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Preface

This lab manual is designed to accompany the textbook Foundations of Applied Mathematics

Volume 1: Mathematical Analysis by Humpherys, Jarvis and Evans. The labs focus mainly on

important numerical linear algebra algorithms, with applications to images, networks, and data

science. The reader should be familiar with Python [VD10] and its NumPy [Oli06, ADH+01, Oli07]

and Matplotlib [Hun07] packages before attempting these labs. See the Python Essentials manual

for introductions to these topics.

©This work is licensed under the Creative Commons Attribution 3.0 United States License.

You may copy, distribute, and display this copyrighted work only if you give credit to Dr. J. Humpherys.

All derivative works must include an attribution to Dr. J. Humpherys as the owner of this work as

well as the web address to

https://github.com/Foundations-of-Applied-Mathematics/Labs

as the original source of this work.

To view a copy of the Creative Commons Attribution 3.0 License, visit

http://creativecommons.org/licenses/by/3.0/us/

or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105,

USA.

iii
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1 Linear
Transformations

Lab Objective: Linear transformations are the most basic and essential operators in vector space

theory. In this lab we visually explore how linear transformations alter points in the Cartesian plane.

We also empirically explore the computational cost of applying linear transformations via matrix

multiplication.

Linear Transformations
A linear transformation is a mapping between vector spaces that preserves addition and scalar

multiplication. More precisely, let V and W be vector spaces over a common �eld F. A map

L : V →W is a linear transformation from V into W if

L(ax1 + bx2) = aLx1 + bLx2

for all vectors x1, x2 ∈ V and scalars a, b ∈ F.
Every linear transformation L from anm-dimensional vector space into an n-dimensional vector

space can be represented by an m× n matrix A, called the matrix representation of L. To apply L

to a vector x, left multiply by its matrix representation. This results in a new vector x′, where each

component is some linear combination of the elements of x. For linear transformations from R2 to

R2, this process has the form

Ax =

[
a b

c d

] [
x

y

]
=

[
ax+ by

cx+ dy

]
=

[
x′

y′

]
= x′.

Linear transformations can be interpreted geometrically. To demonstrate this, consider the

array of points H that collectively form a picture of a horse, stored in the �le horse.npy. The

coordinate pairs xi are organized by column, so the array has two rows: one for x-coordinates, and

one for y-coordinates. Matrix multiplication on the left transforms each coordinate pair, resulting in

another matrix H ′ whose columns are the transformed coordinate pairs:

AH = A

[
x1 x2 x3 . . .

y1 y2 y3 . . .

]
= A

 x1 x2 x3 . . .

 =

 Ax1 Ax2 Ax3 . . .


=

 x′1 x′2 x′3 . . .

 =

[
x′1 x′2 x′3 . . .

y′1 y′2 y′3 . . .

]
= H ′.

3



4 Lab 1. Linear Transformations

To begin, use np.load() to extract the array from the npy �le, then plot the unaltered points

as individual pixels. See Figure 1.1 for the result.

>>> import numpy as np

>>> from matplotlib import pyplot as plt

# Load the array from the .npy file.

>>> data = np.load("horse.npy")

# Plot the x row against the y row with black pixels.

>>> plt.plot(data[0], data[1], 'k,')

# Set the window limits to [-1, 1] by [-1, 1] and make the window square.

>>> plt.axis([-1,1,-1,1])

>>> plt.gca().set_aspect("equal")

>>> plt.show()

Types of Linear Transformations
Linear transformations from R2 into R2 can be classi�ed in a few ways.

� Stretch: Stretches or compresses the vector along each axis. The matrix representation is

diagonal: [
a 0

0 b

]
.

If a = b, the transformation is called a dilation. The stretch in Figure 1.1 uses a = 1
2 and b = 6

5

to compress the x-axis and stretch the y-axis.

� Shear: Slants the vector by a scalar factor horizontally or vertically (or both simultaneously).

The matrix representation is [
1 a

b 1

]
.

Pure horizontal shears (b = 0) skew the x-coordinate of the vector while pure vertical shears

(a = 0) skew the y-coordinate. Figure 1.1 has a horizontal shear with a = 1
2 , b = 0.

� Re�ection: Re�ects the vector about a line that passes through the origin. The re�ection

about the line spanned by the vector [a, b]
T
has the matrix representation

1

a2 + b2

[
a2 − b2 2ab

2ab b2 − a2

]
.

The re�ection in Figure 1.1 re�ects the image about the y-axis (a = 0, b = 1).

� Rotation: Rotates the vector around the origin. A counterclockwise rotation of θ radians has

the following matrix representation: [
cos θ − sin θ

sin θ cos θ

]
A negative value of θ performs a clockwise rotation. Choosing θ = π

2 produces the rotation in

Figure 1.1.
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Original Stretch Shear

Reflection Rotation Composition
Figure 1.1: The points stored in horse.npy under various linear transformations.

Problem 1. Write a function for each type of linear transformation. Each function should

accept an array to transform and the scalars that de�ne the transformation (a and b for stretch,

shear, and re�ection, and θ for rotation). Construct the matrix representation, left multiply it

with the input array, and return the transformed array.

To test these functions, write a function to plot the original points in horse.npy together

with the transformed points in subplots for a side-by-side comparison. Compare your results

to Figure 1.1.

Compositions of Linear Transformations

Let V , W , and Z be �nite-dimensional vector spaces. If L : V → W and K : W → Z are linear

transformations with matrix representations A and B, respectively, then the composition function

KL : V → Z is also a linear transformation, and its matrix representation is the matrix product BA.

For example, if S is a matrix representing a shear and R is a matrix representing a rotation,

then RS represents a shear followed by a rotation. In fact, any linear transformation L : R2 → R2

is a composition of the four transformations discussed above. Figure 1.1 displays the composition of

all four previous transformations, applied in order (stretch, shear, re�ection, then rotation).



6 Lab 1. Linear Transformations

Affine Transformations
All linear transformations map the origin to itself. An a�ne transformation is a mapping between

vector spaces that preserves the relationships between points and lines, but that may not preserve

the origin. Every a�ne transformation T can be represented by a matrix A and a vector b. To apply

T to a vector x, calculate Ax+b. If b = 0 then the transformation is linear, and if A = I but b 6= 0

then it is called a translation.

For example, if T is the translation with b =
[

3
4 ,

1
2

]T
, then applying T to an image will shift it

right by 3
4 and up by 1

2 . This translation is illustrated below.

Original Translation

A�ne transformations include all compositions of stretches, shears, rotations, re�ections, and

translations. For example, if S represents a shear and R a rotation, and if b is a vector, then RSx+b

shears, then rotates, then translates x.

Modeling Motion with Affine Transformations
A�ne transformations can be used to model particle motion, such as a planet rotating around the

sun. Let the sun be the origin, the planet's location at time t be given by the vector p(t), and suppose

the planet has angular momentum ω (a measure of how fast the planet goes around the sun). To �nd

the planet's position at time t given the planet's initial position p(0), rotate the vector p(0) around

the origin by tω radians. Thus if R(θ) is the matrix representation of the linear transformation that

rotates a vector around the origin by θ radians, then p(t) = R(tω)p(0).

Origin p(0)

p(t)

tω radians
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Composing the rotation with a translation shifts the center of rotation away from the origin,

yielding more complicated motion.

Problem 2. The moon orbits the earth while the earth orbits the sun. Assuming circular

orbits, we can compute the trajectories of both the earth and the moon using only linear and

a�ne transformations.

Assume an orientation where both the earth and moon travel counterclockwise, with the

sun at the origin. Let pe(t) and pm(t) be the positions of the earth and the moon at time t,

respectively, and let ωe and ωm be each celestial body's angular momentum. For a particular

time t, we calculate pe(t) and pm(t) with the following steps.

1. Compute pe(t) by rotating the initial vector pe(0) counterclockwise about the origin by

tωe radians.

2. Calculate the position of the moon relative to the earth at time t by rotating the vector

pm(0)− pe(0) counterclockwise about the origin by tωm radians.

3. To compute pm(t), translate the vector resulting from the previous step by pe(t).

Write a function that accepts a �nal time T , initial positions xe and xm, and the angular

momenta ωe and ωm. Assuming initial positions pe(0) = (xe, 0) and pm(0) = (xm, 0), plot

pe(t) and pm(t) over the time interval t ∈ [0, T ].

Setting T = 3π
2 , xe = 10, xm = 11, ωe = 1, and ωm = 13, your plot should resemble

the following �gure (�x the aspect ratio with ax.set_aspect("equal")). Note that a more

celestially accurate �gure would use xe = 400, xm = 401 (the interested reader should see

http://www.math.nus.edu.sg/aslaksen/teaching/convex.html).

10 5 0 5 10

10

5

0

5

10

Earth
Moon

http://www.math.nus.edu.sg/aslaksen/teaching/convex.html
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Timing Matrix Operations
Linear transformations are easy to perform via matrix multiplication. However, performing matrix

multiplication with very large matrices can strain a machine's time and memory constraints. For

the remainder of this lab we take an empirical approach in exploring how much time and memory

di�erent matrix operations require.

Timing Code
Recall that the time module's time() function measures the number of seconds since the Epoch.

