(). The following code sets up the complex domain grid.

```
>>> x = np.linspace(-1, 1, 400)  # Real domain.
>>> y = np.linspace(-1, 1, 400)  # Imaginary domain.
>>> X, Y = np.meshgrid(x, y)  # Make grid matrices.
>>> Z = X + 1j*Y  # Combine the grids into a complex array.
```

Visualizing the argument and the magnitude separately provides different perspectives of the function f. The angle plot is generally more useful for visualizing function behavior, though the magnitude plot often makes it easy to spot important points such as zeros and poles.

Figure 12.3: Plots of $f(z) = \sqrt{z^2 + 1}$ on $\{x + iy \mid x, y \in [-3, 3]\}$. Notice how a discontinuity is clearly visible in the angle plot on the left, but disappears from the magnitude plot on the right.

Problem 1. Write a function that accepts a function $f : \mathbb{C} \to \mathbb{C}$, bounds $[r_{\min}, r_{\max}, i_{\min}, i_{\max}]$ for the domain, an integer **res** that determines the resolution of the plot, and a string to set the figure title. Plot $\arg(f(z))$ and |f(z)| on an equally-spaced **res**×**res** grid over the domain $\{x + iy \mid x \in [r_{\min}, r_{\max}], y \in [i_{\min}, i_{\max}]\}$ in separate subplots.

1. For $\arg(f(z))$, set the plt.pcolormesh() keyword arguments vmin and vmax to $-\pi$ and π , respectively. This forces the color spectrum to work well with np.angle(). Use the colormap "twilight", which starts and ends white, so that the color is the same for $-\pi$ and π .

- 2. For |f(z)|, set norm=matplotlib.colors.LogNorm() in plt.pcolormesh() so that the color scale is logarithmic. Use a sequential colormap like "viridis" or "magma".
- 3. Set the aspect ratio to "equal" in each plot. Give each subplot a title, and set the overall figure title with the given input string.

Use your function to visualize f(z) = z on $\{x + iy \mid x, y \in [-1, 1]\}$ and $f(z) = \sqrt{z^2 + 1}$ on $\{x + iy \mid x, y \in [-3, 3]\}$. Compare the resulting plots to Figures 12.2 and 12.3, respectively.

Interpreting Complex Plots

Plots of a complex function can be used to quickly identify important points in the function's domain.

Zeros

A complex number z_0 is called a zero of the complex-valued function f if $f(z_0) = 0$. The multiplicity or order of z_0 is the largest integer n such that f can be written as $f(z) = (z - z_0)^n g(z)$ where $g(z_0) \neq 0$. In other words, f has a zero of order n at z_0 if the Taylor series of f centered at z_0 can be written as

$$f(z) = \sum_{k=n}^{\infty} a_k (z - z_0)^k, \qquad a_n \neq 0.$$

Angle and magnitude plots make it easy to locate a function's zeros and to determine their multiplicities.

Problem 2. Use your function from Problem 1 to plot the following functions on the domain $\{x + iy \mid x, y \in [-1, 1]\}$.

- $f(z) = z^n$ for n = 2, 3, 4.
- $f(z) = z^3 iz^4 3z^6$. Compare the resulting plots to Figure 12.4.

Write a sentence or two about how the zeros of a function appear in angle and magnitude plots. How can you tell the multiplicity of the zero from the plot?

Problem 2 shows that in an angle plot of $f(z) = z^n$, the colors cycle *n* times counterclockwise around 0. This is explained by looking at z^n in polar coordinates,

$$z^n = (re^{i\theta})^n = r^n e^{i(n\theta)}.$$

Multiplying θ by a number greater than 1 compresses the graph along the " θ -axis" by a factor of n. In other words, the output angle repeats itself n times in one cycle of θ . This is similar to taking a scalar-valued function $f : \mathbb{R} \to \mathbb{R}$ and replacing f(x) with f(nx).

Problem 2 also shows that the plot of $f(z) = z^3 - iz^4 - 3z^6$ looks very similar to the plot of $f(z) = z^3$ near the origin. This is because when z is close to the origin, z^4 and z^6 are much smaller in magnitude than z^3 , and so the behavior of z^3 dominates the function. In terms of the Taylor series centered at $z_0 = 0$, the quantity $|z - z_0|^{n+k}$ is much smaller than $|z - z_0|^n$ for z close to z_0 , and so the function behaves similar to $a_n(z - z_0)^n$.

Figure 12.4: The angle plot of $f(z) = z^3 - iz^4 - 3z^6$ on $\{x + iy \mid x, y \in [-1, 1]\}$. The angle plot shows that f(z) has a zero of order 3 at the origin and 3 distinct zeros of order 1 scattered around the origin. The magnitude plot makes it easier to pinpoint the location of the zeros.

Poles

A complex number z_0 is called a *pole* of the complex-valued function f if f can be written as $f(z) = g(z)/(z-z_0)$ where $g(z_0) \neq 0$. From this definition it is easy to see that $\lim_{z\to z_0} |f(z)| = \infty$, but knowing that $\lim_{z\to z_1} |f(z)| = \infty$ is not enough information to conclude that z_1 is a pole of f.

The order of z_0 is the largest integer n such that f can be written as $f(z) = g(z)/(z-z_0)^n$ with $g(z_0) \neq 0$. In other words, f has a pole of order n at z_0 if its Laurent series on a punctured neighborhood of z_0 can be written as

$$f(z) = \sum_{k=-n}^{\infty} a_k (z - z_0)^k , \quad a_{-n} \neq 0.$$

Problem 3. Plot the following functions on domains that show all of its zeros and/or poles.

- $f(z) = z^{-n}$ for n = 1, 2, 3.
- $f(z) = z^2 + iz^{-1} + z^{-3}$.

Write a sentence or two about how the poles of a function appear in angle and magnitude plots. How can you tell the multiplicity of the poles from the plot?

Problem 3 shows that in angle plot of z^{-1} , the colors cycle *n* times clockwise around 0, as opposed to the counter-clockwise rotations seen around roots. Again, this can be explained by looking at the polar representation,

$$z^{-n} = (re^{i\theta})^{-n} = r^{-n}e^{i(-n\theta)}.$$

The minus sign on the θ reverses the direction of the colors, and the n makes them cycle n times.

From Problem 3 it is also clear that $f(z) = z^2 + iz^{-1} + z^{-3}$ behaves similarly to z^{-3} for z near the pole at $z_0 = 0$. Since $|z - z_0|^{-n+k}$ is much smaller than $|z - z_0|^{-n}$ when $|z - z_0|$ is small, near z_0 the function behaves like $a_{-n}(z - z_0)^{-n}$. This is why the order of a pole can be estimated by counting the number of times the colors circle a point in the clockwise direction.

Counting Zeros and Poles

The Fundamental Theorem of Algebra states that a polynomial f with highest degree n has exactly n zeros, counting multiplicity. For example, $f(z) = z^2 + 1$ has two zeros, and $f(z) = (z - i)^3$ has three zeros, all at $z_0 = i$ (that is, $z_0 = i$ is a zero with multiplicity 3).

The number of poles of function can also be apparent if it can be written as a quotient of polynomials. For example, $f(z) = z/(z+i)(z-i)^2$ has one zeros and three poles, counting multiplicity.

Problem 4. Plot the following functions and count the number and order of their zeros and poles. Adjust the bounds of each plot until you have found all zeros and poles.

- $f(z) = -4z^5 + 2z^4 2z^3 4z^2 + 4z 4$
- $f(z) = z^7 + 6z^6 131z^5 419z^4 + 4906z^3 131z^2 420z + 4900$

•
$$f(z) = \frac{16z^4 + 32z^3 + 32z^2 + 16z + 4}{16z^4 - 16z^3 + 5z^2}$$

It is usually fairly easy to see how many zeros or poles a polynomial or quotient of polynomials has. However, it can be much more difficult to know how many zeros or poles a different function may or may not have without visualizing it.

Problem 5. Plot the following functions on the domain $\{x + iy \mid x, y \in [-8, 8]\}$. Explain carefully what each graph reveals about the function and why the function behaves that way.

•
$$f(z) = e^z$$

• $f(z) = \tan(z)$

(Hint: use the polar coordinate representation to mathematically examine the magnitude and angle of each function.)

Essential Poles

A complex-valued function f has an *essential pole* at z_0 if its Laurent series in a punctured neighborhood of z_0 requires infinitely many terms with negative exponents. For example,

$$e^{1/z} = \sum_{k=0}^{\infty} \frac{1}{n! z^n} = 1 + \frac{1}{z} + \frac{1}{2} \frac{1}{z^2} + \frac{1}{6} \frac{1}{z^3} + \cdots$$

An essential pole can be thought of as a pole of order ∞ . Therefore, in an angle plot the colors cycle infinitely many times around an essential pole.

Figure 12.5: Angle plot of $f(z) = e^{1/z}$ on the domain $\{x + iy \mid x, y \in [-1, 1]\}$. The colors circle clockwise around the origin because it is a pole, not a zero. Because the pole is essential, the colors repeat infinitely many times.

ACHTUNG!

Often, color plots like the ones presented in this lab can be deceptive because of a bad choice of domain. Be careful to validate your observations mathematically.

Problem 6. For each of the following functions, plot the function on $\{x + iy \mid x, y \in [-1, 1]\}$ and describe what this view of the plot seems to imply about the function. Then plot the function on a domain that allows you to see the true nature of the roots and poles and describe how it is different from what the original plot implied.

- $f(z) = 100z^2 + z$
- $f(z) = \sin\left(\frac{1}{100z}\right).$

(Hint: zoom way in.)

Lab 12. Visualizing Complex-valued Functions

1 3 The PageRank Algorithm

Lab Objective: Many real-world systems—the internet, transportation grids, social media, and so on—can be represented as graphs (networks). The PageRank algorithm is one way of ranking the nodes in a graph by importance. Though it is a relatively simple algorithm, the idea gave birth to the Google search engine in 1998 and has shaped much of the information age since then. In this lab we implement the PageRank algorithm with a few different approaches, then use it to rank the nodes of a few different networks.

The PageRank Model

The internet is a collection of webpages, each of which may have a hyperlink to any other page. One possible model for a set of n webpages is a directed graph, where each node represents a page and node j points to node i if page j links to page i. The corresponding *adjacency matrix* A satisfies $A_{ij} = 1$ if node j links to node i and $A_{ij} = 0$ otherwise.

Figure 13.1: A directed unweighted graph with four nodes, together with its adjacency matrix. Note that the column for node b is all zeros, indicating that b is a *sink*—a node that doesn't point to any other node.

If n users start on random pages in the network and click on a link every 5 minutes, which page in the network will have the most views after an hour? Which will have the fewest? The goal of the PageRank algorithm is to solve this problem in general, therefore determining how "important" each webpage is. Before diving into the mathematics, there is a potential problem with the model. What happens if a webpage doesn't have any outgoing links, like node b in Figure 13.1? Eventually, all of the users will end up on page b and be stuck there forever. To obtain a more realistic model, modify each sink in the graph by adding edges from the sink to every node in the graph. This means users on a page with no links can start over by selecting a random webpage.

Figure 13.2: Here the graph in Figure 13.1 has been modified to guarantee that node b is no longer a sink (the added links are blue). We denote the modified adjacency matrix by \widetilde{A} .

Now let $p_k(t)$ be the likelihood that a particular internet user is surfing webpage k at time t. Suppose at time t+1, the user clicks on a link to page i. Then $p_i(t+1)$ can be computed by counting the number of links pointing to page i, weighted by the total number of outgoing links for each node.

As an example, consider the graph in Figure 13.2. To get to page a at time t + 1, the user had to be on page b at time t. Since there are four outgoing links from page b, assuming links are chosen with equal likelihood,

$$p_{\mathrm{a}}(t+1) = \frac{1}{4}p_{\mathrm{b}}(t).$$

Similarly, to get to page b at time t + 1, the user had to have been on page a, b, or c at time t. Since a has 3 outgoing edges, b has 4 outgoing edges, and c has 2 outgoing edges,

$$p_{\rm b}(t+1) = \frac{1}{3}p_{\rm a}(t) + \frac{1}{4}p_{\rm b}(t) + \frac{1}{2}p_{\rm c}(t).$$

The previous equations can be written in a way that hints at a more general linear form:

$$p_{\rm a}(t+1) = 0p_{\rm a}(t) + \frac{1}{4}p_{\rm b}(t) + 0p_{\rm c}(t) + 0p_{\rm d}(t),$$

$$p_{\rm b}(t+1) = \frac{1}{3}p_{\rm a}(t) + \frac{1}{4}p_{\rm b}(t) + \frac{1}{2}p_{\rm c}(t) + 0p_{\rm d}(t).$$

The coefficients of the terms on the right hand side are precisely the entries of the *i*th row of the modified adjacency matrix \widetilde{A} , divided by the *j*th column sum. In general, $p_i(t+1)$ satisfies

$$p_i(t+1) = \sum_{j=1}^n \widetilde{A}_{ij} \frac{p_j(t)}{\sum_{k=1}^n \widetilde{A}_{kj}}.$$
(13.1)

Note that the column sum $\sum_{k=1}^{n} \widetilde{A}_{kj}$ in the denominator can never be zero since, after the fix in Figure 13.2, none of the nodes in the graph are sinks.

Accounting for Boredom

The model in (13.1) assumes that the user can only click on links from their current page. It is more realistic to assume that the user sometimes gets bored and randomly picks a new starting page. Let $0 \le \varepsilon \le 1$, called the *damping factor*, be the probability that a user stays interested at step t. Then the probability that the user gets bored at any time (and then chooses a new random page) is $1 - \varepsilon$, and (13.1) becomes

$$p_{i}(t+1) = \underbrace{\varepsilon \sum_{j=1}^{n} \left(\widetilde{A}_{ij} \frac{p_{j}(t)}{\sum_{k=1}^{n} \widetilde{A}_{kj}} \right)}_{\text{User stayed interested and}}_{\text{clicked a link on the current page}} + \underbrace{\frac{1-\varepsilon}{n}}_{\text{chose a random page}}.$$
(13.2)

Note that (13.2) can be rewritten as the matrix equation

$$\mathbf{p}(t+1) = \varepsilon \widehat{A} \mathbf{p}(t) + \frac{1-\varepsilon}{n} \mathbf{1}, \qquad (13.3)$$

where $\mathbf{p}(t) = [p_1(t), p_2(t), \dots, p_n(t)]^\mathsf{T}$, **1** is a vector of *n* ones, and \widehat{A} is the $n \times n$ matrix with entries

$$\widehat{A}_{ij} = \frac{\widetilde{A}_{ij}}{\sum_{k=1} \widetilde{A}_{kj}}.$$
(13.4)

In other words, \widehat{A} is \widetilde{A} normalized so that the columns each sum to 1. For the graph in Figure 13.2, the matrix \widehat{A} is given by

$$\widehat{A} = \begin{array}{cccc} a & b & c & d \\ \hline a & \begin{bmatrix} 0 & 1/4 & 0 & 0 \\ 1/3 & 1/4 & 1/2 & 0 \\ 1/3 & 1/4 & 0 & 1 \\ 1/3 & 1/4 & 1/2 & 0 \end{bmatrix}.$$
(13.5)

Problem 1. Write a class for representing directed graphs via their adjacency matrices. The constructor should accept an $n \times n$ adjacency matrix A and a list of node labels (such as [a, b, c, d]) defaulting to None. Modify A as in Figure 13.2 so that there are no sinks in the corresponding graph, then calculate the \hat{A} from (13.4). Save \hat{A} and the list of labels as attributes. Use $[0, 1, \ldots, n-1]$ as the labels if none are provided. Finally, raise a ValueError if the number of labels is not equal to the number of nodes in the graph. (Hint: use array broadcasting to compute \hat{A} efficiently.)