To measure how long it takes for code to run, record the time just before and just after the code in

question, then subtract the �rst measurement from the second to get the number of seconds that have

passed. Additionally, in IPython, the quick command %timeit uses the timeit module to quickly

time a single line of code.

In [1]: import time

In [2]: def for_loop():

...: """Go through ten million iterations of nothing."""

...: for _ in range(int(1e7)):

...: pass

In [3]: def time_for_loop():

...: """Time for_loop() with time.time()."""

...: start = time.time() # Clock the starting time.

...: for_loop()

...: return time.time() - start # Return the elapsed time.

In [4]: time_for_loop()

0.24458789825439453

In [5]: %timeit for_loop()

248 ms +- 5.35 ms per loop (mean +- std. dev. of 7 runs, 1 loop each)

Timing an Algorithm
Most algorithms have at least one input that dictates the size of the problem to be solved. For

example, the following functions take in a single integer n and produce a random vector of length n

as a list or a random n× n matrix as a list of lists.

from random import random

def random_vector(n): # Equivalent to np.random.random(n).tolist()

"""Generate a random vector of length n as a list."""

return [random() for i in range(n)]

def random_matrix(n): # Equivalent to np.random.random((n,n)).tolist()

"""Generate a random nxn matrix as a list of lists."""

return [[random() for j in range(n)] for i in range(n)]
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Executing random_vector(n) calls random() n times, so doubling n should about double the

amount of time random_vector(n) takes to execute. By contrast, executing random_matrix(n) calls

random() n2 times (n times per row with n rows). Therefore doubling n will likely more than double

the amount of time random_matrix(n) takes to execute, especially if n is large.

To visualize this phenomenon, we time random_matrix() for n = 21, 22, . . . , 212 and plot n

against the execution time. The result is displayed below on the left.

>>> domain = 2**np.arange(1,13)

>>> times = []

>>> for n in domain:

... start = time.time()

... random_matrix(n)

... times.append(time.time() - start)

...

>>> plt.plot(domain, times, 'g.-', linewidth=2, markersize=15)

>>> plt.xlabel("n", fontsize=14)

>>> plt.ylabel("Seconds", fontsize=14)

>>> plt.show()

0 1000 2000 3000 4000
n

0.0

0.5

1.0

1.5

2.0
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0 1000 2000 3000 4000
n

0.0
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1.5

2.0

Se
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s

The �gure on the left shows that the execution time for random_matrix(n) increases quadrat-

ically in n. In fact, the blue dotted line in the �gure on the right is the parabola y = an2, which

�ts nicely over the timed observations. Here a is a small constant, but it is much less signi�cant

than the exponent on the n. To represent this algorithm's growth, we ignore a altogether and write

random_matrix(n) ∼ n2.

Note

An algorithm like random_matrix(n) whose execution time increases quadratically with n is

called O(n2), notated by random_matrix(n) ∈ O(n2). Big-oh notation is common for indicating

both the temporal complexity of an algorithm (how the execution time grows with n) and the

spatial complexity (how the memory usage grows with n).
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Problem 3. Let A be an m× n matrix with entries aij , x be an n× 1 vector with entries xk,

and B be an n× p matrix with entries bij . The matrix-vector product Ax = y is a new m× 1

vector and the matrix-matrix product AB = C is a new m× p matrix. The entries yi of y and

cij of C are determined by the following formulas:

yi =

n∑
k=1

aikxk cij =

n∑
k=1

aikbkj

These formulas are implemented below without using NumPy arrays or operations.

def matrix_vector_product(A, x): # Equivalent to np.dot(A,x).tolist()

"""Compute the matrix-vector product Ax as a list."""

m, n = len(A), len(x)

return [sum([A[i][k] * x[k] for k in range(n)]) for i in range(m)]

def matrix_matrix_product(A, B): # Equivalent to np.dot(A,B).tolist()

"""Compute the matrix-matrix product AB as a list of lists."""

m, n, p = len(A), len(B), len(B[0])

return [[sum([A[i][k] * B[k][j] for k in range(n)])

for j in range(p) ]

for i in range(m) ]

Time each of these functions with increasingly large inputs. Generate the inputs A, x,

and B with random_matrix() and random_vector() (so each input will be n × n or n × 1).

Only time the multiplication functions, not the generating functions.

Report your �ndings in a single �gure with two subplots: one with matrix-vector times,

and one with matrix-matrix times. Choose a domain for n so that your �gure accurately

describes the growth, but avoid values of n that lead to execution times of more than 1 minute.

Your �gure should resemble the following plots.

0 50 100 150 200 250
n

0.000

0.001

0.002
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Matrix-Vector Multiplication
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Matrix-Matrix Multiplication
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Logarithmic Plots

Though the two plots from Problem 3 look similar, the scales on the y-axes show that the actual

execution times di�er greatly. To be compared correctly, the results need to be viewed di�erently.

A logarithmic plot uses a logarithmic scale�with values that increase exponentially, such as

101, 102, 103, . . .�on one or both of its axes. The three kinds of log plots are listed below.

� log-lin: the x-axis uses a logarithmic scale but the y-axis uses a linear scale.

Use plt.semilogx() instead of plt.plot().

� lin-log: the x-axis is uses a linear scale but the y-axis uses a log scale.

Use plt.semilogy() instead of plt.plot().

� log-log: both the x and y-axis use a logarithmic scale.

Use plt.loglog() instead of plt.plot().

Since the domain n = 21, 22, . . . is a logarithmic scale and the execution times increase

quadratically, we visualize the results of the previous problem with a log-log plot. The default base

for the logarithmic scales on logarithmic plots in Matplotlib is 10. To change the base to 2 on each

axis, specify the keyword arguments basex=2 and basey=2.

Suppose the domain of n values are stored in domain and the corresponding execution times

for matrix_vector_product() and matrix_matrix_product() are stored in vector_times and

matrix_times, respectively. Then the following code produces Figure 1.5.

>>> ax1 = plt.subplot(121) # Plot both curves on a regular lin-lin plot.

>>> ax1.plot(domain, vector_times, 'b.-', lw=2, ms=15, label="Matrix-Vector")

>>> ax1.plot(domain, matrix_times, 'g.-', lw=2, ms=15, label="Matrix-Matrix")

>>> ax1.legend(loc="upper left")

>>> ax2 = plot.subplot(122) # Plot both curves on a base 2 log-log plot.

>>> ax2.loglog(domain, vector_times, 'b.-', basex=2, basey=2, lw=2)

>>> ax2.loglog(domain, matrix_times, 'g.-', basex=2, basey=2, lw=2)

>>> plt.show()

0 50 100 150 200 250
0.0

0.5

1.0

1.5

2.0

2.5 Matrix-Vector
Matrix-Matrix

21 22 23 24 25 26 27 28

2 16

2 13

2 10

2 7

2 4

2 1

22

Figure 1.5
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In the log-log plot, the slope of the matrix_matrix_product() line is about 3 and the slope of

the matrix_vector_product() line is about 2. This re�ects the fact that matrix-matrix multipli-

cation (which uses 3 loops) is O(n3), while matrix-vector multiplication (which only has 2 loops) is

only O(n2).

Problem 4. NumPy is built speci�cally for fast numerical computations. Repeat the experi-

ment of Problem 3, timing the following operations:

� matrix-vector multiplication with matrix_vector_product().

� matrix-matrix multiplication with matrix_matrix_product().

� matrix-vector multiplication with np.dot() or @.

� matrix-matrix multiplication with np.dot() or @.

Create a single �gure with two subplots: one with all four sets of execution times on a

regular linear scale, and one with all four sets of execution times on a log-log scale. Compare

your results to Figure 1.5.

Note

Problem 4 shows that matrix operations are signi�cantly faster in NumPy than in

plain Python. Matrix-matrix multiplication grows cubically regardless of the implementation;

however, with lists the times grows at a rate of an3 while with NumPy the times grow at a rate

of bn3, where a is much larger than b. NumPy is more e�cient for several reasons:

1. Iterating through loops is very expensive. Many of NumPy's operations are implemented

in C, which are much faster than Python loops.

2. Arrays are designed speci�cally for matrix operations, while Python lists are general

purpose.

3. NumPy carefully takes advantage of computer hardware, e�ciently using di�erent levels

of computer memory.

However, in Problem 4, the execution times for matrix multiplication with NumPy seem

to increase somewhat inconsistently. This is because the fastest layer of computer memory can

only handle so much information before the computer has to begin using a larger, slower layer

of memory.
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Additional Material
Image Transformation as a Class
Consider organizing the functions from Problem 1 into a class. The constructor might accept an

array or the name of a �le containing an array. This structure would makes it easy to do several

linear or a�ne transformations in sequence.

>>> horse = ImageTransformer("horse.npy")

>>> horse.stretch(.5, 1.2)

>>> horse.shear(.5, 0)

>>> horse.relect(0, 1)

>>> horse.rotate(np.pi/2.)

>>> horse.translate(.75, .5)

>>> horse.display()

Animating Parametrizations
The plot in Problem 2 fails to fully convey the system's evolution over time because time itself is not

part of the plot. The following function creates an animation for the earth and moon trajectories.

from matplotlib.animation import FuncAnimation

def solar_system_animation(earth, moon):

"""Animate the moon orbiting the earth and the earth orbiting the sun.

Parameters:

earth ((2,N) ndarray): The earth's postion with x-coordinates on the

first row and y coordinates on the second row.

moon ((2,N) ndarray): The moon's postion with x-coordinates on the

first row and y coordinates on the second row.

"""

fig, ax = plt.subplots(1,1) # Make a figure explicitly.

plt.axis([-15,15,-15,15]) # Set the window limits.

ax.set_aspect("equal") # Make the window square.

earth_dot, = ax.plot([],[], 'C0o', ms=10) # Blue dot for the earth.

earth_path, = ax.plot([],[], 'C0-') # Blue line for the earth.

moon_dot, = ax.plot([],[], 'C2o', ms=5) # Green dot for the moon.

moon_path, = ax.plot([],[], 'C2-') # Green line for the moon.

ax.plot([0],[0],'y*', ms=20) # Yellow star for the sun.

def animate(index):

earth_dot.set_data(earth[0,index], earth[1,index])

earth_path.set_data(earth[0,:index], earth[1,:index])

moon_dot.set_data(moon[0,index], moon[1,index])

moon_path.set_data(moon[0,:index], moon[1,:index])

return earth_dot, earth_path, moon_dot, moon_path,

a = FuncAnimation(fig, animate, frames=earth.shape[1], interval=25)

plt.show()
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2 Linear Systems

Lab Objective: The fundamental problem of linear algebra is solving the linear system Ax = b,

given that a solution exists. There are many approaches to solving this problem, each with di�erent

pros and cons. In this lab we implement the LU decomposition and use it to solve square linear

systems. We also introduce SciPy, together with its libraries for linear algebra and working with

sparse matrices.

Gaussian Elimination
The standard approach for solving the linear system Ax = b on paper is reducing the augmented

matrix [A | b] to row-echelon form (REF) via Gaussian elimination, then using back substitution.

The matrix is in REF when the leading non-zero term in each row is the diagonal term, so the matrix

is upper triangular.

At each step of Gaussian elimination, there are three possible operations: swapping two rows,

multiplying one row by a scalar value, or adding a scalar multiple of one row to another. Many

systems, like the one displayed below, can be reduced to REF using only the third type of operation.

First, use multiples of the �rst row to get zeros below the diagonal in the �rst column, then use a

multiple of the second row to get zeros below the diagonal in the second column. 1 1 1 1

1 4 2 3

4 7 8 9

 −→
 1 1 1 1

0 3 1 2

4 7 8 9

 −→
 1 1 1 1

0 3 1 2

0 3 4 5

 −→
 1 1 1 1

0 3 1 2

0 0 3 3


Each of these operations is equivalent to left-multiplying by a type III elementary matrix, the

identity with a single non-zero non-diagonal term. If row operation k corresponds to matrix Ek, the

following equation is E3E2E1A = U . 1 0 0

0 1 0

0 −1 1

 1 0 0

0 1 0

−4 0 1

 1 0 0

−1 1 0

0 0 1

 1 1 1 1

1 4 2 3

4 7 8 9

 =

 1 1 1 1

0 3 1 2

0 0 3 3


However, matrix multiplication is an ine�cient way to implement row reduction. Instead,

modify the matrix in place (without making a copy), changing only those entries that are a�ected

by each row operation.

15
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>>> import numpy as np

>>> A = np.array([[1, 1, 1, 1],

... [1, 4, 2, 3],

... [4, 7, 8, 9]], dtype=np.float)

# Reduce the 0th column to zeros below the diagonal.

>>> A[1,0:] -= (A[1,0] / A[0,0]) * A[0]

>>> A[2,0:] -= (A[2,0] / A[0,0]) * A[0]

# Reduce the 1st column to zeros below the diagonal.

>>> A[2,1:] -= (A[2,1] / A[1,1]) * A[1,1:]

>>> print(A)

[[ 1. 1. 1. 1.]

[ 0. 3. 1. 2.]

[ 0. 0. 3. 3.]]

Note that the �nal row operation modi�es only part of the third row to avoid spending the

computation time of adding 0 to 0.

If a 0 appears on the main diagonal during any part of row reduction, the approach given above

tries to divide by 0. Swapping the current row with one below it that does not have a 0 in the same

column solves this problem. This is equivalent to left-multiplying by a type II elementary matrix,

also called a permutation matrix.

Achtung!

Gaussian elimination is not always numerically stable. In other words, it is susceptible to

rounding error that may result in an incorrect �nal matrix. Suppose that, due to roundo�

error, the matrix A has a very small entry on the diagonal.

A =

[
10−15 1

−1 0

]
Though 10−15 is essentially zero, instead of swapping the �rst and second rows to put A in

REF, a computer might multiply the �rst row by 1015 and add it to the second row to eliminate

the −1. The resulting matrix is far from what it would be if the 10−15 were actually 0.[
10−15 1

−1 0

]
−→

[
10−15 1

0 1015

]
Round-o� error can propagate through many steps in a calculation. The NumPy routines

that employ row reduction use several tricks to minimize the impact of round-o� error, but

these tricks cannot �x every matrix.
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Problem 1. Write a function that reduces an arbitrary square matrix A to REF. You may

assume that A is invertible and that a 0 will never appear on the main diagonal (so only use

type III row reductions, not type II). Avoid operating on entries that you know will be 0 before

and after a row operation. Use at most two nested loops.

Test your function with small test cases that you can check by hand. Consider using

np.random.randint() to generate a few manageable tests cases.

The LU Decomposition

The LU decomposition of a square matrix A is a factorization A = LU where U is the upper

triangular REF of A and L is the lower triangular product of the type III elementary matrices

whose inverses reduce A to U . The LU decomposition of A exists when A can be reduced to REF

using only type III elementary matrices (without any row swaps). However, the rows of A can always

be permuted in a way such that the decomposition exists. If P is a permutation matrix encoding the

appropriate row swaps, then the decomposition PA = LU always exists.

Suppose A has an LU decomposition (not requiring row swaps). Then A can be reduced

to REF with k row operations, corresponding to left-multiplying the type III elementary matrices

E1, . . . , Ek. Because there were no row swaps, each Ei is lower triangular, so each inverse E−1
i is also

lower triangular. Furthermore, since the product of lower triangular matrices is lower triangular, L

is lower triangular:

Ek . . . E2E1A = U −→ A = (Ek . . . E2E1)−1U

= E−1
1 E−1

2 . . . E−1
k U

= LU.

Thus, L can be computed by right-multiplying the identity by the matrices used to reduce U .

However, in this special situation, each right-multiplication only changes one entry of L, matrix mul-

tiplication can be avoided altogether. The entire process, only slightly di�erent than row reduction,

is summarized below.

Algorithm 2.1

1: procedure LU Decomposition(A)

2: m,n← shape(A) . Store the dimensions of A.

3: U ← copy(A) . Make a copy of A with np.copy().

4: L← Im . The m×m identity matrix.

5: for j = 0 . . . n− 1 do

6: for i = j + 1 . . .m− 1 do

7: Li,j ← Ui,j/Uj,j
8: Ui,j: ← Ui,j: − Li,jUj,j:
9: return L,U

Problem 2. Write a function that �nds the LU decomposition of a square matrix. You may

assume that the decomposition exists and requires no row swaps.
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Forward and Backward Substitution

If PA = LU and Ax = b, then LUx = PAx = Pb. This system can be solved by �rst solving

Ly = Pb, then Ux = y. Since L and U are both triangular, these systems can be solved with

backward and forward substitution. We can thus compute the LU factorization of A once, then use

substitution to e�ciently solve Ax = b for various values of b.

Since the diagonal entries of L are all 1, the triangular system Ly = b has the form
1 0 0 · · · 0

l21 1 0 · · · 0

l31 l32 1 · · · 0
...

...
...

. . .
...

ln1 ln2 ln3 · · · 1




y1

y2

y3

...

yn

 =


b1
b2
b3
...

bn

 .

Matrix multiplication yields the equations

y1 = b1, y1 = b1,

l21y1 + y2 = b2, y2 = b2 − l21y1,

...
...

k−1∑
j=1

lkjyj + yk = bk, yk = bk −
k−1∑
j=1

lkjyj . (2.1)

The triangular system Ux = y yields similar equations, but in reverse order:
u11 u12 u13 · · · u1n

0 u22 u23 · · · u2n

0 0 u33 · · · u3n

...
...

...
. . .

...

0 0 0 · · · unn




x1

x2

x3

...

xn

 =


y1

y2

y3

...

yn

 ,

unnxn = yn, xn =
1

unn
yn,

un−1,n−1xn−1 + un−1,nxn = yn−1, xn−1 =
1

un−1,n−1
(yn−1 − un−1,nxn) ,

...
...

n∑
j=k

ukjxj = yk, xk =
1

ukk

yk − n∑
j=k+1

ukjxj

 . (2.2)

Problem 3. Write a function that, given A and b, solves the square linear system Ax = b.

Use the function from Problem 2 to compute L and U , then use (2.1) and (2.2) to solve for y,

then x. You may again assume that no row swaps are required (P = I in this case).
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SciPy
SciPy [JOP+ ] is a powerful scienti�c computing library built upon NumPy. It includes high-level

tools for linear algebra, statistics, signal processing, integration, optimization, machine learning, and

more.