For the graph in Figure 13.1, check that your \widehat{A} matches (13.5).

Computing the Rankings

In the model (13.2), define the rank of node *i* as the limit

$$p_i = \lim_{t \to \infty} p_i(t).$$

There are several ways to solve for $\mathbf{p} = \lim_{t \to \infty} \mathbf{p}(t)$.

Linear System

If **p** exists, then taking the limit as $t \to \infty$ to both sides of (13.3) gives the following.

$$\lim_{t \to \infty} \mathbf{p}(t+1) = \lim_{t \to \infty} \left[\varepsilon \widehat{A} \mathbf{p}(t) + \frac{1-\varepsilon}{n} \mathbf{1} \right]$$
$$\mathbf{p} = \varepsilon \widehat{A} \mathbf{p} + \frac{1-\varepsilon}{n} \mathbf{1}$$
$$\left(I - \varepsilon \widehat{A} \right) \mathbf{p} = \frac{1-\varepsilon}{n} \mathbf{1}$$
(13.6)

This linear system is easy to solve as long as the number of nodes in the graph isn't too large.

Eigenvalue Problem

Let E be an $n \times n$ matrix of ones. Then $E\mathbf{p}(t) = \mathbf{1}$ since $\sum_{i=1} p_i(t) = 1$. Substituting into (13.3),

$$\mathbf{p}(t+1) = \varepsilon \widehat{A} \mathbf{p}(t) + \frac{1-\varepsilon}{n} E \mathbf{p}(t) = \left(\varepsilon \widehat{A} + \frac{1-\varepsilon}{n} E\right) \mathbf{p}(t) = B \mathbf{p}(t), \quad (13.7)$$

where $B = \varepsilon \widehat{A} + \frac{1-\varepsilon}{n} E$. Now taking the limit at $t \to \infty$ of both sides of (13.7),

$$B\mathbf{p} = \mathbf{p}$$

That is, **p** is an eigenvector of *B* corresponding to the eigenvalue $\lambda = 1$. In fact, since the columns of *B* sum to 1, and because the entries of *B* are strictly positive (because the entries of *E* are all positive), Perron's theorem guarantees that $\lambda = 1$ is the unique eigenvalue of *B* of largest magnitude, and that the corresponding eigenvector **p** is unique up to scaling. Furthermore, **p** can be scaled so that each of its entires are positive, meaning $\mathbf{p}/||\mathbf{p}||_1$ is the desired PageRank vector.

Note

A Markov chain is a weighted directed graph where each node represents a state of a discrete system. The weight of the edge from node j to node i is the probability of transitioning from state j to state i, and the adjacency matrix of a Markov chain is called a *transition matrix*.

Since B from (13.7) contains nonnegative entries and its columns all sum to 1, it can be viewed as the transition matrix of a Markov chain. In that context, the limit vector \mathbf{p} is called the *steady state* of the Markov chain.

Iterative Method

Solving (13.6) or (13.7) is feasible for small networks, but they are not efficient strategies for very large systems. The remaining option is to use an iterative technique. Starting with an initial guess $\mathbf{p}(0)$, use (13.3) to compute $\mathbf{p}(1), \mathbf{p}(2), \ldots$ until $\|\mathbf{p}(t) - \mathbf{p}(t-1)\|$ is sufficiently small. From (13.7), we can see that this is just the power method¹ for finding the eigenvector corresponding to the dominant eigenvalue of B.

¹See the Least Squares and Computing Eigenvalues lab for details on the power method.

Problem 2. Add the following methods to your class from Problem 1. Each should accept a damping factor ε (defaulting to 0.85), compute the PageRank vector **p**, and return a dictionary mapping label *i* to its PageRank value p_i .

- 1. linsolve(): solve for \mathbf{p} in (13.6).
- 2. eigensolve(): solve for p using (13.7). Normalize the resulting eigenvector so its entries sum to 1.
- 3. itersolve(): in addition to ε , accept an integer maxiter and a float tol. Iterate on (13.3) until $\|\mathbf{p}(t) \mathbf{p}(t-1)\|_1 < \text{tol or } t > \text{maxiter}$. Use $\mathbf{p}(0) = [\frac{1}{n}, \frac{1}{n}, \dots, \frac{1}{n}]^T$ as the initial vector (any positive vector that sums to 1 will do, but this assumes equal starting probabilities).

Check that each method yields the same results. For the graph in Figure 13.1 with $\varepsilon = 0.85$, you should get the following dictionary mapping labels to PageRank values.

{'a': 0.095758635, 'b': 0.274158285, 'c': 0.355924792, 'd': 0.274158285}

Problem 3. Write a function that accepts a dictionary mapping labels to PageRank values, like the outputs in Problem 2. Return a list of labels sorted **from highest to lowest** rank. (Hint: if d is a dictionary, use list(d.keys()) and list(d.values()) to get the list of keys and values in the dictionary, respectively.)

For the graph in Figure 13.1 with $\varepsilon = 0.85$, this is the list [c, b, d, a] (or [c, d, b, a], since b and d have the same PageRank value).

Problem 4. The file web_stanford.txt contains information on Stanford University webpages^{*a*} and the hyperlinks between them, gathered in 2002.^{*b*} Each line of the file is formatted as a/b/c/d/e/f..., meaning the webpage with ID a has hyperlinks to webpages with IDs b, c, d, and so on.

Write a function that accepts a damping factor ε defaulting to 0.85. Read the data and get a list of the *n* unique page IDs in the file (the labels). Construct the $n \times n$ adjacency matrix of the graph where node *j* points to node *i* if webpage *j* has a hyperlink to webpage *i*. Use your class from Problem 1 and its itersolve() method from Problem 2 to compute the PageRank values of the webpages, then rank them with your function from Problem 3. In the case where two webpages have the same rank, resolve ties by listing the webpage with the larger ID number first. (Hint: Sorting the list of unique webpage IDs before ranking will order the site IDs from smallest to largest.) Return the ranked list of webpage IDs.

(Hint: after constructing the list of webpage IDs, make a dictionary that maps a webpage ID to its index in the list. For Figure 13.1, this would be {'a': 0, 'b': 1, 'c': 2, 'd': 3}. The values are the row/column indices in the adjacency matrix for each label.)

With $\varepsilon = 0.85$, the top three ranked webpage IDs are 98595, 32791, and 28392. ^ahttp://www.stanford.edu/ ^bSee http://snap.stanford.edu/data/web-Stanford.html for the original (larger) dataset.

PageRank on Weighted Graphs

Nothing in the formulation of the PageRank model (13.3) requires that the edges of the graph are unweighted. If A_{ij} is the weight of the edge from node j to node i (weight 0 meaning there is no edge from j to i), then the columns of \widehat{A} still sum to 1. Thus $B = \varepsilon \widehat{A} + \frac{1-\varepsilon}{n} E$ is still positive definite, so we can expect a unique PageRank vector \mathbf{p} to exist.

Adding weights to the edges can improve the fidelity of the model and produce a slightly more realistic PageRank ordering. On a given webpage, for example, if hyperlinks to page a are clicked on more frequently hyperlinks to page b, the edge from node a should be given more weight than the edge to node b.

Figure 13.3: A directed weighted graph with four nodes, together with its adjacency matrix and the corresponding PageRank transition matrix. Edges that are added to fix sinks have weight 1, so the computation of \widetilde{A} and \widehat{A} are exactly the same as in Figure 13.2 and (13.4), respectively.

Problem 5. The files ncaa2010.csv, ncaa2011.csv, ..., ncaa2017.csv each contain data for men's college basketball for a given school year.^{*a*} Each line (except the very first line, which is a header) represents a different basketball game, formatted winning_team,losing_team.

Write a function that accepts a filename and a damping factor ε defaulting to 0.85. Read the specified file (skipping the first line) and get a list of the *n* unique teams in the file. Construct the $n \times n$ adjacency matrix of the graph where node *j* points to node *i* with weight *w* if team *j* was defeated by team *i* in *w* games. That is, **edges point from losers to winners**. For instance, the graph in Figure 13.3 would indicate that team c lost to team b once and to team d twice, team b was undefeated, and team a never won a game. Use your class from Problem 1 and its itersolve() method from Problem 2 to compute the PageRank values of the teams, then rank them with your function from Problem 3. Return the ranked list of team names. Using ncaa2010.csv with $\varepsilon = 0.85$, the top three ranked teams (of the 607 total teams) should be UConn, Kentucky, and Louisville, in that order. That season, UConn won the championship, Kentucky was a semifinalist, and Louisville lost in the first tournament round (a surprising upset).

 a ncaa2010.csv has data for the 2010-2011 season, ncaa2011.csv for the 2011-2012 season, and so on.

Note

In Problem 5, the damping factor ε acts as an "upset" factor: a larger ε puts more emphasis on win history; a smaller ε allows more randomness in the system, giving underdog teams a higher probability of defeating a team with a better record.

It is also worth noting that the sink-fixing procedure is still reasonable for this model because it gives every other team **equal** likelihood of beating an undefeated team. That is, the additional edges don't provide an extra advantage to any one team.

PageRank with NetworkX

NetworkX, usually imported as nx, is a third-party package for working with networks. It represents graphs internally with dictionaries, thus taking full advantage of the sparsity in a graph. The base class for directed graphs is called nx.DiGraph. Nodes and edges are usually added or removed incrementally with the following methods.

Method	Description
add_node()	Add a single node.
add_nodes_from()	Add a list of nodes.
add_edge()	Add an edge between two nodes, adding the nodes if needed.
<pre>add_edges_from()</pre>	Add multiple edges (and corresponding nodes as needed).
remove_edge()	Remove a single edge (no nodes are removed).
<pre>remove_edges_from()</pre>	Remove multiple edges (no nodes are removed).
<pre>remove_node()</pre>	Remove a single node and all adjacent edges.
remove_nodes_from()	Remove multiple nodes and all adjacent edges.

Table 13.1: Methods of the nx.DiGraph class for inserting or removing nodes and edges.

For example, the weighted graph in Figure 13.3 can be constructed with the following code.

```
>>> import networkx as nx
# Initialize an empty directed graph.
>>> DG = nx.DiGraph()
# Add the directed edges (nodes are added automatically).
>>> DG.add_edge('a', 'b', weight=2)  # a --> b (adds nodes a and b)
>>> DG.add_edge('a', 'c', weight=1)  # a --> c (adds node c)
>>> DG.add_edge('a', 'd', weight=1)  # a --> d (adds node d)
```

```
>>> DG.add_edge('c', 'b', weight=1)  # c --> b
>>> DG.add_edge('c', 'd', weight=2)  # c --> d
>>> DG.add_edge('d', 'c', weight=2)  # d --> c
```

Once constructed, an nx.Digrah object can be queried for information about the nodes and edges. It also supports dictionary-like indexing to access node and edge attributes, such as the weight of an edge.

Method	Description
has_node(A)	Return True if A is a node in the graph.
has_edge(A,B)	Return True if there is an edge from A to B .
edges()	Iterate through the edges.
nodes()	Iterate through the nodes.
<pre>number_of_nodes()</pre>	Return the number of nodes.
<pre>number_of_edges()</pre>	Return the number of edges.

Table 13.2: Methods of the nx.DiGraph class for accessing nodes and edges.

```
# Check the nodes and edges.
>>> DG.has_node('a')
True
>>> DG.has_edge('b', 'a')
False
>>> list(DG.nodes())
['a', 'b', 'c', 'd']
>>> list(DG.edges())
[('a', 'b'), ('a', 'c'), ('a', 'd'), ('c', 'b'), ('c', 'd'), ('d', 'c')]
# Change the weight of the edge (a, b) to 3.
>>> DG['a']['b']["weight"] += 1
>>> DG['a']['b']["weight"]
3
```

NetworkX efficiently implements several graph algorithms. The function nx.pagerank() computes the PageRank values of each node iteratively with sparse matrix operations. This function returns a dictionary mapping nodes to PageRank values, like the methods in Problem 2.

```
# Calculate the PageRank values of the graph.
>>> nx.pagerank(DG, alpha=0.85)  # alpha is the damping factor (epsilon).
{'a': 0.08767781186947843,
   'b': 0.23613138394239835,
   'c': 0.3661321209576019,
   'd': 0.31005868323052127}
```

ACHTUNG!

NetworkX also has a class, nx.Graph, for *undirected graphs*. The edges in an undirected graph are bidirectional, so the corresponding adjacency matrix is symmetric.

The PageRank algorithm is not very useful for undirected graphs. In fact, the PageRank value for node is close to its *degree*—the number of edges it connects to—divided by the total number of edges. In Problem 5, that would mean the team who simply played the most games would be ranked the highest. Always use nx.DiGraph, not nx.Graph, for PageRank and other algorithms that rely on directed edges.

Problem 6. The file top250movies.txt contains data from the 250 top-rated movies according to IMDb.^{*a*} Each line in the file lists a movie title and its cast as title/actor1/actor2/..., with the actors listed mostly in billing order (stars first), though some casts are listed alphabetically or in order of appearance.

Create a nx.DiGraph object with a node for each actor in the file. The weight from actor a to actor b should be the number of times that actor a and b were in a movie together but actor b was listed first. That is, edges point to higher-billed actors (see Figure 13.4). Compute the PageRank values of the actors and use your function from Problem 3 to rank them. Return the list of ranked actors.

(Hint: Consider using itertools.combinations() while constructing the graph. Also, use encoding="utf-8" as an argument to open() to read the file, since several actors and actresses have nonstandard characters in their names such as ø and æ.)

With $\varepsilon = 0.7$, the top three actors should be Leonardo DiCaprio, Robert De Niro, and Tom Hanks, in that order.

^ahttps://www.imdb.com/search/title?groups=top_250&sort=user_rating

Figure 13.4: A portion of the graph from Problem 6. Michael Caine was in four movies with Christian Bale was listed first in the cast.

Additional Material

Sparsity

On very large networks, the PageRank algorithm becomes computationally difficult because of the size of the adjacency matrix A. Fortunately, most adjacency matrices are highly sparse, meaning the number of edges is much lower than the number of entries in the matrix. Consider adding functionality to your class from Problem 1 so that it stores \widehat{A} as a sparse matrix and performs sparse linear algebra operations in the methods from Problem 2 (use scipy.sparse.linalg).

PageRank as a Predictive Model

The data files in Problem 5 include tournament games for their respective seasons, so the resulting rankings naturally align with the outcome of the championship. However, it is also useful to use PageRank as a predictive model: given data for all regular season games, can the outcomes of the tournament games be predicted? Over 40 million Americans fill out 60–100 million March Madness brackets each year and bet over \$9 billion on the tournament, so being able to predict the outcomes of the games is a big deal. See http://games.espn.com/tournament-challenge-bracket for more details.

Given regular season data, PageRank can be used to predict tournament results as in Problem 5. There are some pitfalls though; for example, how should ε be chosen? Using $\varepsilon = .5$ with ncaa2010.csv minus tournament data (all but the last 63 games in the file) puts UConn—the actual winner that year—in seventh place, while $\varepsilon = .9$ puts UConn in fourth. Both values for ε also rank BYU as number one, but BYU lost in the Sweet Sixteen that year. In practice, Google uses .85 as the damping factor, but there is no rigorous reasoning behind that particular choice.

Other Centrality Measures

In network theory, the *centrality* of a node refers to its importance. Since there are lots of ways to measure importance, there are several different centrality measures.

- Degree centrality uses the degree of a node, meaning the number of edges adjacent to it (independent of edge direction), for ranking. An academic paper that has been cited many times has a high degree and is considered more important than a paper that has only been cited once.
- *Eigenvector centrality* is an extension of degree centrality. Instead of each neighbor contributing equally to the centrality, nodes that are important are given a higher weight. Thus a node connected to lots of unimportant nodes can have the same measure as a node connected to a few, important nodes. Eigenvector centrality is measured by the eigenvector associated with the largest eigenvalue of the adjacency matrix of the network.
- *Katz centrality* is a modification to eigenvalue centrality for directed networks. Outgoing nodes contribute centrality to their neighbors, so an important node makes its neighbors more important.
- PageRank adapts Katz centrality by averaging out the centrality that a node can pass to its neighbors. For example, if Google—a website that should have high centrality—points to a million websites, then it shouldn't pass on that high centrality to all of million of its neighbors, so each neighbor gets one millionth of Google's centrality.

For more information on these centralities, as well as other ways to measure node importance, see [New10].
The Drazin Inverse

Lab Objective: The Drazin inverse of a matrix is a pseudoinverse which preserves certain spectral properties of the matrix. In this lab we compute the Drazin inverse using the Schur decomposition, then use it to compute the effective resistance of a graph and perform link prediction.

Definition of the Drazin Inverse

The *index* of an $n \times n$ matrix A is the smallest nonnegative integer k for which $\mathcal{N}(A^k) = \mathcal{N}(A^{k+1})$. The *Drazin inverse* A^D of A is the unique $n \times n$ matrix satisfying the following properties.

- $AA^D = A^D A$
- $A^{k+1}A^D = A^k$
- $A^D A A^D = A^D$

Note that if A is *invertible*, in which case k = 0, then $A^D = A^{-1}$. On the other hand, if A is *nilpotent*, meaning $A^j = \mathbf{0}$ for some nonnegative integer j, then A^D is the zero matrix.

Problem 1. Write a function that accepts an $n \times n$ matrix A, the index k of A, and an $n \times n$ matrix A^D . Use the criteria described above to determine whether or not A^D is the Drazin inverse of A. Return True if A^D satisfies all three conditions; otherwise, return False.

Use the following matrices as test cases for your function.

$$A = \begin{bmatrix} 1 & 3 & 0 & 0 \\ 0 & 1 & 3 & 0 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix}, \quad A^{D} = \begin{bmatrix} 1 & -3 & 9 & 81 \\ 0 & 1 & -3 & -18 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix}, \quad k = 1$$
$$B = \begin{bmatrix} 1 & 1 & 3 \\ 5 & 2 & 6 \\ -2 & -1 & -3 \end{bmatrix}, \quad B^{D} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad k = 3$$

(Hint: np.allclose() and np.linalg.matrix_power() may be useful).

Computing the Drazin Inverse

The Drazin inverse is often defined theoretically in terms of the eigenprojections of a matrix. However, eigenprojections are often costly or unstable to calculate, so we resort to a different method to calculate the Drazin inverse.

Every $n \times n$ matrix A can be written in the form

$$A = S^{-1} \begin{bmatrix} M & \mathbf{0} \\ \mathbf{0} & N \end{bmatrix} S, \tag{14.1}$$

where S is a change of basis matrix, M is nonsingular, and N is nilpotent. Then the Drazin inverse can be calculated as

$$A^{D} = S^{-1} \begin{bmatrix} M^{-1} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} S.$$
(14.2)

To put A into the form in (14.1), we can use the Schur decomposition of A, given by

$$A = QTQ^{-1}, (14.3)$$

where Q is orthonormal and T is upper triangular. Since T is similar to A, the eigenvalues of A are listed along the diagonal of T. If A is singular, at least one diagonal entry of T must be 0.

In general, Schur decompositions are not unique; the eigenvalues along the diagonal of T can be reordered. To find M, N, and S, we compute the Schur decomposition of A twice, ordering the eigenvalues differently in each decomposition.

First, we sort so that the nonzero eigenvalues are listed first along the diagonal of T. Then, if k is the number of nonzero eigenvalues, the upper left $k \times k$ block of T forms the nonsingular matrix M, and the first k columns of Q form the first k columns of the change of basis matrix S.

Computing the decomposition a second time, we reorder so that the 0 eigenvalues are listed first along the diagonal of T. Then the upper left $(n-k) \times (n-k)$ block forms the nilpotent matrix N, and the first n-k columns of Q form the last n-k columns of S. This completes a change of basis matrix that will put A into the desired block diagonal form. Lastly, we use (14.2) to compute A^{D} .

SciPy's la.schur() is a routine for computing the Schur decomposition of a matrix, but it does not automatically sort it by eigenvalue. However, sorting can be accomplished by specifying the **sort** keyword argument. Given an eigenvalue, the sorting function should return a boolean indicating whether to sort that eigenvalue to the top left of the diagonal of T.

array([[2.	,	0.	,	6.7	70820393],
Ľ	0.	,	1.	,	2.],
[0.	,	0.	,	0.]])
>>> k				# k is	the	e number of columns satisfying the sort,
2				# whic	n is	s the number of nonzero eigenvalues.

The procedure for finding the Drazin inverse using the Schur decomposition is given in Algorithm 14.1. Due to possible floating point arithmetic errors, consider all eigenvalues smaller than a certain tolerance to be 0.

Algorithm 14.1

-		
1: p	rocedure $DRAZIN(A, tol)$	
2:	$(n,n) \leftarrow \operatorname{shape}(A)$	
3:	$T_1, Q_1, k_1 \leftarrow \operatorname{schur}(A, x > \operatorname{tol})$	\triangleright Sort the Schur decomposition with 0 eigenvalues last.
4:	$T_2, Q_2, k_2 \leftarrow \operatorname{schur}(A, x \le \operatorname{tol})$	\triangleright Sort the Schur decomposition with 0 eigenvalues first.
5:	$U \leftarrow [Q_{1::k_1} \mid Q_{2::n-k_1}]$	\triangleright Create change of basis matrix.
6:	$U^{-1} \leftarrow \text{inverse}(\mathbf{U})$	
7:	$V \leftarrow U^{-1}AU$	\triangleright Find block diagonal matrix in (14.1)
8:	$Z \leftarrow 0_{n imes n}$	
9:	if $k_1 \neq 0$ then	
10:	$M^{-1} \leftarrow \text{inverse}(V_{:k_1,:k_1})$	
11:	$Z_{:k_1,:k_1} \leftarrow M^{-1}$	
12:	${f return}\; UZU^{-1}$	

Problem 2. Write a function that accepts an $n \times n$ matrix A and a tolerance for rounding eigenvalues to zero. Use Algorithm 14.1 to compute the Drazin inverse A^D . Use your function from Problem 1 to verify your implementation.

ACHTUNG!

Because the algorithm for the Drazin inverse requires calculation of the inverse of a matrix, it is unstable when that matrix has a high condition number. If the algorithm does not find the correct Drazin inverse, check the condition number of V from Algorithm 14.1

Note

The Drazin inverse is called a *pseudoinverse* because $A^D = A^{-1}$ for invertible A, and for noninvertible A, A^D always exists and acts similarly to an inverse. There are other matrix pseudoinverses that preserve different qualities of A, including the *Moore-Penrose pseudoinverse* A^{\dagger} , which can be thought of as the least squares approximation to A^{-1} .

Applications of the Drazin Inverse

Effective Resistance

The *effective resistance* between two nodes in a undirected graph is a measure of how connected those nodes are. The concept originates from the study of circuits to measure the resistance between two points on the circuit. A *resistor* is a device in a circuit which limits or regulates the flow of electricity. Two points that have more resistors between them have more resistance, while those with fewer resistors between them have less resistance. The entire circuit can be represented by a graph where the nodes are the points of interest and the number of edges connecting two nodes indicates the number of resistors between the corresponding points. See Figure 14.1 for an example.

Figure 14.1: A graph with a resistor on each edge.

In electromagnetism, there are rules for manually calculating the effective resistance between two nodes for relatively simple graphs. However, this is infeasible for large or complicated graphs. Instead, we can use the Drazin inverse to calculate effective resistance for any graph.

First, create the *adjacency matrix*¹ of the graph, the matrix where the (ij)th entry is the number of connections from node *i* to node *j*. Next, calculate the Laplacian *L* of the adjacency matrix. Then if R_{ij} is the effective resistance from node *i* to node *j*,

$$R_{ij} = \begin{cases} (\tilde{L}^{j})_{ii}^{D} & \text{if } i \neq j \\ 0 & \text{if } i = j, \end{cases}$$
(14.4)

where \widetilde{L}^{j} is the Laplacian with the *j*th row of the Laplacian replaced by the *j*th row of the identity matrix, and $(\widetilde{L}^{j})^{D}$ is its Drazin inverse.

Problem 3. Write a function that accepts the $n \times n$ adjacency matrix of an undirected graph. Use (14.4) to compute the effective resistance from each node to every other node. Return an $n \times n$ matrix where the (ij)th entry is the effective resistance from node i to node j. Keep the following in mind:

- The resulting matrix should be symmetric.
- The effective resistance from a node to itself is 0.

¹See Problem 1 of Image Segmentation for a refresher on adjacency matrices and the Laplacian.

• Consider creating the matrix column by column instead of entry by entry. Every time you compute the Drazin inverse, the whole diagonal of the matrix can be used.

Test your function using the graphs and values from Figure 14.2.

Figure 14.2: The effective resistance between two points for several simple graphs. Nodes that are farther apart have a larger effective resistance, while nodes that are nearer or better connected have a smaller effective resistance.

Link Prediction

Link prediction is the problem of predicting the likelihood of a future association between two unconnected nodes in a graph. Link prediction has application in many fields, but the canonical example is friend suggestions on Facebook. The Facebook network can be represented by a large graph where each user is a node, and two nodes have an edge connecting them if they are "friends." Facebook aims to predict who you would like to become friends with in the future, based on who you are friends with now, as well as discover which friends you may have in real life that you have not yet connected with online. To do this, Facebook must have some way to measure how closely two users are connected.

We will compute link prediction using effective resistance as a metric. Effective resistance measures how closely two nodes are connected, and nodes that are closely connected at present are more likely to be connected in the future. Given an undirected graph, the next link should connect the two unconnected nodes with the least effective resistance between them.

Problem 4. Write a class called LinkPredictor for performing link prediction. Implement the __init__() method so that it accepts the name of a csv file containing information about a social network. Each row of the file should contain the names of two nodes which are connected by an (undirected) edge.

Store each of the names of the nodes of the graph as an ordered list. Next, create the adjacency matrix for the network where the *i*th row and column of the matrix correspond to the *i*th member of the list of node names. Finally, use your function from Problem 3 to compute the effective resistance matrix. Save the list of names, the adjacency matrix, and the effective resistance matrix as attributes.

Problem 5. Implement the following methods in the LinkPredictor class:

- 1. predict_link(): Accept a parameter node which is either None or a string representing a node in the network. If node is None, return a tuple with the names of the nodes between which the next link should occur. However, if node is a string, return the name of the node which should be connected to node next out of all other nodes in the network. If node is not in the network, raise a ValueError. Take the following into consideration:
 - (a) You want to find the two nodes which have the smallest effective resistance between them which are not yet connected. Use information from the adjacency matrix to zero out all entries of the effective resistance matrix that represent connected nodes. The "*" operator multiplies arrays component-wise, which may be helpful.
 - (b) Find the next link by finding the minimum value of the array that is nonzero. Your array may be the whole matrix or just a column if you are only considering links for a certain node. This can be accomplished by passing np.min() a masked version of your matrix to exclude entries that are 0.
 - (c) NumPy's np.where() is useful for finding the minimum value in an array:

2. add_link(): Take as input two names of nodes, and add a link between them. If either name is not in the network, raise a ValueError. Add the link by updating the adjacency matrix and the effective resistance matrix.

Figure 14.3 visualizes the data in social_network.csv. Use this graph to verify that your class is suggesting plausible new links. You should observe the following:

- In the entire network, Emily and Oliver are most likely to become friends next.
- Melanie is predicted to become friends with Carol next.
- Alan is expected to become friends with Sonia, then with Piers, and then with Abigail.

Figure 14.3: The social network contained in social_network.csv. Adapted from data by Wayne. W Zachary (see https://en.wikipedia.org/wiki/Zachary%27s_karate_club).

1. Piers	10. Alan	19. Max	28. Thomas
2. Abigail	11. Trevor	20. Eric	29. Christopher
3. Oliver	12. Jake	21. Theresa	
4. Stephanie	13. Mary	22. Paul	30. Charles
5. Carol	14. Anna	23. Alexander	31. Madeleine
6. Melanie	15. Ruth	24. Colin	32. Tracev
7. Stephen	16. Evan	25. Jake	01 . 11400
8. Sally	17. Connor	26. Jane	33. Sonia
9. Penelope	18. John	27. Brandon	34. Emily

15 Iterative Solvers

Lab Objective: Many real-world problems of the form $A\mathbf{x} = \mathbf{b}$ have tens of thousands of parameters. Solving such systems with Gaussian elimination or matrix factorizations could require trillions of floating point operations (FLOPs), which is of course infeasible. Solutions of large systems must therefore be approximated iteratively. In this lab we implement three popular iterative methods for solving large systems: Jacobi, Gauss-Seidel, and Successive Over-Relaxation.