SciPy is typically imported with the convention import scipy as sp. However, SciPy is set

up in a way that requires its submodules to be imported individually.1

>>> import scipy as sp

>>> hasattr(sp, "stats") # The stats module isn't loaded yet.

False

>>> from scipy import stats # Import stats explicitly. Access it

>>> hasattr(sp, "stats") # with 'stats' or 'sp.stats'.

True

Linear Algebra

NumPy and SciPy both have a linear algebra module, each called linalg, but SciPy's module is the

larger of the two. Some of SciPy's common linalg functions are listed below.

Function Returns

det() The determinant of a square matrix.

eig() The eigenvalues and eigenvectors of a square matrix.

inv() The inverse of an invertible matrix.

norm() The norm of a vector or matrix norm of a matrix.

solve() The solution to Ax = b (the system need not be square).

This library also includes routines for computing matrix decompositions.

>>> from scipy import linalg as la

# Make a random matrix and a random vector.

>>> A = np.random.random((1000,1000))

>>> b = np.random.random(1000)

# Compute the LU decomposition of A, including pivots.

>>> L, P = la.lu_factor(A)

# Use the LU decomposition to solve Ax = b.

>>> x = la.lu_solve((L,P), b)

# Check that the solution is legitimate.

>>> np.allclose(A @ x, b)

True

1SciPy modules like linalg are really packages, which are not initialized when SciPy is imported alone.
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As with NumPy, SciPy's routines are all highly optimized. However, some algorithms are, by

nature, faster than others.

Problem 4. Write a function that times di�erent scipy.linalg functions for solving square

linear systems.

For various values of n, generate a random n×n matrix A and a random n-vector b using

np.random.random(). Time how long it takes to solve the system Ax = b with each of the

following approaches:

1. Invert A with la.inv() and left-multiply the inverse to b.

2. Use la.solve().

3. Use la.lu_factor() and la.lu_solve() to solve the system with the LU decomposition.

4. Use la.lu_factor() and la.lu_solve(), but only time la.lu_solve() (not the time

it takes to do the factorization with la.lu_factor()).

Plot the system size n versus the execution times. Use log scales if needed.

Achtung!

Problem 4 demonstrates that computing a matrix inverse is computationally expensive. In fact,

numerically inverting matrices is so costly that there is hardly ever a good reason to do it. Use

a speci�c solver like la.lu_solve() whenever possible instead of using la.inv().

Sparse Matrices

Large linear systems can have tens of thousands of entries. Storing the corresponding matrices in

memory can be di�cult: a 105 × 105 system requires around 40 GB to store in a NumPy array (4

bytes per entry × 1010 entries). This is well beyond the amount of RAM in a normal laptop.

In applications where systems of this size arise, it is often the case that the system is sparse,

meaning that most of the entries of the matrix are 0. SciPy's sparse module provides tools for

e�ciently constructing and manipulating 1- and 2-D sparse matrices. A sparse matrix only stores

the nonzero values and the positions of these values. For su�ciently sparse matrices, storing the

matrix as a sparse matrix may only take megabytes, rather than gigabytes.

For example, diagonal matrices are sparse. Storing an n× n diagonal matrix in the naïve way

means storing n2 values in memory. It is more e�cient to instead store the diagonal entries in a

1-D array of n values. In addition to using less storage space, this allows for much faster matrix

operations: the standard algorithm to multiply a matrix by a diagonal matrix involves n3 steps, but

most of these are multiplying by or adding 0. A smarter algorithm can accomplish the same task

much faster.

SciPy has seven sparse matrix types. Each type is optimized either for storing sparse matrices

whose nonzero entries follow certain patterns, or for performing certain computations.
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Name Description Advantages

bsr_matrix Block Sparse Row Specialized structure.

coo_matrix Coordinate Format Conversion among sparse formats.

csc_matrix Compressed Sparse Column Column-based operations and slicing.

csr_matrix Compressed Sparse Row Row-based operations and slicing.

dia_matrix Diagonal Storage Specialized structure.

dok_matrix Dictionary of Keys Element access, incremental construction.

lil_matrix Row-based Linked List Incremental construction.

Creating Sparse Matrices

A regular, non-sparse matrix is called full or dense. Full matrices can be converted to each of the

sparse matrix formats listed above. However, it is more memory e�cient to never create the full

matrix in the �rst place. There are three main approaches for creating sparse matrices from scratch.

� Coordinate Format: When all of the nonzero values and their positions are known, create

the entire sparse matrix at once as a coo_matrix. All nonzero values are stored as a coordinate

and a value. This format also converts quickly to other sparse matrix types.

>>> from scipy import sparse

# Define the rows, columns, and values separately.

>>> rows = np.array([0, 1, 0])

>>> cols = np.array([0, 1, 1])

>>> vals = np.array([3, 5, 2])

>>> A = sparse.coo_matrix((vals, (rows,cols)), shape=(3,3))

>>> print(A)

(0, 0) 3

(1, 1) 5

(0, 1) 2

# The toarray() method casts the sparse matrix as a NumPy array.

>>> print(A.toarray()) # Note that this method forfeits

[[3 2 0] # all sparsity-related optimizations.

[0 5 0]

[0 0 0]]

� DOK and LIL Formats: If the matrix values and their locations are not known beforehand,

construct the matrix incrementally with a dok_matrix or a lil_matrix. Indicate the size of

the matrix, then change individual values with regular slicing syntax.

>>> B = sparse.lil_matrix((2,6))

>>> B[0,2] = 4

>>> B[1,3:] = 9

>>> print(B.toarray())

[[ 0. 0. 4. 0. 0. 0.]

[ 0. 0. 0. 9. 9. 9.]]
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� DIA Format: Use a dia_matrix to store matrices that have nonzero entries on only certain

diagonals. The function sparse.diags() is one convenient way to create a dia_matrix from

scratch. Additionally, every sparse matrix has a setdiags() method for modifying speci�ed

diagonals.

# Use sparse.diags() to create a matrix with diagonal entries.

>>> diagonals = [[1,2],[3,4,5],[6]] # List the diagonal entries.

>>> offsets = [-1,0,3] # Specify the diagonal they go on.

>>> print(sparse.diags(diagonals, offsets, shape=(3,4)).toarray())

[[ 3. 0. 0. 6.]

[ 1. 4. 0. 0.]

[ 0. 2. 5. 0.]]

# If all of the diagonals have the same entry, specify the entry alone.

>>> A = sparse.diags([1,3,6], offsets, shape=(3,4))

>>> print(A.toarray())

[[ 3. 0. 0. 6.]

[ 1. 3. 0. 0.]

[ 0. 1. 3. 0.]]

# Modify a diagonal with the setdiag() method.

>>> A.setdiag([4,4,4], 0)

>>> print(A.toarray())

[[ 4. 0. 0. 6.]

[ 1. 4. 0. 0.]

[ 0. 1. 4. 0.]]

� BSR Format: Many sparse matrices can be formulated as block matrices, and a block matrix

can be stored e�ciently as a bsr_matrix. Use sparse.bmat() or sparse.block_diag() to

create a block matrix quickly.

# Use sparse.bmat() to create a block matrix. Use 'None' for zero blocks.

>>> A = sparse.coo_matrix(np.ones((2,2)))

>>> B = sparse.coo_matrix(np.full((2,2), 2.))

>>> print(sparse.bmat([[ A , None, A ],

[None, B , None]], format='bsr').toarray())

[[ 1. 1. 0. 0. 1. 1.]

[ 1. 1. 0. 0. 1. 1.]

[ 0. 0. 2. 2. 0. 0.]

[ 0. 0. 2. 2. 0. 0.]]

# Use sparse.block_diag() to construct a block diagonal matrix.

>>> print(sparse.block_diag((A,B)).toarray())

[[ 1. 1. 0. 0.]

[ 1. 1. 0. 0.]

[ 0. 0. 2. 2.]

[ 0. 0. 2. 2.]]
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Note

If a sparse matrix is too large to �t in memory as an array, it can still be visualized with

Matplotlib's plt.spy(), which colors in the locations of the non-zero entries of the matrix.

>>> from matplotlib import pyplot as plt

# Construct and show a matrix with 50 2x3 diagonal blocks.

>>> B = sparse.coo_matrix([[1,3,5],[7,9,11]])

>>> A = sparse.block_diag([B]*50)

>>> plt.spy(A, markersize=1)

>>> plt.show()
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Problem 5. Let I be the n× n identity matrix, and de�ne

A =



B I

I B I

I
. . .

. . .

. . .
. . . I

I B

 , B =



−4 1

1 −4 1

1
. . .

. . .

. . .
. . . 1

1 −4

 ,

where A is n2 × n2 and each block B is n × n. The large matrix A is used in �nite di�erence

methods for solving Laplace's equation in two dimensions, ∂
2u
∂x2 + ∂2u

∂y2 = 0.

Write a function that accepts an integer n and constructs and returns A as a sparse matrix.

Use plt.spy() to check that your matrix has nonzero values in the correct places.
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Sparse Matrix Operations

Once a sparse matrix has been constructed, it should be converted to a csr_matrix or a csc_matrix

with the matrix's tocsr() or tocsc() method. The CSR and CSC formats are optimized for row or

column operations, respectively. To choose the correct format to use, determine what direction the

matrix will be traversed.