Iterative methods are often useful to solve large systems of equations. In this lab, let $\mathbf{x}^{(k)}$ denote the *k*th iteration of the iterative method for solving the problem $A\mathbf{x} = \mathbf{b}$ for \mathbf{x} . Furthermore, let x_i be the *i*th component of \mathbf{x} so that $x_i^{(k)}$ is the *i*th component of \mathbf{x} in the *k*th iteration. Like other iterative methods, there are two stopping parameters: a very small $\varepsilon > 0$ and an integer $N \in \mathbb{N}$. Iterations continue until either

$$\|\mathbf{x}^{(k-1)} - \mathbf{x}^{(k)}\| < \varepsilon \quad \text{or} \quad k > N.$$
(15.1)

The Jacobi Method

The Jacobi Method is a simple but powerful method used for solving certain kinds of large linear systems. The main idea is simple: solve for each variable in terms of the others, then use the previous values to update each approximation. As a (very small) example, consider the 3×3

Solving the first equation for x_1 , the second for x_2 , and the third for x_3 yields

$$\begin{array}{rcl} x_1 & = & \frac{1}{2}(3+x_3), \\ x_2 & = & \frac{1}{3}(3+x_1-2x_3) \\ x_3 & = & \frac{1}{3}(-1-x_2). \end{array}$$

Now begin with an initial guess $\mathbf{x}^{(0)} = [x_1^{(0)}, x_2^{(0)}, x_3^{(0)}]^{\mathsf{T}} = [0, 0, 0]^{\mathsf{T}}$. To compute the first approximation $\mathbf{x}^{(1)}$, use the entries of $\mathbf{x}^{(0)}$ as the variables on the right side of the previous equations:

$$\begin{array}{rcl} x_1^{(1)} &=& \frac{1}{2}(3+x_3^{(0)}) &=& \frac{1}{2}(3+0) &=& \frac{3}{2}, \\ x_2^{(1)} &=& \frac{1}{3}(3+x_1^{(0)}-2x_3^{(0)}) &=& \frac{1}{3}(3+0-0) &=& 1, \\ x_3^{(1)} &=& \frac{1}{3}(-1-x_2^{(0)}) &=& \frac{1}{3}(-1-0) &=& -\frac{1}{3}. \end{array}$$

Thus $\mathbf{x}^{(1)} = [\frac{3}{2}, 1, -\frac{1}{3}]^{\mathsf{T}}$. Computing $\mathbf{x}^{(2)}$ is similar:

$$\begin{array}{rcl} x_1^{(2)} & = & \frac{1}{2}(3+x_3^{(1)}) & = & \frac{1}{2}(3-\frac{1}{3}) & = & \frac{4}{3}, \\ x_2^{(2)} & = & \frac{1}{3}(3+x_1^{(1)}-2x_3^{(1)}) & = & \frac{1}{3}(3+\frac{3}{2}+\frac{2}{3}) & = & \frac{31}{18}, \\ x_3^{(2)} & = & \frac{1}{3}(-1-x_2^{(1)}) & = & \frac{1}{3}(-1-1) & = & -\frac{2}{3}. \end{array}$$

The process is repeated until at least one of the two stopping criteria in (15.1) is met. For this particular problem, convergence to 8 decimal places ($\varepsilon = 10^{-8}$) is reached in 29 iterations.

	$x_1^{(k)}$	$x_2^{(k)}$	$x_3^{(k)}$
$\mathbf{x}^{(0)}$	0	0	0
$\mathbf{x}^{(1)}$	1.5	1	-0.333333333
$\mathbf{x}^{(2)}$	1.333333333	1.72222222	-0.66666667
$\mathbf{x}^{(3)}$	1.16666667	1.88888889	-0.90740741
$\mathbf{x}^{(4)}$	1.04629630	1.99382716	-0.96296296
÷			
$\mathbf{x}^{(28)}$	0.999999999	2.00000001	-0.99999999
$\mathbf{x}^{(29)}$	1	2	-1

Matrix Representation

The iterative steps performed above can be expressed in matrix form. First, decompose A into its diagonal entries, its entries below the diagonal, and its entries above the diagonal, as A = D + L + U.

ſ	a_{11}	0		0	1	0	0		0]		0	a_{12}	• • •	a_{1n}
	0	a_{22}		0		a_{21}	0		0		0	0	•••	÷
	÷	÷	•	:		:	•••		÷		:	:	•	01.
	0	0		a_{nn}		a_{n1}		$a_{n,n-1}$	0		0	0		$\begin{bmatrix} u_{n-1,n} \\ 0 \end{bmatrix}$
		1	D					L		-	-		U	-

With this decomposition, \mathbf{x} can be expressed in the following way.

$$A\mathbf{x} = \mathbf{b}$$
$$(D + L + U)\mathbf{x} = \mathbf{b}$$
$$D\mathbf{x} = -(L + U)\mathbf{x} + \mathbf{b}$$
$$\mathbf{x} = D^{-1}(-(L + U)\mathbf{x} + \mathbf{b})$$

Now using $\mathbf{x}^{(k)}$ as the variables on the right side of the equation to produce $\mathbf{x}^{(k+1)}$ on the left, and noting that L + U = A - D, we have the following.

$$\mathbf{x}^{(k+1)} = D^{-1}(-(A - D)\mathbf{x}^{(k)} + \mathbf{b})$$

= $D^{-1}(D\mathbf{x}^{(k)} - A\mathbf{x}^{(k)} + \mathbf{b})$
= $\mathbf{x}^{(k)} + D^{-1}(\mathbf{b} - A\mathbf{x}^{(k)})$ (15.2)

There is a potential problem with (15.2): calculating a matrix inverse is the cardinal sin of numerical linear algebra, yet the equation contains D^{-1} . However, since D is a diagonal matrix, D^{-1} is also diagonal, and is easy to compute.

$$D^{-1} = \begin{bmatrix} \frac{1}{a_{11}} & 0 & \dots & 0\\ 0 & \frac{1}{a_{22}} & \dots & 0\\ \vdots & \vdots & \ddots & \vdots\\ 0 & 0 & \dots & \frac{1}{a_{nn}} \end{bmatrix}$$

Because of this, the Jacobi method requires that A have nonzero diagonal entries.

The diagonal D can be represented by the 1-dimensional array **d** of the diagonal entries. Then the matrix multiplication $D\mathbf{x}$ is equivalent to the component-wise vector multiplication $\mathbf{d} * \mathbf{x} = \mathbf{x} * \mathbf{d}$. Likewise, the matrix multiplication $D^{-1}\mathbf{x}$ is equivalent to the component-wise "vector division" \mathbf{x}/\mathbf{d} .

Problem 1. Write a function that accepts a matrix A, a vector **b**, a convergence tolerance tol defaulting to 10^{-8} , and a maximum number of iterations maxiter defaulting to 100. Implement the Jacobi method using (15.2), returning the approximate solution to the equation $A\mathbf{x} = \mathbf{b}$.

Run the iteration until $\|\mathbf{x}^{(k-1)} - \mathbf{x}^{(k)}\|_{\infty} < \text{tol}$, and only iterate at most maxiter times. Avoid using la.inv() to calculate D^{-1} , but use la.norm() to calculate the vector ∞ -norm.

Your function should be robust enough to accept systems of any size. To test your function, generate a random **b** with np.random.random() and use the following function to generate an $n \times n$ matrix A for which the Jacobi method is guaranteed to converge. Run the iteration, then check that $A\mathbf{x}^{(k)}$ and **b** are close using np.allclose().

```
def diag_dom(n, num_entries=None):
    """Generate a strictly diagonally dominant (n, n) matrix.
    Parameters:
        n (int): The dimension of the system.
        num_entries (int): The number of nonzero values.
            Defaults to n^{(3/2)}-n.
    Returns:
        A ((n,n) ndarray): A (n, n) strictly diagonally dominant matrix.
    .....
    if num_entries is None:
        num_entries = int(n**1.5) - n
    A = np.zeros((n,n))
    rows = np.random.choice(np.arange(0,n), size=num_entries)
    cols = np.random.choice(np.arange(0,n), size=num_entries)
    data = np.random.randint(-4, 4, size=num_entries)
    for i in range(num_entries):
        A[rows[i], cols[i]] = data[i]
    for i in range(n):
        A[i,i] = np.sum(np.abs(A[i])) + 1
    return A
```

Also test your function on random $n \times n$ matrices. If the iteration is non-convergent, the successive approximations will have increasingly large entries.

Convergence

Most iterative methods only converge under certain conditions. For the Jacobi method, convergence mostly depends on the nature of the matrix A. If the entries a_{ij} of A satisfy the property

$$|a_{ii}| > \sum_{j \neq i} |a_{ij}|$$
 for all $i = 1, 2, \dots, n$,

then A is called *strictly diagonally dominant* (diag_dom() in Problem 1 generates a strictly diagonally dominant $n \times n$ matrix). If this is the case,¹ then the Jacobi method always converges, regardless of the initial guess \mathbf{x}_0 . This is a very different convergence result than many other iterative methods such as Newton's method where convergence is highly sensitive to the initial guess.

There are a few ways to determine whether or not an iterative method is converging. For example, since the approximation $\mathbf{x}^{(k)}$ should satisfy $A\mathbf{x}^{(k)} \approx \mathbf{b}$, the normed difference $||A\mathbf{x}^{(k)} - \mathbf{b}||_{\infty}$ should be small. This value is called the *absolute error* of the approximation. If the iterative method converges, the absolute error should decrease to ε .

Problem 2. Modify your Jacobi method function in the following ways.

- 1. Add a keyword argument called plot, defaulting to False.
- 2. Keep track of the absolute error $||A\mathbf{x}^{(k)} \mathbf{b}||_{\infty}$ of the approximation at each iteration.
- 3. If plot is True, produce a lin-log plot (use plt.semilogy()) of the error against iteration count. Remember to still return the approximate solution x.

If the iteration converges, your plot should resemble the following figure.

¹Although this seems like a strong requirement, most real-world linear systems can be represented by strictly diagonally dominant matrices.

The Gauss-Seidel Method

The *Gauss-Seidel method* is essentially a slight modification of the Jacobi method. The main difference is that in Gauss-Seidel, new information is used immediately. As an example, consider again the system from the previous section,

As with the Jacobi method, solve for x_1 in the first equation, x_2 in the second equation, and x_3 in the third equation:

$$\begin{array}{rcl} x_1 & = & \frac{1}{2}(3+x_3), \\ x_2 & = & \frac{1}{3}(3+x_1-2x_3), \\ x_3 & = & \frac{1}{3}(-1-x_2). \end{array}$$

Using $\mathbf{x}^{(0)}$ to compute $x_1^{(1)}$ in the first equation as before,

$$x_1^{(1)} = \frac{1}{2}(3+x_3^{(0)}) = \frac{1}{2}(3+0) = \frac{3}{2}.$$

Now, however, use the updated value of $x_1^{(1)}$ in the calculation of $x_2^{(1)}$:

$$x_2^{(1)} = \frac{1}{3}(3 + x_1^{(1)} - 2x_3^{(0)}) = \frac{1}{3}(3 + \frac{3}{2} - 0) = \frac{3}{2}.$$

Likewise, use the updated values of $x_1^{(1)}$ and $x_2^{(1)}$ to calculate $x_3^{(1)}$:

$$x_3^{(1)} = \frac{1}{3}(-1 - x_2^{(1)}) = \frac{1}{3}(-1 - \frac{3}{2}) = -\frac{5}{6}.$$

This process of using calculated information immediately is called *forward substitution*, and causes the algorithm to (generally) converge much faster.

	$x_1^{(k)}$	$x_2^{(k)}$	$x_3^{(k)}$
$x^{(0)}$	0	0	0
$x^{(1)}$	1.5	1.5	-0.83333333
$x^{(2)}$	1.08333333	1.91666667	-0.97222222
$x^{(3)}$	1.01388889	1.98611111	-0.99537037
$x^{(4)}$	1.00231481	1.99768519	-0.99922840
:		÷	:
$x^{(11)}$	1.00000001	1.999999999	-1
$x^{(12)}$	1	2	-1

Notice that Gauss-Seidel converges in less than half as many iterations as Jacobi does for this system.

Implementation

Because Gauss-Seidel updates only one element of the solution vector at a time, the iteration cannot be summarized by a single matrix equation. Instead, the process is most generally described by the equation

$$x_i^{(k+1)} = \frac{1}{a_{ii}} \left(b_i - \sum_{j < i} a_{ij} x_j^{(k)} - \sum_{j > i} a_{ij} x_j^{(k)} \right).$$
(15.3)

Let \mathbf{a}_i be the *i*th **row** of A. The two sums closely resemble the regular vector product of \mathbf{a}_i and $\mathbf{x}^{(k)}$ without the *i*th term $a_{ii}x_i^{(k)}$. This suggests the simplification

$$x_{i}^{(k+1)} = \frac{1}{a_{ii}} \left(b_{i} - \mathbf{a}_{i}^{\mathsf{T}} \mathbf{x}^{(k)} + a_{ii} x_{i}^{(k)} \right)$$
$$= x_{i}^{(k)} + \frac{1}{a_{ii}} \left(b_{i} - \mathbf{a}_{i}^{\mathsf{T}} \mathbf{x}^{(k)} \right).$$
(15.4)

One sweep through all the entries of \mathbf{x} completes one iteration.

Problem 3. Write a function that accepts a matrix A, a vector **b**, a convergence tolerance tol defaulting to 10^{-8} , a maximum number of iterations maxiter defaulting to 100, and a keyword argument plot that defaults to False. Implement the Gauss-Seidel method using (15.4), returning the approximate solution to the equation $A\mathbf{x} = \mathbf{b}$.

Use the same stopping criterion as in Problem 1. Also keep track of the absolute errors of the iteration, as in Problem 2. If plot is True, plot the error against iteration count. Use diag_dom() to generate test cases.

Achtung!

Since the Gauss-Seidel algorithm operates on the approximation vector in place (modifying it one entry at a time), the previous approximation $\mathbf{x}^{(k-1)}$ must be stored at the beginning of the *k*th iteration in order to calculate $\|\mathbf{x}^{(k-1)} - \mathbf{x}^{(k)}\|_{\infty}$. Additionally, since NumPy arrays are mutable, the past iteration must be stored as a **copy**.

```
>>> x0 = np.random.random(5)  # Generate a random vector.
>>> x1 = x0  # Attempt to make a copy.
>>> x1[3] = 1000  # Modify the "copy" in place.
>>> np.allclose(x0, x1)  # But x0 was also changed!
True
# Instead, make a copy of x0 when creating x1.
>>> x0 = np.copy(x1)  # Make a copy.
>>> x1[3] = -1000
>>> np.allclose(x0, x1)
False
```

Convergence

Whether or not the Gauss-Seidel method converges depends on the nature of A. If all of the eigenvalues of A are positive, A is called *positive definite*. If A is positive definite or if it is strictly diagonally dominant, then the Gauss-Seidel method converges regardless of the initial guess $\mathbf{x}^{(0)}$.

Solving Sparse Systems Iteratively

Iterative solvers are best suited for solving very large sparse systems. However, using the Gauss-Seidel method on sparse matrices requires translating code from NumPy to scipy.sparse. The algorithm is the same, but there are some functions that are named differently between these two packages.²

Problem 4. Write a new function that accepts a **sparse** matrix A, a vector **b**, a convergence tolerance tol, and a maximum number of iterations **maxiter** (plotting the convergence is not required for this problem). Implement the Gauss-Seidel method using (15.4), returning the approximate solution to the equation $A\mathbf{x} = \mathbf{b}$. Use the usual default stopping criterion.

The Gauss-Seidel method requires extracting the rows A_i from the matrix A and computing $A_i^{\mathsf{T}} \mathbf{x}$. There are many ways to do this that cause some fairly serious runtime issues, so we provide the code for this specific portion of the algorithm.

```
# Get the indices of where the i-th row of A starts and ends if the
# nonzero entries of A were flattened.
rowstart = A.indptr[i]
rowend = A.indptr[i+1]
# Multiply only the nonzero elements of the i-th row of A with the
# corresponding elements of x.
Air = A data[rowstart.rowend] @ r[A indices[rowstart.rowend]]
```

Aix = A.data[rowstart:rowend] @ x[A.indices[rowstart:rowend]]

To test your function, cast the result of diag_dom() as a sparse matrix.

```
>>> from scipy import sparse
>>> A = sparse.csr_matrix(diag_dom(50000))
>>> b = np.random.random(50000)
```

Successive Over-Relaxation

There are many systems that meet the requirements for convergence with the Gauss-Seidel method, but for which convergence is still relatively slow. A slightly altered version of the Gauss-Seidel method, called *Successive Over-Relaxation* (SOR), can result in faster convergence. This is achieved by introducing a *relaxation factor* $\omega \geq 1$ and modifying (15.3) as

$$x_i^{(k+1)} = (1-\omega)x_i^{(k)} + \frac{\omega}{a_{ii}} \left(b_i - \sum_{j < i} a_{ij} x_j^{(k)} - \sum_{j > i} a_{ij} x_j^{(k)} \right).$$

Simplifying the equation, we have

$$x_{i}^{(k+1)} = x_{i}^{(k)} + \frac{\omega}{a_{ii}} \left(b_{i} - \mathbf{a}_{i}^{\mathsf{T}} \mathbf{x}^{(k)} \right).$$
(15.5)

²See the lab on Linear Systems for a review of scipy.sparse matrices and syntax.

Note that when $\omega = 1$, SOR reduces to Gauss-Seidel. The relaxation factor ω weights the new iteration between the current best approximation and the next approximation in a way that can sometimes dramatically improve convergence.

Problem 5. Write a function that accepts a sparse matrix A, a vector **b**, a relaxation factor ω , a convergence tolerance **tol**, and a maximum number of iterations **maxiter**. Implement SOR using (15.5), compute the approximate solution to the equation $A\mathbf{x} = \mathbf{b}$. Use the usual stopping criterion. Return the approximate solution **x** as well as a boolean indicating whether the function converged and the number of iterations computed.

(Hint: this requires changing only one line of code from the sparse Gauss-Seidel function.)

A Finite Difference Method

Laplace's equation is an important partial differential equation that arises often in both pure and applied mathematics. In two dimensions, the equation has the following form.

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0 \tag{15.6}$$

Laplace's equation can be used to model heat flow. Consider a square metal plate where the top and bottom borders are fixed at 0° Celsius and the left and right sides are fixed at 100° Celsius. Given these boundary conditions, we want to describe how heat diffuses through the rest of the plate. The solution to Laplace's equation describes the plate when it is in a *steady state*, meaning that the heat at a given part of the plate no longer changes with time.

It is possible to solve (15.6) analytically. However, the problem can also be solved numerically using a *finite difference method*. To begin, we impose a discrete, square grid on the plate with uniform spacing. Denote the points on the grid by (x_i, y_j) and the value of u at these points (the heat) as $u(x_i, y_j) = U_{i,j}$. Using the centered difference quotient for second derivatives to approximate the partial derivatives,

$$0 = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}$$

$$\approx \frac{U_{i+1,j} - 2U_{i,j} + U_{i-1,j}}{h^2} + \frac{U_{i,j+1} - 2U_{i,j} + U_{i,j-1}}{h^2}$$

$$= \frac{1}{h^2} \left(-4U_{i,j} + U_{i+1,j} + U_{i-1,j} + U_{i,j+1} + U_{i,j-1} \right), \qquad (15.7)$$

where $h = x_{i+1} - x_i = y_{j+1} - y_j$ is the distance between the grid points in either direction. This problem can be formulated as a linear system. Suppose the grid has exactly $(n+2) \times (n+2)$ entries. Then the interior of the grid (where u(x, y) is unknown) is $n \times n$, and can be flattened into an $n^2 \times 1$ vector **u**. The entire first row goes first, then the second row, proceeding to the *n*th row.

$$\mathbf{u} = \begin{bmatrix} U_{1,1} & U_{1,2} & \cdots & U_{1,n} & U_{2,1} & U_{2,2} & \cdots & U_{2,n} & \cdots & U_{n,n} \end{bmatrix}^{\mathsf{T}}$$

From (15.7), for an interior point $U_{i,j}$, we have

$$-4U_{i,j} + U_{i+1,j} + U_{i-1,j} + U_{i,j+1} + U_{i,j-1} = 0.$$
(15.8)

If any of the neighbors to $U_{i,j}$ is a boundary point on the grid, its value is already determined by the boundary conditions. For example, the neighbor $U_{3,0}$ of the gridpoint for $U_{3,1}$ is fixed at $U_{3,0} = 100$. In this case, (15.8) becomes

$$-4U_{3,1} + U_{2,1} + U_{3,2} + U_{4,1} = -100.$$

Figure 15.1: On the left, an example of a 6×6 grid (n = 4) where the red dots are hot boundary zones and the blue dots are cold boundary zones. On the right, the green dots are the neighbors of the interior black dot that are used to approximate the heat at the black dot.

The constants on the right side of (15.8) become the $n^2 \times 1$ vector **b**. All nonzero entries of **b** correspond to interior points that touch the left or right boundaries.

As an example, writing (15.8) for the 16 interior points of the grid in Figure 15.1 results in the following 16×16 system $A\mathbf{u} = \mathbf{b}$. Note the block structure (empty blocks are all zeros).

$\begin{bmatrix} -4 \end{bmatrix}$	1	0	0	1	0	0	0								٦	$\begin{bmatrix} U_{1,1} \end{bmatrix}$	1	「 −100]
1	-4	1	0	0	1	0	0									$U_{1,2}^{-,-}$		0
0	1	-4	0	0	0	1	0									$U_{1,3}$		0
0	0	1	-4	0	0	0	1									$U_{1,4}$		-100
1	0	0	0	-4	1	0	0	1	0	0	0					$U_{2,1}$		-100
0	1	0	0	1	-4	1	0	0	1	0	0					$U_{2,2}$		0
0	0	1	0	0	1	-4	1	0	0	1	0					$U_{2,3}$		0
0	0	0	1	0	0	1	-4	0	0	0	1					$U_{2,4}$		-100
				1	0	0	0	-4	1	0	0	1	0	0	0	$U_{3,1}$	-	-100
				0	1	0	0	1	-4	1	0	0	1	0	0	$U_{3,2}$		0
				0	0	1	0	0	1	-4	1	0	0	1	0	$U_{3,3}$		0
				0	0	0	1	0	0	1	-4	0	0	0	1	$U_{3,4}$		-100
								1	0	0	0	-4	1	0	0	$U_{4,1}$		-100
								0	1	0	0	1	-4	1	0	$U_{4,2}$		0
								0	0	1	0	0	1	-4	1	$U_{4,3}$		0
L								0	0	0	1	0	0	1	-4	$U_{4,4}$		100]

More concisely, for any positive integer n, the matrix A can be written as

	B	Ι			-	1		$\lceil -4 \rceil$	1			-	
	Ι	B	Ι					1	-4	1			
A =		Ι	· · .	· · .		,	where $B =$		1	·	·		is $n \times n$.
			· · .	۰.	Ι					•••	۰.	1	
	L			Ι	B			L			1	-4	

Problem 6. Write a function that accepts an integer n, a relaxation factor ω , a convergence tolerance tol that defaults to 10^{-8} , a maximum number of iterations maxiter that defaults to 100, and a bool plot that defaults to False. Generate and solve the corresponding system $A\mathbf{u} = \mathbf{b}$ using Problem 5. Also return a boolean indicating whether the function converged and the number of iterations computed.

(Hint: see Problem 5 of the Linear Systems lab for the construction of A. Also, np.tile() may be useful for constructing **b**.)

If plot=True, visualize the solution \mathbf{u} with a heatmap using plt.pcolormesh() (the colormap "coolwarm" is a good choice in this case). This shows the distribution of heat over the hot plate after it has reached its steady state. Note that the \mathbf{u} must be reshaped as an $n \times n$ array to properly visualize the result.

Problem 7. To demonstrate how convergence is affected by the value of the relaxation factor ω in SOR, run your function from Problem 6 with $\omega = 1, 1.05, 1.1, \ldots, 1.9, 1.95$ and n = 20. Plot the number of computed iterations as a function of ω . Return the value of ω that results in the least number of iterations.

Note that the matrix A from Problem 6 is not strictly diagonally dominant. However, A is positive definite, so the algorithm will converge. Unfortunately, convergence for these kinds of systems usually requires more iterations than for strictly diagonally dominant systems. Therefore, set tol=1e-2 and maxiter=1000.

Recall that $\omega = 1$ corresponds to the Gauss-Seidel method. Choosing a more optimal relaxation factor saves a large number of iterations. This could translate to saving days or weeks of computation time while solving extremely large linear systems on a supercomputer.

The Arnoldi Iteration

Lab Objective: The Arnoldi Iteration is an efficient method for finding the eigenvalues of extremely large matrices. Instead of using standard methods, the iteration uses Krylov subspaces to approximate how a linear operator acts on vectors. With this approach, the Arnoldi Iteration facilitates the computation of eigenvalues for enormous matrices without needing to physically create the matrix in memory. We will explore this subject by implementing the Arnoldi iteration algorithm, using our implementation for eigenvalue computation, and then graphically representing the accuracy of our approximated eigenvalues.

Krylov Subspaces

One of the biggest difficulties in numerical linear algebra is the amount of memory needed to store a large matrix and the amount of time needed to read its entries. Methods using Krylov subspaces avoid this difficulty by studying how a matrix acts on vectors, making it unnecessary in many cases to create the matrix itself.

The Arnoldi Iteration is an algorithm for finding an orthonormal basis of a Krylov subspace. One of its strengths is that it can run on any linear operator without knowing the operator's underlying matrix representation. The outputs of the Arnoldi algorithm can then be used to approximate the eigenvalues of the matrix of the linear operator.

The order-*n* Krylov subspace of A generated by \mathbf{x} is

$$\mathcal{K}_n(A, \mathbf{x}) = \operatorname{span}\{\mathbf{x}, A\mathbf{x}, A^2\mathbf{x}, \dots, A^{n-1}\mathbf{x}\}.$$

If the vectors $\{\mathbf{x}, A\mathbf{x}, A^2\mathbf{x}, \dots, A^{n-1}\mathbf{x}\}$ are linearly independent, then they form a basis for $\mathcal{K}_n(A, \mathbf{x})$. However, $A^n x$ frequently converges to a dominant eigenvector of A as n gets large, which fills the basis with many almost parallel vectors. This yields a basis prone to ill-conditioned computations and numerical instability.

The Arnoldi Iteration Algorithm

The Arnoldi iteration focuses on efficiently creating an orthonormal basis for $\mathcal{K}_n(A, \mathbf{x})$ by integrating the creation of $\{\mathbf{x}, A\mathbf{x}, A^2\mathbf{x}, \dots, A^{n-1}\mathbf{x}\}$ with the modified Gram-Schmidt algorithm. This process yields an orthonormal basis for $\mathcal{K}_n(A, \mathbf{x})$ that can be used for further computations. The algorithm begins by initializing a matrix H which will be an upper Hessenberg matrix and a matrix Q which will be filled with the basis vectors of our Krylov subspace. It also requires an initial vector $\mathbf{b} \neq 0$ which is normalized to get $\mathbf{q}_1 = \mathbf{b}/\|\mathbf{b}\|$. This represents the basis for the initial Krylov subspace, $\mathcal{K}_1(A, \mathbf{b})$.

For the kth iteration, compute the next basis vector \mathbf{q}_{k+1} by using the modified Gram-Schmidt process to make $A\mathbf{q}_k$ orthonormal to \mathbf{q}_k . This entails making each column of Q orthogonal to \mathbf{q}_k before proceeding to the next iteration. The vectors $\{\mathbf{q}_i\}_{i=1}^k$ are then a basis for $\mathcal{K}_k(A, \mathbf{b})$. If $\|\mathbf{q}_{k+1}\|$ is below a certain tolerance, stop and return H and Q. Otherwise, normalize the new basis vector new \mathbf{q}_{k+1} and continue to the next iteration.

Algorithm 16.1 The Arnoldi iteration. This algorithm accepts a square matrix A and a starting vector **b**. It iterates k times or until the norm of the next vector in the iteration is less than tol. The algorithm returns an upper Hessenberg H and an orthonormal Q such that $H = Q^{\mathsf{H}} A Q$.

1: \mathbf{p}	rocedure ARNOLDI(b , A , k , tol)	
2:	$Q \leftarrow \text{empty}(\text{size}(\mathbf{b}), k+1)$	\triangleright Some initialization steps
3:	$H \leftarrow \operatorname{zeros}(k+1,k)$	
4:	$Q_{:,0} \leftarrow \mathbf{b} / \left\ \mathbf{b} \right\ _2$	
5:	for $j = 0 \dots k - 1$ do	\triangleright Perform the actual iteration.
6:	$Q_{:,j+1} \leftarrow A(Q_{:,j})$	
7:	for $i = 0 \dots j$ do	\triangleright Modified Gram-Schmidt.
8:	$H_{i,j} \leftarrow Q_{:,i}^{H} Q_{:,j+1}$	
9:	$Q_{:,j+1} \leftarrow Q_{:,j+1} - H_{i,j}Q_{:,i}$	
10:	$H_{j+1,j} \leftarrow \ Q_{:,j+1}\ _2$	\triangleright Set subdiagonal element of H .
11:	${f if}\; H_{j+1,j} <{f tol}\;{f then}$	\triangleright Stop if $ Q_{:,j+1} _2$ is small enough.
12:	${f return}\; H_{:j+1,:j+1}, Q_{:,:j+1}$	
13:	$Q_{:,j+1} \leftarrow Q_{:,j+1}/H_{j+1,j}$	\triangleright Normalize \mathbf{q}_{j+1} .
14:	$\mathbf{return}\; H_{:-1,:}, Q$	\triangleright Return H_k and Q .

ACHTUNG!

If the starting vector \mathbf{x} is an eigenvector of A with corresponding eigenvalue λ , then by definition $\mathcal{K}_k(A, \mathbf{x}) = \operatorname{span}\{\mathbf{x}, \lambda \mathbf{x}, \lambda^2 \mathbf{x}, \dots, \lambda^k \mathbf{x}\}$, which is equal to the span of \mathbf{x} . So, when \mathbf{x} is normalized with $\mathbf{q}_1 = \mathbf{x}/||\mathbf{x}||$, $\mathbf{q}_2 = A\mathbf{q}_1 = \lambda \mathbf{q}_1$.