For example, in the matrix-matrix multiplication AB, A is traversed row-wise, but B is tra-

versed column-wise. Thus A should be converted to a csr_matrix and B should be converted to a

csc_matrix.

# Initialize a sparse matrix incrementally as a lil_matrix.

>>> A = sparse.lil_matrix((10000,10000))

>>> for k in range(10000):

... A[np.random.randint(0,9999), np.random.randint(0,9999)] = k

...

>>> A

<10000x10000 sparse matrix of type '<type 'numpy.float64'>'

with 9999 stored elements in LInked List format>

# Convert A to CSR and CSC formats to compute the matrix product AA.

>>> Acsr = A.tocsr()

>>> Acsc = A.tocsc()

>>> Acsr.dot(Acsc)

<10000x10000 sparse matrix of type '<type 'numpy.float64'>'

with 10142 stored elements in Compressed Sparse Row format>

Beware that row-based operations on a csc_matrix are very slow, and similarly, column-based

operations on a csr_matrix are very slow.

Achtung!

Many familiar NumPy operations have analogous routines in the sparse module. These meth-

ods take advantage of the sparse structure of the matrices and are, therefore, usually signi�cantly

faster. However, SciPy's sparse matrices behave a little di�erently than NumPy arrays.

Operation numpy scipy.sparse

Component-wise Addition A + B A + B

Scalar Multiplication 2 * A 2 * A

Component-wise Multiplication A * B A.multiply(B)

Matrix Multiplication A.dot(B), A @ B A * B, A.dot(B), A @ B

Note in particular the di�erence between A * B for NumPy arrays and SciPy sparse

matrices. Do not use np.dot() to try to multiply sparse matrices, as it may treat the inputs

incorrectly. The syntax A.dot(B) is safest in most cases.

SciPy's sparse module has its own linear algebra library, scipy.sparse.linalg, designed for

operating on sparse matrices. Like other SciPy modules, it must be imported explicitly.
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>>> from scipy.sparse import linalg as spla

Problem 6. Write a function that times regular and sparse linear system solvers.

For various values of n, generate the n2 × n2 matrix A described in Problem 5 and a

random vector b with n2 entries. Time how long it takes to solve the system Ax = b with each

of the following approaches:

1. Convert A to CSR format and use scipy.sparse.linalg.spsolve() (spla.spsolve()).

2. Convert A to a NumPy array and use scipy.linalg.solve() (la.solve()).

In each experiment, only time how long it takes to solve the system (not how long it takes to

convert A to the appropriate format).

Plot the system size n2 versus the execution times. As always, use log scales where

appropriate and use a legend to label each line.

Achtung!

Even though there are fast algorithms for solving certain sparse linear system, it is still very

computationally di�cult to invert sparse matrices. In fact, the inverse of a sparse matrix is

usually not sparse. There is rarely a good reason to invert a matrix, sparse or dense.

See http://docs.scipy.org/doc/scipy/reference/sparse.html for additional details on

SciPy's sparse module.

http://docs.scipy.org/doc/scipy/reference/sparse.html
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Additional Material
Improvements on the LU Decomposition
Vectorization

Algorithm 2.1 uses two loops to compute the LU decomposition. With a little vectorization, the

process can be reduced to a single loop.

Algorithm 2.2

1: procedure Fast LU Decomposition(A)

2: m,n← shape(A)

3: U ← copy(A)

4: L← Im
5: for k = 0 . . . n− 1 do

6: Lk+1:,k ← Uk+1:,k/Uk,k
7: Uk+1:,k: ← Uk+1:,k: − Lk+1:,kU

T
k,k:

8: return L,U

Note that step 7 is an outer product, not the regular dot product (xyT instead of the usual

xTy). Use np.outer() instead of np.dot() or @ to get the desired result.

Pivoting

Gaussian elimination iterates through the rows of a matrix, using the diagonal entry xk,k of the

matrix at the kth iteration to zero out all of the entries in the column below xk,k (xi,k for i ≥ k).

This diagonal entry is called the pivot. Unfortunately, Gaussian elimination, and hence the LU

decomposition, can be very numerically unstable if at any step the pivot is a very small number.

Most professional row reduction algorithms avoid this problem via partial pivoting.

The idea is to choose the largest number (in magnitude) possible to be the pivot by swapping

the pivot row2 with another row before operating on the matrix. For example, the second and fourth

rows of the following matrix are exchanged so that the pivot is −6 instead of 2.
× × × ×
0 2 × ×
0 4 × ×
0 −6 × ×

 −→

× × × ×
0 −6 × ×
0 4 × ×
0 2 × ×

 −→

× × × ×
0 −6 × ×
0 0 × ×
0 0 × ×


A row swap is equivalent to left-multiplying by a type II elementary matrix, also called a

permutation matrix.
1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0



× × × ×
0 2 × ×
0 4 × ×
0 −6 × ×

 =


× × × ×
0 −6 × ×
0 4 × ×
0 2 × ×


For the LU decomposition, if the permutation matrix at step k is Pk, then P = Pk . . . P2P1

yields PA = LU . The complete algorithm is given below.

2Complete pivoting involves row and column swaps, but doing both operations is usually considered overkill.
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Algorithm 2.3

1: procedure LU Decomposition with Partial Pivoting(A)

2: m,n← shape(A)

3: U ← copy(A)

4: L← Im
5: P ← [0, 1, . . . , n− 1] . See tip 2 below.

6: for k = 0 . . . n− 1 do

7: Select i ≥ k that maximizes |Ui,k|
8: Uk,k: ↔ Ui,k: . Swap the two rows.

9: Lk,:k ↔ Li,:k . Swap the two rows.

10: Pk ↔ Pi . Swap the two entries.

11: Lk+1:,k ← Uk+1:,k/Uk,k
12: Uk+1:,k: ← Uk+1:,k: − Lk+1:,kU

T
k,k:

13: return L,U, P

The following tips may be helpful for implementing this algorithm:

1. Since NumPy arrays are mutable, use np.copy() to reassign the rows of an array simultane-

ously.

2. Instead of storing P as an n× n array, fancy indexing allows us to encode row swaps in a 1-D

array of length n. Initialize P as the array [0, 1, . . . , n]. After performing a row swap on A,

perform the same operations on P . Then the matrix product PA will be the same as A[P].

>>> A = np.zeros(3) + np.vstack(np.arange(3))

>>> P = np.arange(3)

>>> print(A)

[[ 0. 0. 0.]

[ 1. 1. 1.]

[ 2. 2. 2.]]

# Swap rows 1 and 2.

>>> A[1], A[2] = np.copy(A[2]), np.copy(A[1])

>>> P[1], P[2] = P[2], P[1]

>>> print(A) # A with the new row arrangement.

[[ 0. 0. 0.]

[ 2. 2. 2.]

[ 1. 1. 1.]]

>>> print(P) # The permutation of the rows.

[0 2 1]

>>> print(A[P]) # A with the original row arrangement.

[[ 0. 0. 0.]

[ 1. 1. 1.]

[ 2. 2. 2.]]

There are potential cases where even partial pivoting does not eliminate catastrophic numerical

errors in Gaussian elimination, but the odds of having such an amazingly poor matrix are essentially

zero. The numerical analyst J.H. Wilkinson captured the likelihood of encountering such a matrix

in a natural application when he said, �Anyone that unlucky has already been run over by a bus!�



28 Lab 2. Linear Systems

In Place

The LU decomposition can be performed in place (overwriting the original matrix A) by storing U

on and above the main diagonal of the array and storing L below it. The main diagonal of L does

not need to be stored since all of its entries are 1. This format saves an entire array of memory, and

is how scipy.linalg.lu_factor() returns the factorization.

More Applications of the LU Decomposition
The LU decomposition can also be used to compute inverses and determinants with relative e�ciency.

� Inverse: (PA)−1 = (LU)−1 =⇒ A−1P−1 = U−1L−1 =⇒ LUA−1 = P . Solve LUai = pi
with forward and backward substitution (as in Problem 3) for every column pi of P . Then

A−1 =

 a1 a2 · · · an

 ,
the matrix where ak is the kth column.

� Determinant: det(A) = det(P−1LU) = det(L) det(U)
det(P ) . The determinant of a triangular matrix

is the product of its diagonal entries. Since every diagonal entry of L is 1, det(L) = 1. Also, P

is just a row permutation of the identity matrix (which has determinant 1), and a single row

swap negates the determinant. Then if S is the number of row swaps, the determinant is

det(A) = (−1)S
n∏
i=1

uii.

The Cholesky Decomposition
A square matrix A is called positive de�nite if zTAz > 0 for all nonzero vectors z. In addition, A is

called Hermitian if A = AH = AT. If A is Hermitian positive de�nite, it has a Cholesky Decomposition

A = UHU where U is upper triangular with real, positive entries on the diagonal. This is the matrix

equivalent to taking the square root of a positive real number.

The Cholesky decomposition takes advantage of the conjugate symmetry of A to simultaneously

reduce the columns and rows of A to zeros (except for the diagonal). It thus requires only half of the

calculations and memory of the LU decomposition. Furthermore, the algorithm is numerically stable,

which means, roughly speaking, that round-o� errors do not propagate throughout the computation.