The vector \mathbf{q}_2 is supposed to be the next vector in the orthonormal basis for $\mathcal{K}_k(A, \mathbf{x})$, but it is not linearly independent of \mathbf{q}_1 . In fact, \mathbf{q}_1 already spans $\mathcal{K}_k(A, \mathbf{x})$. Hence, the Gram-Schmidt process fails and results in a ZeroDivisionError or an extremely early termination of the algorithm. A similar phenomenon may occur if the starting vector \mathbf{x} is contained in a proper invariant subspace of A.

Arnoldi Iteration on Linear Operators

A major strength of the Arnoldi iteration is that it can run on a linear operator, even without knowing the matrix representation of the operator. If L is some linear function, then we can modify the pseudocode above by replacing $AQ_{:,j}$ with $A_{mul}(Q_{:,j})$. This makes it possible to find the eigenvalues of an arbitrary linear transformation. **Problem 1.** Write a function that accepts a starting vector **b** for the Arnoldi Iteration, a function handle L that describes a linear operator, the number of times n to perform the iteration, and a tolerance tol that defaults to 10^{-8} . Use Algorithm 16.1 to implement the Arnoldi Iteration with these parameters. Return the upper Hessenberg matrix H and the orthonormal matrix Q from the iteration.

Consider the following implementation details.

- Since H and Q will eventually hold complex numbers, initialize them as complex arrays (e.g., A = np.empty((3,3), dtype=np.complex128)).
- 2. This function can be tested on a matrix A by passing in A.dot for a linear operator.
- 3. Remember to use complex inner products. Here is an example of how to evaluate $A^{H}A$:

b = A.conj() @ B

Test your function by comparing the resulting H with $Q^{\mathsf{H}}AQ$.

Finding Eigenvalues Using the Arnoldi Iteration

Let A be an $n \times n$ matrix. Let Q_k be the matrix whose columns $\mathbf{q}_1, \ldots, \mathbf{q}_k$ are the orthonormal basis for $\mathcal{K}_m(A, \mathbf{x})$ generated by the Arnoldi algorithm, and let H_k be the $k \times k$ upper Hessenburg matrix defined at the kth stage of the algorithm. Then these matrices satisfy

1

$$H_k = Q_k^{\mathsf{H}} A Q_k. \tag{16.1}$$

If k < n, then H_k is a low-rank approximation to A and the eigenvalues of H_k may be used as approximations for the eigenvalues of A. The eigenvalues of H_k are called *Ritz Values*, and we will later show that they converge quickly to the largest eigenvalues of A.

Problem 2. Write a function that accepts a function handle L that describes a linear operator, the dimension of the space dim that the linear operator works on, the number of times k to perform the Arnoldi Iteration, and the number of Ritz values n to return. Use the previous implementation of the Arnoldi Iteration and an eigenvalue function such as scipy.linalg. eigs() to compute the largest Ritz values of the given operator. Return the n largest Ritz values.

One application of the Arnoldi iteration is to find the eigenvalues of linear operators that are too large to store in memory. For example, if an operator acts on a vector $\mathbf{x} \in \mathbb{C}^{2^{20}}$, then its matrix representation contains 2^{40} complex values. Storing such a matrix would require 64 terabytes of memory!

An example of such an operator is the Fast Fourier Transform, cited by SIAM as one of the top algorithms of the century [Cip00]. The Fast Fourier Transform is used very commonly in signal processing.

Problem 3. The four largest eigenvalues of the Fast Fourier Transform are known to be $\{-\sqrt{n}, \sqrt{n}, -i\sqrt{n}, i\sqrt{n}\}$ where n is the dimension of the space on which the transform acts. Use your function from Problem 2 to approximate the eigenvalues of the Fast Fourier Transform. Set k = 10 and dim $= 2^{20}$. For the argument L, use the scipy.fftpack.fft().

The Arnoldi iteration for finding eigenvalues is implemented in a Fortran library called ARPACK. Scipy interfaces with the Arnoldi iteration in this library via the function scipy.sparse.linalg. eigs(). This function has many more options than the implementation we wrote in Problem 2. In this example, the keyword argument k=5 specifies that we want five Ritz values. Note that even though this function comes from the sparse library in Scipy, we can still call it on regular Numpy arrays.

Convergence

As more iterations of the Arnoldi method are performed, our approximations are of higher rank. Consequently, the Ritz values become more accurate approximations to the eigenvalues of the linear operator.

This technique converges quickly to eigenvalues whose magnitude is distinctly larger than the rest. For example, matrices with random entries tend to have one eigenvalue of distinctly greatest magnitude. Convergence of the Ritz values for such a matrix is plotted in Figure 16.1a.

However, Ritz values converge more slowly for matrices with random eigenvalues. Figure 16.1b plots convergence of the Ritz values for a matrix with eigenvalues uniformly distributed in [0, 1).

Problem 4. Write a function that accepts a linear operator A, the number of Ritz values to plot n, and the number of times to perform the Arnoldi iteration iters. Use these parameters to create a plot of the absolute error between the largest Ritz values of A and the largest eigenvalues of A.

- 1. Find n eigenvalues of A of largest magnitude. Store these in order.
- 2. Create an empty array to store the relative errors for every $k = 0, 1, \ldots$, iters.
 - (a) Use your Ritz function to find the *n* largest Ritz values of the operator. Note that for small k, the matrix H_k may not have this many eigenvalues. Due to this, the graphs of some eigenvalues have to begin after a few iterations.
 - (b) Store the absolute error between the eigenvalues of A and the Ritz values of H. Make sure that the errors are stored in the correct order.
- 3. Iteratively plot the errors for each eigenvalue with the range of the iterations.

Figure 16.1: These plots show the relative error of the ritz values as approximations to the eigenvalues of a matrix. The figure on the left plots the largest 15 Ritz values for a 500×500 matrix with random entries and demonstrates that the largest eigenvalue (the blue line) converges after 20 iterations. The figure at right plots the largest 15 Ritz values for a 500×500 matrix with uniformly distributed eigenvalues in [0, 1) and demonstrates that all the eigenvalues take from 150 to 250 iterations to converge.

```
Hints: If x̃ is an an approximation to x, then the absolute error in the approximation is ||x-x̃||.
Sort your eigenvalues from greatest to least. An example of how to do this is included:
# Evaluate the eigenvalues
eigvalues = la.eig(A)[0]
# Sort them from greatest to least (use np.abs to account for complex ↔
parts)
eigvalues = eigvalues[np.sort(np.abs(eigvalues))[::-1]]
```

In addition, remember that certain eigenvalues of H will not appear until we are computing enough iterations in the Arnoldi algorithm. As a result, we will have to begin the graphs of several eigenvalues after we are computing sufficient iterations of the algorithm.

Run your function on these examples. The plots should be fairly similar to Figures 16.1b and 16.1a.

```
>>> A = np.random.rand(300, 300)
>>> plot_ritz(a, 10, 175)
>>> # A matrix with uniformly distributed eigenvalues
>>> d = np.diag(np.random.rand(300))
>>> B = A @ d @ la.inv(A)
>>> plot_ritz(B, 10, 175)
```

Additional Material

The Lanczos Iteration

The Lanczos iteration is a version of the Arnoldi iteration that is optimized to operate on symmetric matrices. If A is symmetric, then (16.1) shows that H_k is symmetric and hence tridiagonal. This leads to two simplifications of the Arnoldi algorithm.

First, we have $0 = H_{k,n} = \langle \mathbf{q}_k, A\mathbf{q}_n \rangle$ for $k \leq n-2$; i.e., $A\mathbf{q}_n$ is orthogonal to $\mathbf{q}_1, \ldots, \mathbf{q}_{n-2}$. Thus, if the goal is only to compute H_k (say to find the Ritz values), then we only need to store the two most recently computed columns of Q. Second, the data of H_k can also be stored in two vectors, one containing the main diagonal and one containing the first subdiagonal of H_k (by symmetry, the first superdiagonal equals the first subdiagonal of H_k).

Algorithm 16.2 The Lanczos Iteration. This algorithm operates on a vector **b** of length n and an $n \times n$ symmetric matrix A. It iterates k times or until the norm of the next vector in the iteration is less than *tol*. It returns two vectors **x** and **y** that respectively contain the main diagonal and first subdiagonal of the current Hessenberg approximation.

1:	procedure Lanczos (\mathbf{b}, A, k, tol)	
2:	$\mathbf{q}_0 \leftarrow \operatorname{zeros}(\operatorname{size}(\mathbf{b}))$	\triangleright Some initialization
3:	$\mathbf{q}_{1} \leftarrow \mathbf{b}/\left\ \mathbf{b} ight\ _{2}$	
4:	$\mathbf{x} \leftarrow \text{empty}(k)$	
5:	$\mathbf{y} \leftarrow \operatorname{empty}(k)$	
6:	for $i = 0 \dots k - 1$ do	\triangleright Perform the iteration.
7:	$\mathbf{z} \leftarrow A\mathbf{q}_1$	$\triangleright \mathbf{z}$ is a temporary vector to store \mathbf{q}_{i+1} .
8:	$\mathbf{x}[i] \gets \mathbf{q}_1^T \mathbf{z}$	$\triangleright \mathbf{q}_1$ is used to store the previous \mathbf{q}_i .
9:	$\mathbf{z} \leftarrow \mathbf{z} - \mathbf{x}[i]\mathbf{q}_1 + \mathbf{y}[i-1]\mathbf{q}_0$	$\triangleright \mathbf{q}_0$ is used to store \mathbf{q}_{i-1} .
10:	$\mathbf{y}[i] = \ \mathbf{z}\ _2$	\triangleright Initialize $\mathbf{y}[i]$.
11:	$\mathbf{if} \ \mathbf{y}[i] < tol \ \mathbf{then}$	\triangleright Stop if $\ \mathbf{q}_{i+1}\ _2$ is too small.
12:	$\mathbf{return} \ \mathbf{x}[:i+1], \ \mathbf{y}[:i]$	
13:	$\mathbf{z} = \mathbf{z} / \mathbf{y}[i]$	
14:	$\mathbf{q}_0, \mathbf{q}_1 = \mathbf{q}_1, \mathbf{z}$	\triangleright Store new \mathbf{q}_{i+1} and \mathbf{q}_i on top of \mathbf{q}_1 and \mathbf{q}_0 .
15:	$\mathbf{return} \ \mathbf{x}, \ \mathbf{y}[:-1]$	

As it is described in Algorithm 16.2, the Lanczos iteration is not stable. Roundoff error may cause the \mathbf{q}_i to be far from orthogonal. In fact, it is possible for the \mathbf{q}_i to be so adulterated by roundoff error that they are no longer linearly independent.

There are modified versions of the Lanczos iteration that are numerically stable. One of these, the Implicitly Restarted Lanczos Method, is found in SciPy as scipy.sparse.linalg.eigsh().

17 GMRES

Lab Objective: The Generalized Minimal Residuals (GMRES) algorithm is an iterative Krylov subspace method for efficiently solving large linear systems. In this lab we implement the basic GM-RES algorithm, then make an improvement by using restarts. We then discuss the convergence of the algorithm and its relationship with the eigenvalues of a linear system. Finally, we introduce SciPy's version of GMRES.

The GMRES Algorithm

GMRES is an iterative method that uses Krylov subspaces to reduce a high-dimensional problem to a sequence of smaller dimensional problems. Let A be an invertible $m \times m$ matrix and let \mathbf{b} be a vector of length m. Let $\mathcal{K}_n(A, \mathbf{b})$ be the order-n Krylov subspace generated by A and \mathbf{b} . Instead of solving the system $A\mathbf{x} = \mathbf{b}$ directly, GMRES uses least squares to find $\mathbf{x}_n \in \mathcal{K}_n$ that minimizes the residual $r_n = \|\mathbf{b} - A\mathbf{x}_n\|_2$. The algorithm terminates when this residual is smaller than some predetermined value. In many situations, this happens when n is much smaller than m.

The GMRES algorithm uses the Arnoldi iteration for numerical stability. The Arnoldi iteration produces H_n , an $(n+1) \times n$ upper Hessenberg matrix, and Q_n , a matrix whose columns make up an orthonormal basis of $\mathcal{K}_n(A, \mathbf{b})$, such that $AQ_n = Q_{n+1}H_n$. The GMRES algorithm finds the vector \mathbf{x}_n which minimizes the norm $\|\mathbf{b} - A\mathbf{x}_n\|_2$, where $\mathbf{x}_n = Q_n\mathbf{y}_n + \mathbf{x}_0$ for some $\mathbf{y}_n \in \mathbb{R}^n$. Since the columns of Q_n are orthonormal, the residual can be equivalently computed as

$$\|\mathbf{b} - A\mathbf{x}_n\|_2 = \|Q_{n+1}(\beta \mathbf{e}_1 - H_n \mathbf{y}_n)\|_2 = \|H_n \mathbf{y}_n - \beta \mathbf{e}_1\|_2.$$
(17.1)

Here \mathbf{e}_1 is the vector $[1, 0, \dots, 0]^{\mathsf{T}}$ of length n + 1 and $\beta = \|\mathbf{b} - A\mathbf{x}_0\|_2$, where \mathbf{x}_0 is an initial guess of the solution. Thus, to minimize $\|\mathbf{b} - A\mathbf{x}_n\|_2$, the right side of (17.1) can be minimized, and \mathbf{x}_n can be computed as $\mathbf{x}_n = Q_n \mathbf{y}_n + \mathbf{x}_0$.

Algorithm 17.1 The GMRES algorithm. This algorithm operates on a vector **b** and a linear operator A. It iterates k times or until the residual is less than tol, returning an approximate solution to $A\mathbf{x} = \mathbf{b}$ and the error in this approximation.

1: p	procedure $GMRES(A, \mathbf{b}, \mathbf{x}_0, k, tol)$	
2:	$Q \leftarrow \text{empty}(\text{size}(\mathbf{b}), k+1)$	\triangleright Initialization.
3:	$H \leftarrow \operatorname{zeros}(k+1,k)$	
4:	$r_0 \leftarrow \mathbf{b} - A(\mathbf{x}_0)$	
5:	$Q_{:,0} = r_0 / \left\ r_0 \right\ _2$	
6:	for $j = 0 \dots k - 1$ do	\triangleright Perform the Arnoldi iteration.
7:	$Q_{:,j+1} \leftarrow A(Q_{:,j})$	
8:	for $i = 0 \dots j$ do	
9:	$H_{i,j} \leftarrow Q_{:,i}^{T} Q_{:,j+1}$	
10:	$Q_{:,j+1} \leftarrow Q_{:,j+1} - H_{i,j}Q_{:,i}$	
11:	$H_{j+1,j} \leftarrow \left\ Q_{:,j+1} \right\ _2$	
12:	$\mathbf{if} \left H_{j+1,j} ight > \mathtt{tol then}$	▷ Avoid dividing by zero.
13:	$Q_{:,j+1} \leftarrow Q_{:,j+1}/H_{j+1,j}$	
14:	$\mathbf{y} \leftarrow \text{least squares solution to } \ H_{:j+2,:j+1}\mathbf{x} - \beta e_1\ _2$	$\triangleright \beta$ and \mathbf{e}_1 as in (17.1).
15:	$\texttt{res} \leftarrow \ H_{:j+2,:j+1}\mathbf{y} - \beta e_1\ _2$	
16:	$\mathbf{if} \ \mathbf{res} < \mathtt{tol} \ \mathbf{then}$	
17:	$\mathbf{return}\;Q_{:,:j+1}\mathbf{y}+\mathbf{x}_0,\mathbf{res}$	
18:	$\mathbf{return} \; Q_{:,:j+1} \mathbf{y} + \mathbf{x}_0, \; \mathtt{res}$	

Problem 1. Write a function that accepts a matrix A, a vector **b**, and an initial guess \mathbf{x}_0 , a maximum number of iterations k defaulting to 100, and a stopping tolerance tol that defaults to 10^{-8} . Use Algorithm 17.1 to approximate the solution to $A\mathbf{x} = \mathbf{b}$ using the GMRES algorithm. Return the approximate solution and the residual at the approximate solution.

You may assume that A and **b** only have real entries. Use scipy.linalg.lstsq() to solve the least squares problem. Be sure to read the documentation so that you understand what the function returns.

Compare your function to the following code.

```
>>> A = np.array([[1,0,0],[0,2,0],[0,0,3]])
>>> b = np.array([1, 4, 6])
>>> x0 = np.zeros(b.size)
>>> gmres(A, b, x0, k=100, tol=1e-8)
(array([ 1., 2., 2.]), 7.174555448775421e-16)
```

Convergence of GMRES

One of the most important characteristics of GMRES is that it will always arrive at an exact solution (if one exists). At the *n*-th iteration, GMRES computes the best approximate solution to $A\mathbf{x} = \mathbf{b}$ for $\mathbf{x}_n \in \mathcal{K}_n$. If A is full rank, then $\mathcal{K}_m = \mathbb{F}^m$, so the *m*th iteration will always return an exact answer. Sometimes, the exact solution $\mathbf{x} \in \mathcal{K}_n$ for some n < m, in this case x_n is an exact solution. In either case, the algorithm is convergent after n steps if the *n*th residual is sufficiently small.

The rate of convergence of GMRES depends on the eigenvalues of A.

Problem 2. Add a keyword argument plot defaulting to False to your function from Problem 1. If plot=True, keep track of the residuals at each step of the algorithm. At the end of the iteration, before returning the approximate solution and its residual error, create a figure with two subplots.

- 1. Make a scatter plot of the eigenvalues of A on the complex plane.
- 2. Plot the residuals versus the iteration counts using a log scale on the y-axis (use ax.semilogy()).

Problem 3. Use your function from Problem 2 to investigate how the convergence of GMRES relates to the eigenvalues of a matrix as follows. Define an $m \times m$ matrix

$$A_n = nI + P,$$

where I is the identity matrix and P is an $m \times m$ matrix with entries taken from a random normal distribution with mean 0 and standard deviation $1/(2\sqrt{m})$. Call your function from Problem 2 on A_n for n = -4, -2, 0, 2, 4. Use m = 200, let **b** be an array of all ones, and let $\mathbf{x}_0 = \mathbf{0}$.

Use np.random.normal() to create the matrix P. When analyzing your results, pay special attention to the clustering of the eigenvalues in relation to the origin. Compare your results with n = 2, m = 200 to Figure 17.1.

Ideas for this problem were taken from Example 35.1 on p. 271 of [TB97].

Figure 17.1: On the left, the eigenvalues of the matrix A_2 defined in Problem 3. On the right, the rapid convergence of the GMRES algorithm on A_2 with starting vector $\mathbf{b} = (1, 1, ..., 1)$.

GMRES with Restarts

The first few iterations of GMRES have low spatial and temporal complexity. However, as k increases, the kth iteration of GMRES becomes more expensive temporally and spatially. In fact, computing the kth iteration of GMRES for very large k can be prohibitively complex.

This issue is addressed by using GMRES(k), or GMRES with restarts. When k becomes large, this algorithm restarts GMRES with an improved initial guess. The new initial guess is taken to be the vector that was found upon termination of the last GMRES iteration run. The algorithm GMRES(k) will always have manageable spatial and temporal complexity, but it is less reliable than GMRES. If the true solution \mathbf{x} to $A\mathbf{x} = \mathbf{b}$ is nearly orthogonal to the Krylov subspaces $\mathcal{K}_n(A, \mathbf{b})$ for $n \leq k$, then GMRES(k) could converge very slowly or not at all.

Problem 4. Write a function that implements GMRES with restarts as follows.

- 1. Perform the GMRES algorithm for a maximum of k iterations.
- 2. If the desired tolerance was reached, terminate the algorithm. If not, repeat step 1 using x_k from the previous GMRES algorithm as a new initial guess x_0 .
- 3. Repeat step 2 until the desired tolerance has been obtained or until a given maximum number of restarts has been reached.

Your function should accept all of the same inputs as the function you wrote in Problem 1 with the exception of k, which will now denote the number of iterations before restart (defaults to 5), and an additional parameter **restarts** which denotes the maximum number of restarts before termination (defaults to 50).

GMRES in SciPy

The GMRES algorithm is implemented in SciPy as the function scipy.sparse.linalg.gmres(). Here we use this function to solve $A\mathbf{x} = \mathbf{b}$ where A is a random 300×300 matrix and \mathbf{b} is a random vector.

```
>>> import numpy as np
>>> from scipy import sparse
>>> from scipy.sparse import linalg as spla
>>> A = np.random.rand(300, 300)
>>> b = np.random(300)
>>> x, info = spla.gmres(A, b)
>>> print(info)
3000
```

The function outputs two objects: the approximate solution \mathbf{x} and an integer info which gives information about the convergence of the algorithm. If info=0 then convergence occured; if info is positive then it equals the number of iterations performed. In the previous case, the function performed 3000 iterations of GMRES before returning the approximate solution \mathbf{x} . The following code verifies how close the computed value was to the exact solution.

```
>>> la.norm((A @ x) - b)
4.744196381683801
```

A better approximation can be obtained using GMRES with restarts.

```
# Restart after 1000 iterations.
>>> x, info = spla.gmres(A, b, restart=1000)
>>> info
0
>>> la.norm((A @ x) - b)
1.0280404494143551e-12
```

This time, the returned approximation \mathbf{x} is about as close to a true solution as can be expected.

Problem 5. Plot the runtimes of your implementations of GMRES from Problems 1 and 4 and scipy.sparse.linalg.gmres() use the default tolerance and restart=1000 with different matrices. Use the $m \times m$ matrix P with $m = 25, 50, \ldots 200$ and with entries taken from a random normal distribution with mean 0 and standard deviation $1/(2\sqrt{m})$. Use a vector of ones for **b** and a vector of zeros for \mathbf{x}_0 . Use a single figure for all plots, plot the runtime on the y-axis and m on the x-axis.

Lab 17. GMRES

166

Part II Appendices

Getting Started

The labs in this curriculum aim to introduce computational and mathematical concepts, walk through implementations of those concepts in Python, and use industrial-grade code to solve interesting, relevant problems. Lab assignments are usually about 5–10 pages long and include code examples (yellow boxes), important notes (green boxes), warnings about common errors (red boxes), and about 3–7 exercises (blue boxes). Get started by downloading the lab manual(s) for your course from http://foundations-of-applied-mathematics.github.io/.

Submitting Assignments

Labs

Every lab has a corresponding specifications file with some code to get you started and to make your submission compatible with automated test drivers. Like the lab manuals, these materials are hosted at http://foundations-of-applied-mathematics.github.io/.

Download the .zip file for your course, unzip the folder, and move it somewhere where it won't get lost. This folder has some setup scripts and a collection of folders, one per lab, each of which contains the specifications file(s) for that lab. See Student-Materials/wiki/Lab-Index for the complete list of labs, their specifications and data files, and the manual that each lab belongs to.

ACHTUNG!

Do **not** move or rename the lab folders or the enclosed specifications files; if you do, the test drivers will not be able to find your assignment. Make sure your folder and file names match Student-Materials/wiki/Lab-Index.

To submit a lab, modify the provided specifications file and use the file-sharing program specified by your instructor (discussed in the next section). The instructor will drop feedback files in the lab folder after grading the assignment. For example, the Introduction to Python lab has the specifications file PythonIntro/python_intro.py. To complete that assignment, modify PythonIntro/python_intro.py and submit it via your instructor's file-sharing system. After grading, the instructor will create a file called PythonIntro/PythonIntro_feedback.txt with your score and some feedback.

Homework

Non-lab coding homework should be placed in the _Homework/ folder and submitted like a lab assignment. Be careful to name your assignment correctly so the instructor (and test driver) can find it. The instructor may drop specifications files and/or feedback files in this folder as well.

Setup

ACHTUNG!

We strongly recommend using a Unix-based operating system (Mac or Linux) for the labs. Unix has a true bash terminal, works well with git and python, and is the preferred platform for computational and data scientists. It is possible to do this curriculum with Windows, but expect some road bumps along the way.

There are two ways to submit code to the instructor: with git (http://git-scm.com/), or with a file-syncing service like Google Drive. Your instructor will indicate which system to use.

Setup With Git

Git is a program that manages updates between an online code repository and the copies of the repository, called *clones*, stored locally on computers. If git is not already installed on your computer, download it at http://git-scm.com/downloads. If you have never used git, you might want to read a few of the following resources.

- Official git tutorial: https://git-scm.com/docs/gittutorial
- Bitbucket git tutorials: https://www.atlassian.com/git/tutorials
- GitHub git cheat sheet: services.github.com/.../github-git-cheat-sheet.pdf
- GitLab git tutorial: https://docs.gitlab.com/ce/gitlab-basics/start-using-git.html
- Codecademy git lesson: https://www.codecademy.com/learn-git
- Training video series by GitHub: https://www.youtube.com/playlist?list=PLg7.../

There are many websites for hosting online git repositories. Your instructor will indicate which web service to use, but we only include instructions here for setup with Bitbucket.

- 1. Sign up. Create a Bitbucket account at https://bitbucket.org. If you use an academic email address (ending in .edu, etc.), you will get free unlimited public and private repositories.
- 2. Make a new repository. On the Bitbucket page, click the + button from the menu on the left and, under **CREATE**, select **Repository**. Provide a name for the repository, mark the repository as **private**, and make sure the repository type is **Git**. For **Include a README**?, select **No** (if you accidentally include a **README**, delete the repository and start over). Under **Advanced settings**, enter a short description for your repository, select **No forks** under forking, and select **Python** as the language. Finally, click the blue **Create repository** button. Take note of the URL of the webpage that is created; it should be something like https://bitbucket.org/<name>/<repo>.

- 3. Give the instructor access to your repository. On your newly created Bitbucket repository page (https://bitbucket.org/<name>/<repo> or similar), go to Settings in the menu to the left and select User and group access, the second option from the top. Enter your instructor's Bitbucket username under Users and click Add. Select the blue Write button so your instructor can read from and write feedback to your repository.
- 4. Connect your folder to the new repository. In a shell application (Terminal on Linux or Mac, or Git Bash (https://gitforwindows.org/) on Windows), enter the following commands.

```
# Navigate to your folder.
$ cd /path/to/folder # cd means 'change directory'.
# Make sure you are in the right place.
$ pwd
                      # pwd means 'print working directory'.
/path/to/folder
$ 1s *.md
                      # ls means 'list files'.
README.md
                     # This means README.md is in the working directory.
# Connect this folder to the online repository.
$ git init
$ git remote add origin https://<name>@bitbucket.org/<name>/<repo>.git
# Record your credentials.
$ git config --local user.name "your name"
$ git config --local user.email "your email"
# Add the contents of this folder to git and update the repository.
$ git add --all
$ git commit -m "initial commit"
$ git push origin master
```

For example, if your Bitbucket username is greek314, the repository is called acmev1, and the folder is called Student-Materials/ and is on the desktop, enter the following commands.

```
# Navigate to the folder.
$ cd ~/Desktop/Student-Materials
# Make sure this is the right place.
$ pwd
/Users/Archimedes/Desktop/Student-Materials
$ ls *.md
README.md
# Connect this folder to the online repository.
$ git init
$ git remote add origin https://greek314@bitbucket.org/greek314/acmev1.git
# Record credentials.
$ git config --local user.name "archimedes"
```

```
$ git config --local user.email "greek314@example.com"
# Add the contents of this folder to git and update the repository.
$ git add --all
$ git commit -m "initial commit"
$ git push origin master
```

At this point you should be able to see the files on your repository page from a web browser. If you enter the repository URL incorrectly in the git remote add origin step, you can reset it with the following line.

```
$ git remote set-url origin https://<name>@bitbucket.org/<name>/<repo>.git
```

5. Download data files. Many labs have accompanying data files. To download these files, navigate to your clone and run the download_data.sh bash script, which downloads the files and places them in the correct lab folder for you. You can also find individual data files through Student-Materials/wiki/Lab-Index.

```
# Navigate to your folder and run the script.
$ cd /path/to/folder
$ bash download_data.sh
```

6. Install Python package dependencies. The labs require several third-party Python packages that don't come bundled with Anaconda. Run the following command to install the necessary packages.

```
# Navigate to your folder and run the script.
$ cd /path/to/folder
$ bash install_dependencies.sh
```

7. (Optional) *Clone your repository*. If you want your repository on another computer after completing steps 1–4, use the following commands.

```
# Navigate to where you want to put the folder.
$ cd ~/Desktop/or/something/
# Clone the folder from the online repository.
$ git clone https://<name>@bitbucket.org/<name>/<repo>.git <foldername>
# Record your credentials in the new folder.
$ cd <foldername>
$ git config --local user.name "your name"
$ git config --local user.email "your email"
# Download data files to the new folder.
$ bash download_data.sh
```
Setup Without Git

Even if you aren't using git to submit files, you must install it (http://git-scm.com/downloads) in order to get the data files for each lab. Share your folder with your instructor according to their directions, and follow steps 5 and 6 of the previous section to download the data files and install package dependencies.

Using Git

Git manages the history of a file system through *commits*, or checkpoints. Use git status to see the files that have been changed since the last commit. These changes are then moved to the *staging area*, a list of files to save during the next commit, with git add <filename(s)>. Save the changes in the staging area with git commit -m "<A brief message describing the changes>".

Figure A.1: Git commands to stage, unstage, save, or discard changes. Commit messages are recorded in the log.

All of these commands are done within a clone of the repository, stored somewhere on a computer. This repository must be manually synchronized with the online repository via two other git commands: git pull origin master, to pull updates from the web to the computer; and git push origin master, to push updates from the computer to the web.

Figure A.2: Exchanging git commits between the repository and a local clone.