Algorithm 2.4

1: procedure Cholesky Decomposition(A)

2: n, n← shape(A)

3: U ← np.triu(A) . Get the upper-triangular part of A.

4: for i = 0 . . . n− 1 do

5: for j = i+ 1 . . . n− 1 do

6: Uj,j: ← Uj,j: − Ui,j:Uij/Uii
7: Ui,i: ← Ui,i:/

√
Uii

8: return U

As with the LU decomposition, SciPy's linalg module has optimized routines,

la.cho_factor() and la.cho_solve(), for using the Cholesky decomposition.



3 The QR
Decomposition

Lab Objective: The QR decomposition is a fundamentally important matrix factorization. It

is straightforward to implement, is numerically stable, and provides the basis of several important

algorithms. In this lab we explore several ways to produce the QR decomposition and implement a

few immediate applications.

The QR decomposition of a matrix A is a factorization A = QR, where Q is has orthonormal

columns and R is upper triangular. Every m× n matrix A of rank n ≤ m has a QR decomposition,

with two main forms.

� Reduced QR: Q is m × n, R is n × n, and the columns {qj}nj=1 of Q form an orthonormal

basis for the column space of A.

� Full QR: Q is m × m and R is m × n. In this case, the columns {qj}mj=1 of Q form an

orthonormal basis for all of Fm, and the last m − n rows of R only contain zeros. If m = n,

this is the same as the reduced factorization.

We distinguish between these two forms by writing Q̂ and R̂ for the reduced decomposition and Q

and R for the full decomposition.

Q̂ (m× n) R̂ (n× n)
q1 · · · qn qn+1 · · · qm





r11 · · · r1n

. . .
...

rnn
0 · · · 0
...

...

0 · · · 0


= A (m× n)

Q (m×m) R (m× n)

QR via Gram-Schmidt
The classical Gram-Schmidt algorithm takes a linearly independent set of vectors and constructs an

orthonormal set of vectors with the same span. Applying Gram-Schmidt to the columns of A, which

are linearly independent since A has rank n, results in the columns of Q.

29
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Let {xj}nj=1 be the columns of A. De�ne

q1 =
x1

‖x1‖
, qk =

xk − pk−1

‖xk − pk−1‖
, k = 2, . . . , n,

p0 = 0, pk−1 =

k−1∑
j=1

〈qj ,xk〉qj , k = 2, . . . , n.

Each pk−1 is the projection of xk onto the span of {qj}k−1
j=1 , so q′k = xk − pk−1 is the residual

vector of the projection. Thus q′k is orthogonal to each of the vectors in {qj}k−1
j=1 . Therefore,

normalizing each q′k produces an orthonormal set {qj}nj=1.

To construct the reduced QR decomposition, let Q̂ be the matrix with columns {qj}nj=1, and

let R̂ be the upper triangular matrix with entries

rkk = ‖xk − pk−1‖, rjk = 〈qj ,xk〉 = qT
j xk, j < k.

This clever choice of entries for R̂ reverses the Gram-Schmidt process and ensures that Q̂R̂ = A.

Modified Gram-Schmidt
If the columns of A are close to being linearly dependent, the classical Gram-Schmidt algorithm

often produces a set of vectors {qj}nj=1 that are not even close to orthonormal due to rounding

errors. The modi�ed Gram-Schmidt algorithm is a slight variant of the classical algorithm which

more consistently produces a set of vectors that are �very close� to orthonormal.

Let q1 be the normalization of x1 as before. Instead of making just x2 orthogonal to q1, make

each of the vectors {xj}nj=2 orthogonal to q1:

xk = xk − 〈q1,xk〉q1, k = 2, . . . , n.

Next, de�ne q2 = x2

‖x2‖ . Proceed by making each of {xj}nj=3 orthogonal to q2:

xk = xk − 〈q2,xk〉q2, k = 3, . . . , n.

Since each of these new vectors is a linear combination of vectors orthogonal to q1, they are orthogonal

to q1 as well. Continuing this process results in the desired orthonormal set {qj}nj=1. The entire

modi�ed Gram-Schmidt algorithm is described below.

Algorithm 3.1

1: procedure Modified Gram-Schmidt(A)

2: m,n← shape(A) . Store the dimensions of A.

3: Q← copy(A) . Make a copy of A with np.copy().

4: R← zeros(n, n) . An n× n array of all zeros.

5: for i = 0 . . . n− 1 do

6: Ri,i ← ‖Q:,i‖
7: Q:,i ← Q:,i/Ri,i . Normalize the ith column of Q.

8: for j = i+ 1 . . . n− 1 do

9: Ri,j ← QT
:,jQ:,i

10: Q:,j ← Q:,j −Ri,jQ:,i . Orthogonalize the jth column of Q.

11: return Q,R
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Problem 1. Write a function that accepts an m × n matrix A of rank n. Use Algorithm 3.1

to compute the reduced QR decomposition of A.

Consider the following tips for implementing the algorithm.

� Use scipy.linalg.norm() to compute the norm of the vector in step 6.

� Note that steps 7 and 10 employ scalar multiplication or division, while step 9 uses vector

multiplication.

To test your function, generate test cases with NumPy's np.random module. Verify that

R is upper triangular, Q is orthonormal, and QR = A. You may also want to compare your

results to SciPy's QR factorization routine, scpiy.linalg.qr().

>>> import numpy as np

>>> from scipy import linalg as la

# Generate a random matrix and get its reduced QR decomposition via SciPy.

>>> A = np.random.random((6,4))

>>> Q,R = la.qr(A, mode="economic") # Use mode="economic" for reduced QR.

>>> print(A.shape, Q.shape, R.shape)

(6,4) (6,4) (4,4)

# Verify that R is upper triangular, Q is orthonormal, and QR = A.

>>> np.allclose(np.triu(R), R)

True

>>> np.allclose(Q.T @ Q, np.identity(4))

True

>>> np.allclose(Q @ R, A)

True

Consequences of the QR Decomposition
The special structures of Q and R immediately provide some simple applications.

Determinants
Let A be n × n. Then Q and R are both n × n as well.1 Since Q is orthonormal and R is upper-

triangular,

det(Q) = ±1 and det(R) =

n∏
i=1

ri,i.

Then since det(AB) = det(A) det(B),

|det(A)| = |det(QR)| = |det(Q) det(R)| = |det(Q)| |det(R)| =

∣∣∣∣∣
n∏
i=1

ri,i

∣∣∣∣∣ . (3.1)

1An n× n orthonormal matrix is sometimes called unitary in other texts.
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Problem 2. Write a function that accepts an invertible matrix A. Use the QR decomposition

of A and (3.1) to calculate |det(A)|. You may use your QR decomposition algorithm from

Problem 1 or SciPy's QR routine. Can you implement this function in a single line?

(Hint: np.diag() and np.prod() may be useful.)

Check your answer against la.det(), which calculates the determinant.

Linear Systems
The LU decomposition is usually the matrix factorization of choice to solve the linear system Ax = b

because the triangular structures of L and U facilitate forward and backward substitution. However,

the QR decomposition avoids the potential numerical issues that come with Gaussian elimination.

Since Q is orthonormal, Q−1 = QT. Therefore, solving Ax = b is equivalent to solving the

system Rx = QTb. Since R is upper-triangular, Rx = QTb can be solved quickly with back

substitution.2

Problem 3. Write a function that accepts an invertible n × n matrix A and a vector b of

length n. Use the QR decomposition to solve Ax = b in the following steps:

1. Compute Q and R.

2. Calculate y = QTb.

3. Use back substitution to solve Rx = y for x.

QR via Householder
The Gram-Schmidt algorithm orthonormalizes A using a series of transformations that are stored

in an upper triangular matrix. Another way to compute the QR decomposition is to take the

opposite approach: triangularize A through a series of orthonormal transformations. Orthonormal

transformations are numerically stable, meaning that they are less susceptible to rounding errors. In

fact, this approach is usually faster and more accurate than Gram-Schmidt methods.

The idea is for the kth orthonormal transformation Qk to map the kth column of A to the span

of {ej}kj=1, where the ej are the standard basis vectors in Rm. In addition, to preserve the work of

the previous transformations, Qk should not modify any entries of A that are above or to the left of

the kth diagonal term of A. For a 4× 3 matrix A, the process can be visualized as follows.

Q3Q2Q1


∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

 = Q3Q2


∗ ∗ ∗
0 ∗ ∗
0 ∗ ∗
0 ∗ ∗

 = Q3


∗ ∗ ∗
0 ∗ ∗
0 0 ∗
0 0 ∗

 =


∗ ∗ ∗
0 ∗ ∗
0 0 ∗
0 0 0


Thus Q3Q2Q1A = R, so that A = QT

1Q
T
2Q

T
3R since each Qk is orthonormal. Furthermore, the

product of square orthonormal matrices is orthonormal, so setting Q = QT
1Q

T
2Q

T
3 yields the full QR

decomposition.

How to correctly construct each Qk isn't immediately obvious. The ingenious solution lies in

one of the basic types of linear transformations: re�ections.

2See the Linear Systems lab for details on back substitution.
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Householder Transformations

The orthogonal complement of a nonzero vector v ∈ Rn is the set of all vectors x ∈ Rn that are

orthogonal to v, denoted v⊥ = {x ∈ Rn | 〈x,v〉 = 0}. A Householder transformation is a linear

transformation that re�ects a vector x across the orthogonal complement v⊥ for some speci�ed v.