Command	Explanation
git status	Display the staging area and untracked changes.
git pull origin master	Pull changes from the online repository.
git push origin master	Push changes to the online repository.
<pre>git add <filename(s)></filename(s)></pre>	Add a file or files to the staging area.
git add -u	Add all modified, tracked files to the staging area.
git commit -m " <message>"</message>	Save the changes in the staging area with a given message.
git checkout <filename></filename>	Revert changes to an unstaged file since the last commit.
git reset HEAD <filename></filename>	Remove a file from the staging area.
git diff <filename></filename>	See the changes to an unstaged file since the last commit.
git diffcached <filename></filename>	See the changes to a staged file since the last commit.
git configlocal <option></option>	Record your credentials (user.name, user.email, etc.).

Table A.1: Common git commands.

Note

When pulling updates with git pull origin master, your terminal may sometimes display the following message.

```
Merge branch 'master' of https://bitbucket.org/<name>/<repo> into master
```

```
# Please enter a commit message to explain why this merge is necessary,
# especially if it merges an updated upstream into a topic branch.
#
# Lines starting with '#' will be ignored, and an empty message aborts
# the commit.
```

~

This means that someone else (the instructor) has pushed a commit that you do not yet have, while you have also made one or more commits locally that they do not have. This screen, displayed in *vim* (https://en.wikipedia.org/wiki/Vim_(text_editor)), is asking you to enter a message (or use the default message) to create a *merge commit* that will reconcile both changes. To close this screen and create the merge commit, type :wq and press enter.

Example Work Sessions

```
# Pull any updates from the online repository (such as TA feedback).
$ cd ~/Desktop/Student-Materials/
$ git pull origin master
From https://bitbucket.org/username/repo
* branch
                    master
                              -> FETCH_HEAD
Already up-to-date.
### Work on the labs. For example, modify PythonIntro/python_intro.py.
$ git status
On branch master
Your branch is up-to-date with 'origin/master'.
Changes not staged for commit:
  (use "git add <file>..." to update what will be committed)
  (use "git checkout -- <file>..." to discard changes in working directory)
   PythonIntro/python_intro.py
# Track the changes with git.
$ git add PythonIntro/python_intro.py
$ git status
On branch master
Your branch is up-to-date with 'origin/master'.
Changes to be committed:
  (use "git reset HEAD <file>..." to unstage)
    modified: PythonIntro/python_intro.py
# Commit the changes to the repository with an informative message.
$ git commit -m "Made some changes"
[master fed9b34] Made some changes
1 file changed, 10 insertion(+) 1 deletion(-)
# Push the changes to the online repository.
$ git push origin master
Counting objects: 3, done.
Delta compression using up to 2 threads.
Compressing objects: 100\% (2/2), done.
Writing objects: 100% (3/3), 327 bytes | 0 bytes/s, done.
Total 3 (delta 0), reused 0 (delta 0)
To https://username@bitbucket.org/username/repo.git
   5742a1b..fed9b34 master -> master
$ git status
On branch master
Your branch is up-to-date with 'origin/master'.
nothing to commit, working directory clean
```

Appendix A. Getting Started

Installing and Managing Python

Lab Objective: One of the great advantages of Python is its lack of overhead: it is relatively easy to download, install, start up, and execute. This appendix introduces tools for installing and updating specific packages and gives an overview of possible environments for working efficiently in Python.

Installing Python via Anaconda

A Python distribution is a single download containing everything needed to install and run Python, together with some common packages. For this curriculum, we **strongly** recommend using the *Anaconda* distribution to install Python. Anaconda includes IPython, a few other tools for developing in Python, and a large selection of packages that are common in applied mathematics, numerical computing, and data science. Anaconda is free and available for Windows, Mac, and Linux.

Follow these steps to install Anaconda.

- 1. Go to https://www.anaconda.com/download/.
- 2. Download the Python 3.6 graphical installer specific to your machine.
- 3. Open the downloaded file and proceed with the default configurations.

For help with installation, see https://docs.anaconda.com/anaconda/install/. This page contains links to detailed step-by-step installation instructions for each operating system, as well as information for updating and uninstalling Anaconda.

ACHTUNG!

This curriculum uses Python 3.6, **not** Python 2.7. With the wrong version of Python, some example code within the labs may not execute as intended or result in an error.

Managing Packages

A *Python package manager* is a tool for installing or updating Python packages, which involves downloading the right source code files, placing those files in the correct location on the machine, and linking the files to the Python interpreter. **Never** try to install a Python package without using a package manager (see https://xkcd.com/349/).

Conda

Many packages are not included in the default Anaconda download but can be installed via Anaconda's package manager, conda. See https://docs.anaconda.com/anaconda/packages/pkg-docs for the complete list of available packages. When you need to update or install a package, always try using conda first.

Command	Description
conda install <package-name></package-name>	Install the specified package.
conda update <package-name></package-name>	Update the specified package.
conda update conda	Update conda itself.
conda update anaconda	Update all packages included in Anaconda.
condahelp	Display the documentation for conda.

For example, the following terminal commands attempt to install and update matplotlib.

\$ conda update conda	#	Make sure that conda is up to date.
\$ conda install matplotlib	#	Attempt to install matplotlib.
\$ conda update matplotlib	#	Attempt to update matplotlib.

See https://conda.io/docs/user-guide/tasks/manage-pkgs.html for more examples.

Note

The best way to ensure a package has been installed correctly is to try importing it in IPython.

```
# Start IPython from the command line.
$ ipython
IPython 6.5.0 -- An enhanced Interactive Python. Type '?' for help.
# Try to import matplotlib.
In [1]: from matplotlib import pyplot as plt # Success!
```

ACHTUNG!

Be careful not to attempt to update a Python package while it is in use. It is safest to update packages while the Python interpreter is not running.

Pip

The most generic Python package manager is called **pip**. While it has a larger package list, **conda** is the cleaner and safer option. Only use **pip** to manage packages that are not available through **conda**.

Command	Description
pip install package-name	Install the specified package.
pip installupgrade package-name	Update the specified package.
pip freeze	Display the version number on all installed packages.
piphelp	Display the documentation for pip.

See https://pip.pypa.io/en/stable/user_guide/ for more complete documentation.

Workflows

There are several different ways to write and execute programs in Python. Try a variety of workflows to find what works best for you.

Text Editor + Terminal

The most basic way of developing in Python is to write code in a text editor, then run it using either the Python or IPython interpreter in the terminal.

There are many different text editors available for code development. Many text editors are designed specifically for computer programming which contain features such as syntax highlighting and error detection, and are highly customizable. Try installing and using some of the popular text editors listed below.

- Atom: https://atom.io/
- Sublime Text: https://www.sublimetext.com/
- Notepad++ (Windows): https://notepad-plus-plus.org/
- Geany: https://www.geany.org/
- Vim: https://www.vim.org/
- Emacs: https://www.gnu.org/software/emacs/

Once Python code has been written in a text editor and saved to a file, that file can be executed in the terminal or command line.

```
$ ls  # List the files in the current directory.
hello_world.py
$ cat hello_world.py  # Print the contents of the file to the terminal.
print("hello, world!")
$ python hello_world.py  # Execute the file.
hello, world!
# Alternatively, start IPython and run the file.
$ ipython
IPython 6.5.0 -- An enhanced Interactive Python. Type '?' for help.
In [1]: %run hello_world.py
hello, world!
```

IPython is an enhanced version of Python that is more user-friendly and interactive. It has many features that cater to productivity such as tab completion and object introspection.

Note

While Mac and Linux computers come with a built-in bash terminal, Windows computers do not. Windows does come with *Powershell*, a terminal-like application, but some commands in Powershell are different than their bash analogs, and some bash commands are missing from Powershell altogether. There are two good alternatives to the bash terminal for Windows:

- Windows subsystem for linux: docs.microsoft.com/en-us/windows/wsl/.
- Git bash: https://gitforwindows.org/.

Jupyter Notebook

The Jupyter Notebook (previously known as IPython Notebook) is a browser-based interface for Python that comes included as part of the Anaconda Python Distribution. It has an interface similar to the IPython interpreter, except that input is stored in cells and can be modified and re-evaluated as desired. See https://github.com/jupyter/jupyter/wiki/ for some examples.

To begin using Jupyter Notebook, run the command jupyter notebook in the terminal. This will open your file system in a web browser in the Jupyter framework. To create a Jupyter Notebook, click the **New** drop down menu and choose **Python 3** under the **Notebooks** heading. A new tab will open with a new Jupyter Notebook.

Jupyter Notebooks differ from other forms of Python development in that notebook files contain not only the raw Python code, but also formatting information. As such, Juptyer Notebook files cannot be run in any other development environment. They also have the file extension .ipynb rather than the standard Python extension .py.

Jupyter Notebooks also support Markdown—a simple text formatting language—and IATEX, and can embedded images, sound clips, videos, and more. This makes Jupyter Notebook the ideal platform for presenting code.

Integrated Development Environments

An *integrated development environment* (IDEs) is a program that provides a comprehensive environment with the tools necessary for development, all combined into a single application. Most IDEs have many tightly integrated tools that are easily accessible, but come with more overhead than a plain text editor. Consider trying out each of the following IDEs.

- JupyterLab: http://jupyterlab.readthedocs.io/en/stable/
- PyCharm: https://www.jetbrains.com/pycharm/
- Spyder: http://code.google.com/p/spyderlib/
- Eclipse with PyDev: http://www.eclipse.org/, https://www.pydev.org/

See https://realpython.com/python-ides-code-editors-guide/ for a good overview of these (and other) workflow tools.

NumPy Visual Guide

Lab Objective: NumPy operations can be difficult to visualize, but the concepts are straightforward. This appendix provides visual demonstrations of how NumPy arrays are used with slicing syntax, stacking, broadcasting, and axis-specific operations. Though these visualizations are for 1- or 2dimensional arrays, the concepts can be extended to n-dimensional arrays.

Data Access

The entries of a 2-D array are the rows of the matrix (as 1-D arrays). To access a single entry, enter the row index, a comma, and the column index. Remember that indexing begins with 0.

Slicing

A lone colon extracts an entire row or column from a 2-D array. The syntax [a:b] can be read as "the *a*th entry up to (but not including) the *b*th entry." Similarly, [a:] means "the *a*th entry to the end" and [:b] means "everything up to (but not including) the *b*th entry."

Stacking

np.hstack() stacks sequence of arrays horizontally and np.vstack() stacks a sequence of arrays vertically.

Because 1-D arrays are flat, np.hstack() concatenates 1-D arrays and np.vstack() stacks them vertically. To make several 1-D arrays into the columns of a 2-D array, use np.column_stack().

 $\mathbf{x} = \left[\begin{array}{ccc} \times & \times & \times \end{array} \right] \qquad \qquad \mathbf{y} = \left[\begin{array}{ccc} \ast & \ast & \ast \end{array} \right]$

 $np.hstack((x,y,x)) = \left[\times \times \times \times * * * * * \times \times \times \times \right]$

$$np.vstack((x,y,x)) = \begin{bmatrix} \times & \times & \times & \times \\ * & * & * & * \\ \times & \times & \times & \times \end{bmatrix} \quad np.column_stack((x,y,x)) = \begin{bmatrix} \times & * & \times \\ \times & * & \times \\ \times & * & \times \\ \times & * & \times \end{bmatrix}$$

The functions np.concatenate() and np.stack() are more general versions of np.hstack() and np.vstack(), and np.row_stack() is an alias for np.vstack().

Broadcasting

NumPy automatically aligns arrays for component-wise operations whenever possible. See http: //docs.scipy.org/doc/numpy/user/basics.broadcasting.html for more in-depth examples and broadcasting rules.

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \\ 1 & 2 & 3 \end{bmatrix} \qquad x = \begin{bmatrix} 10 & 20 & 30 \end{bmatrix}$$
$$A + x = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \\ 1 & 2 & 3 \end{bmatrix} \qquad = \begin{bmatrix} 11 & 22 & 33 \\ 11 & 22 & 33 \\ 11 & 22 & 33 \end{bmatrix}$$
$$+ \begin{bmatrix} 10 & 20 & 30 \end{bmatrix} \qquad = \begin{bmatrix} 11 & 12 & 33 \\ 11 & 22 & 33 \\ 11 & 22 & 33 \end{bmatrix}$$
$$+ x.reshape((1,-1)) = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \\ 1 & 2 & 3 \end{bmatrix} + \begin{bmatrix} 10 \\ 20 \\ 30 \end{bmatrix} \qquad = \begin{bmatrix} 11 & 12 & 13 \\ 21 & 22 & 23 \\ 31 & 32 & 33 \end{bmatrix}$$

Operations along an Axis

A

Most array methods have an **axis** argument that allows an operation to be done along a given axis. To compute the sum of each column, use **axis=0**; to compute the sum of each row, use **axis=1**.

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{bmatrix}$$
$$A.sum(axis=0) = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{bmatrix} = \begin{bmatrix} 4 & 8 & 12 & 16 \end{bmatrix}$$
$$A.sum(axis=1) = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{bmatrix} = \begin{bmatrix} 10 & 10 & 10 & 10 \end{bmatrix}$$

Appendix C. NumPy Visual Guide

Bibliography

- [ADH⁺01] David Ascher, Paul F Dubois, Konrad Hinsen, Jim Hugunin, Travis Oliphant, et al. Numerical python, 2001.
- [Cip00] Barry A. Cipra. The best of the 20th century: editors name top 10 algorithms. Siam news, 33(4), 16 May 2000.
- [Hea02] Michael T Heath. Scientific computing. McGraw-Hill New York, 2002.
- [Hun07] J. D. Hunter. Matplotlib: A 2d graphics environment. Computing In Science & Engineering, 9(3):90-95, 2007.
- [JOP⁺] Eric Jones, Travis Oliphant, Pearu Peterson, et al. SciPy: Open source scientific tools for Python, 2001–. [Online; accessed 11/05/18].
- [Kiu13] Jaan Kiusalaas. Numerical methods in engineering with Python 3. Cambridge university press, 2013.
- [MMH04] Neil Muller, Lourenco Magaia, and B. M. Herbst. Singular value decomposition, eigenfaces, and 3D reconstructions. *SIAM Rev.*, 46(3):518–545, 2004.
- [New10] Mark Newman. Networks: an introduction. Oxford university press, 2010.
- [Oli06] Travis E Oliphant. A guide to NumPy, volume 1. Trelgol Publishing USA, 2006.
- [Oli07] Travis E Oliphant. Python for scientific computing. Computing in Science & Engineering, 9(3), 2007.
- [QSS10] Alfio Quarteroni, Riccardo Sacco, and Fausto Saleri. *Numerical mathematics*, volume 37. Springer Science & Business Media, 2010.
- [SM00] Jianbo Shi and Jitendra Malik. Normalized cuts and image segmentation. *IEEE Trans*actions on Pattern Analysis and Machine Intelligence, 22(8):888–905, 2000.
- [TB97] Lloyd N. Trefethen and David Bau, III. *Numerical linear algebra*. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1997.
- [VD10] Guido VanRossum and Fred L Drake. *The python language reference*. Python software foundation Amsterdam, Netherlands, 2010.