The matrix representation of the Householder transformation corresponding to v is given by

Hv = I − 2vvT

vTv
. Since HT

vHv = I, Householder transformations are orthonormal.

v

x

Hvx

v⊥

Figure 3.1: The vector v de�nes the orthogonal complement v⊥, which in this case is a line. Applying

the Householder transformation Hv to x re�ects x across v⊥.

Householder Triangularization

The Householder algorithm uses Householder transformations for the orthonormal transformations

in the QR decomposition process described on the previous page. The goal in choosing Qk is to send

xk, the kth column of A, to the span of {ej}kj=1. In other words, if Qkxk = yk, the last m−k entries
of yk should be 0, i.e.,

Qkxk = Qk



z1

...

zk
zk+1

...

zm


=



y1

...

yk
0
...

0


= yk.

To begin, decompose xk into xk = x′k + x′′k , where x′k and x′′k are of the form

x′k = [z1 · · · zk−1 0 · · · 0]
T
, x′′k = [0 · · · 0 zk · · · zm]

T
.

Because x′k represents elements of A that lie above the diagonal, only x′′k needs to be altered by the

re�ection.

The two vectors x′′k ± ‖x′′k‖ek both yield Householder transformations that send x′′k to the

span of ek (see Figure 3.2). Between the two, the one that re�ects x′′k further is more numerically

stable. This re�ection corresponds to

vk = x′′k + sign(zk)‖x′′k‖ek,

where zk is the �rst nonzero component of x′′k (the kth component of xk).
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Hv1x

xv1

v2

Hv2x

Figure 3.2: There are two re�ections that map x into the span of e1, de�ned by the vectors v1 and

v2. In this illustration, Hv2 is the more stable transformation since it re�ects x further than Hv1 .

After choosing vk, set uk = vk

‖vk‖ . Then Hvk
= I − 2

vkv
T
k

‖vk‖2 = I − 2uku
T
k , and hence Qk is given

by the block matrix

Qk =

[
Ik−1 0

0 Hvk

]
=

[
Ik−1 0

0 Im−k+1 − 2uku
T
k

]
.

Here Ip denotes the p× p identity matrix, and thus each Qk is m×m.

It is apparent from its form that Qk does not a�ect the �rst k − 1 rows and columns of any

matrix that it acts on. Then by starting with R = A and Q = I, at each step of the algorithm we

need only multiply the entries in the lower right (m− k + 1)× (m− k + 1) submatrices of R and Q

by I − 2uku
T
k . This completes the Householder algorithm, detailed below.

Algorithm 3.2

1: procedure Householder(A)

2: m,n← shape(A)

3: R← copy(A)

4: Q← Im . The m×m identity matrix.

5: for k = 0 . . . n− 1 do

6: u← copy(Rk:,k)

7: u0 ← u0 + sign(u0)‖u‖ . u0 is the �rst entry of u.

8: u← u/‖u‖ . Normalize u.

9: Rk:,k: ← Rk:,k: − 2u
(
uTRk:,k:

)
. Apply the re�ection to R.

10: Qk:,: ← Qk:,: − 2u
(
uTQk:,:

)
. Apply the re�ection to Q.

11: return QT, R

Problem 4. Write a function that accepts as input a m×n matrix A of rank n. Use Algorithm

3.2 to compute the full QR decomposition of A.

Consider the following implementation details.

� NumPy's np.sign() is an easy way to implement the sign() operation in step 7. However,

np.sign(0) returns 0, which will cause a problem in the rare case that u0 = 0 (which is

possible if the top left entry of A is 0 to begin with). The following code de�nes a function

that returns the sign of a single number, counting 0 as positive.
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sign = lambda x: 1 if x >= 0 else -1

� In steps 9 and 10, the multiplication of u and (uTX) is an outer product (xyT instead of

the usual xTy). Use np.outer() instead of np.dot() to handle this correctly.

Use NumPy and SciPy to generate test cases and validate your function.

>>> A = np.random.random((5, 3))

>>> Q,R = la.qr(A) # Get the full QR decomposition.

>>> print(A.shape, Q.shape, R.shape)

(5,3) (5,5) (5,3)

>>> np.allclose(Q @ R, A)

True

Upper Hessenberg Form
An upper Hessenberg matrix is a square matrix that is nearly upper triangular, with zeros below

the �rst subdiagonal. Every n × n matrix A can be written A = QHQT where Q is orthonormal

and H, called the Hessenberg form of A, is an upper Hessenberg matrix. Putting a matrix in upper

Hessenberg form is an important �rst step to computing its eigenvalues numerically.

This algorithm also uses Householder transformations. To �nd orthogonal Q and upper Hes-

senberg H such that A = QHQT, it su�ces to �nd such matrices that satisfy QTAQ = H. Thus,

the strategy is to multiply A on the left and right by a series of orthonormal matrices until it is in

Hessenberg form.

Using the same Qk as in the kth step of the Householder algorithm introduces n − k zeros in

the kth column of A, but multiplying QkA on the right by QT
k destroys all of those zeros. Instead,

choose a Q1 that �xes e1 and re�ects the �rst column of A into the span of e1 and e2. The product

Q1A then leaves the �rst row of A alone, and the product (Q1A)QT
1 leaves the �rst column of (Q1A)

alone. 
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

 Q1−→


∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗

 QT
1−→


∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗


A Q1A (Q1A)QT

1

Continuing the process results in the upper Hessenberg form of A.

Q3Q2Q1AQ
T
1Q

T
2Q

T
3 =


∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗
0 0 0 ∗ ∗


This implies that A = QT

1Q
T
2Q

T
3HQ3Q2Q1, so setting Q = QT

1Q
T
2Q

T
3 results in the desired

factorization A = QHQT.
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Constructing the Reflections
Constructing the Qk uses the same approach as in the Householder algorithm, but shifted down one

element. Let xk = y′k + y′′k where y′k and y′′k are of the form

y′k = [z1 · · · zk 0 · · · 0]
T
, y′′k = [0 · · · 0 zk+1 · · · zm]

T
.

Because y′k represents elements of A that lie above the �rst subdiagonal, only y′′k needs to be altered.

This suggests using the re�ection

Qk =

[
Ik 0

0 Hvk

]
=

[
Ik 0

0 Im−k − 2uku
T
k

]
, where

vk = y′′k + sign(zk)‖y′′k‖ek, uk =
vk
‖vk‖

.

The complete algorithm is given below. Note how similar it is to Algorithm 3.2.

Algorithm 3.3

1: procedure Hessenberg(A)

2: m,n← shape(A)

3: H ← copy(A)

4: Q← Im
5: for k = 0 . . . n− 3 do

6: u← copy(Hk+1:,k)

7: u0 ← u0 + sign(u0)‖u‖
8: u← u/‖u‖
9: Hk+1:,k: ← Hk+1:,k: − 2u(uTHk+1:,k:) . Apply Qk to H.

10: H:,k+1: ← H:,k+1: − 2(H:,k+1:u)uT . Apply QT
k to H.

11: Qk+1:,: ← Qk+1:,: − 2u(uTQk+1:,:) . Apply Qk to Q.

12: return H,QT

Problem 5. Write a function that accepts a nonsingular n × n matrix A. Use Algorithm 3.3

to compute the upper Hessenberg H and orthogonal Q satisfying A = QHQT.

Compare your results to scipy.linalg.hessenberg().

# Generate a random matrix and get its upper Hessenberg form via SciPy.

>>> A = np.random.random((8,8))

>>> H, Q = la.hessenberg(A, calc_q=True)

# Verify that H has all zeros below the first subdiagonal and QHQ^T = A.

>>> np.allclose(np.triu(H, -1), H)

True

>>> np.allclose(Q @ H @ Q.T, A)

True
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Additional Material
Complex QR Decomposition
The QR decomposition also exists for matrices with complex entries. The standard inner product in

Rm is 〈x,y〉 = xTy, but the (more general) standard inner product in Cm is 〈x,y〉 = xHy. The H

stands for the Hermitian conjugate, the conjugate of the transpose. Making a few small adjustments

in the implementations of Algorithms 3.1 and 3.2 accounts for using the complex inner product.

1. Replace any transpose operations with the conjugate of the transpose.

>>> A = np.reshape(np.arange(4) + 1j*np.arange(4), (2,2))

>>> print(A)

[[ 0.+0.j 1.+1.j]

[ 2.+2.j 3.+3.j]]

>>> print(A.T) # Regular transpose.

[[ 0.+0.j 2.+2.j]

[ 1.+1.j 3.+3.j]]

>>> print(A.conj().T) # Hermitian conjugate.

[[ 0.-0.j 2.-2.j]

[ 1.-1.j 3.-3.j]]

2. Conjugate the �rst entry of vector or matrix multiplication before multiplying with np.dot().

>>> x = np.arange(2) + 1j*np.arange(2)

>>> print(x)

[ 0.+0.j 1.+1.j]

>>> np.dot(x, x) # Standard real inner product.

2j

>>> np.dot(x.conj(), y) # Standard complex inner product.

(2 + 0j)

3. In the complex plane, there are in�nitely many re�ections that map a vector x into the span

of ek, not just the two displayed in Figure 3.2. Using sign(zk) to choose one is still a valid

method, but it requires updating the sign() function so that it can handle complex numbers.

sign = lambda x: 1 if np.real(x) >= 0 else -1

QR with Pivoting
The LU decomposition can be improved by employing Gaussian elimination with partial pivoting,

where the rows of A are strategically permuted at each iteration. The QR factorization can be

similarly improved by permuting the columns of A at each iteration. The result is the factorization

AP = QR, where P is a permutation matrix that encodes the column swaps. To compute the pivoted

QR decomposition with scipy.linalg.qr(), set the keyword pivoting to True.
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# Get the decomposition AP = QR for a random matrix A.

>>> A = np.random.random((8,10))

>>> Q,R,P = la.qr(A, pivoting=True)

# P is returned as a 1-D array that encodes column ordering,

# so A can be reconstructed with fancy indexing.

>>> np.allclose(Q @ R, A[:,P])

True

QR via Givens

The Householder algorithm uses re�ections to triangularize A. However, A can also be made upper

triangular using rotations. To illustrate the idea, recall that the matrix for a counterclockwise rotation

of θ radians is given by

Rθ =

[
cos θ − sin θ

sin θ cos θ

]
.

This transformation is orthonormal. Given x = [a, b]
T
, if θ is the angle between x and e1, then

R−θ maps x to the span of e1.

a

b

θ

Figure 3.3: Rotating clockwise by θ sends the vector [a, b]
T
to the span of e1.

In terms of a and b, cos θ = a√
a2+b2

and sin θ = b√
a2+b2

. Therefore,

R−θx =

[
cos θ sin θ

− sin θ cos θ

] [
a

b

]
=


a√

a2+b2
b√

a2+b2

− b√
a2+b2

a√
a2+b2

[ a

b

]
=

[ √
a2 + b2

0

]
.

The matrix Rθ above is an example of a 2 × 2 Givens rotation matrix. In general, the Givens

matrix G(i, j, θ) represents the orthonormal transformation that rotates the 2-dimensional span of

ei and ej by θ radians. The matrix representation of this transformation is a generalization of Rθ.

G(i, j, θ) =


I 0 0 0 0

0 c 0 −s 0

0 0 I 0 0

0 s 0 c 0

0 0 0 0 I


Here I represents the identity matrix, c = cos θ, and s = sin θ. The c's appear on the ith and

jth diagonal entries.
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Givens Triangularization

As demonstrated, θ can be chosen such that G(i, j, θ) rotates a vector so that its jth-component is

0. Such a transformation will only a�ect the ith and jth entries of any vector it acts on (and thus

the ith and jth rows of any matrix it acts on).

To compute the QR decomposition of A, iterate through the subdiagonal entries of A in the

order depicted by Figure 3.4. Zero out the ijth entry with a rotation in the plane spanned by ei−1

and ei, represented by the Givens matrix G(i− 1, i, θ).

1 2 3 4 5

Figure 3.4: The order in which to zero out subdiagonal entries in the Givens triangularization

algorithm. The heavy black line is the main diagonal of the matrix. Entries should be zeroed out

from bottom to top in each column, beginning with the leftmost column.

On a 2× 3 matrix, the process can be visualized as follows.

 ∗ ∗∗ ∗
∗ ∗

G(2, 3, θ1)
−−−−−−−→

 ∗ ∗
∗ ∗
0 ∗

G(1, 2, θ2)
−−−−−−−→

 ∗ ∗
0 ∗
0 ∗

G(2, 3, θ3)
−−−−−−−→

 ∗ ∗
0 ∗
0 0



At each stage, the boxed entries are those modi�ed by the previous transformation. The �nal

transformation G(2, 3, θ3) operates on the bottom two rows, but since the �rst two entries are zero,

they are una�ected.

Assuming that at the ijth stage of the algorithm aij is nonzero, Algorithm 3.4 computes the

Givens triangularization of a matrix. Notice that the algorithm does not actually form the entire

matrices G(i, j, θ); instead, it modi�es only those entries of the matrix that are a�ected by the

transformation.
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Algorithm 3.4

1: procedure Givens Triangularization(A)

2: m,n← shape(A)

3: R← copy(A)

4: Q← Im
5: for j = 0 . . . n− 1 do

6: for i = m− 1 . . . j + 1 do

7: a, b← Ri−1,j , Ri,j
8: G← [[a, b], [−b, a]]/

√
a2 + b2

9: Ri−1:i+1,j: ← GRi−1:i+1,j:

10: Qi−1:i+1,: ← GQi−1:i+1,:

11: return QT, R

QR of a Hessenberg Matrix via Givens

The Givens algorithm is particularly e�cient for computing the QR decomposition of a matrix that is

already in upper Hessenberg form, since only the �rst subdiagonal needs to be zeroed out. Algorithm

3.5 details this process.

Algorithm 3.5

1: procedure Givens Triangularization of Hessenberg(H)

2: m,n← shape(H)

3: R← copy(H)

4: Q← Im
5: for j = 0 . . .min{n− 1,m− 1} do
6: i = j + 1

7: a, b← Ri−1,j , Ri,j
8: G← [[a, b], [−b, a]]/

√
a2 + b2

9: Ri−1:i+1,j: ← GRi−1:i+1,j:

10: Qi−1:i+1,:i+1 ← GQi−1:i+1,:i+1

11: return QT, R

Note

When A is symmetric, its upper Hessenberg form is a tridiagonal matrix, meaning its only

nonzero entries are on the main diagonal, the �rst subdiagonal, and the �rst superdiagonal.

This is because the Qk's zero out everything below the �rst subdiagonal of A and the QT
k 's zero

out everything to the right of the �rst superdiagonal. Tridiagonal matrices make computations

fast, so computing the Hessenberg form of a symmetric matrix is very useful.



4 Least Squares and
Computing
Eigenvalues

Lab Objective: Because of its numerical stability and convenient structure, the QR decomposition

is the basis of many important and practical algorithms. In this lab we introduce linear least squares

problems, tools in Python for computing least squares solutions, and two fundamental algorithms

for computing eigenvalue. The QR decomposition makes solving several of these problems quick and

numerically stable.

Least Squares
A linear system Ax = b is overdetermined if it has more equations than unknowns. In this situation,

there is no true solution, and x can only be approximated.

The least squares solution of Ax = b, denoted x̂, is the �closest� vector to a solution, meaning

it minimizes the quantity ‖Ax̂− b‖2. In other words, x̂ is the vector such that Ax̂ is the projection

of b onto the range of A, and can be calculated by solving the normal equations,1

ATAx̂ = ATb.

If A is full rank (which it usually is in applications) its QR decomposition provides an e�cient

way to solve the normal equations. Let A = Q̂R̂ be the reduced QR decomposition of A, so Q̂ is

m× n with orthonormal columns and R̂ is n× n, invertible, and upper triangular. Since Q̂TQ̂ = I,

and since R̂T is invertible, the normal equations can be reduced as follows (we omit the hats on Q̂

and R̂ for clarity).

ATAx̂ = ATb

(QR)TQRx̂ = (QR)Tb

RTQTQRx̂ = RTQTb

RTRx̂ = RTQTb

Rx̂ = QTb (4.1)

Thus x̂ is the least squares solution to Ax = b if and only if R̂x̂ = Q̂Tb. Since R̂ is upper

triangular, this equation can be solved quickly with back substitution.

1See Volume 1 for a formal derivation of the normal equations.

41
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Problem 1. Write a function that accepts an m × n matrix A of rank n and a vector b of

length m. Use the reduced QR decomposition of A and (4.1) to solve the normal equations

corresponding to Ax = b.

You may use either SciPy's reduced QR routine (la.qr() with mode="economic") or one

of your own reduced QR routines. In addition, you may use la.solve_triangular(), SciPy's

optimized routine for solving triangular systems.

Fitting a Line
The least squares solution can be used to �nd the best �t curve of a chosen type to a set of points.

Consider the problem of �nding the line y = ax + b that best �ts a set of m points {(xk, yk)}mk=1.

Ideally, we seek a and b such that yk = axk + b for all k. These equations can be simultaneously

represented by the linear system

Ax =


x1 1

x2 1

x3 1
...

...

xm 1


[
a

b

]
=


y1

y2

y3

...

ym

 = b. (4.2)

Note that A has full column rank as long as not all of the xk values are the same.

Because this system has two unknowns, it is guaranteed to have a solution if it has two or fewer

equations. However, if there are more than two data points, the system is overdetermined if any set

of three points is not collinear. We therefore seek a least squares solution, which in this case means

�nding the slope â and y-intercept b̂ such that the line y = âx+ b̂ best �ts the data.

Figure 4.1 is a typical example of this idea where â ≈ 1
2 and b̂ ≈ −3.

0 2 4 6 8 10
3

2

1

0

1

2
Data Points
Least Squares Fit

Figure 4.1: A linear least squares �t.
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Problem 2. The �le housing.npy contains the purchase-only housing price index, a measure

of how housing prices are changing, for the United States from 2000 to 2010.a Each row in the

array is a separate measurement; the columns are the year and the price index, in that order.

To avoid large numerical computations, the year measurements start at 0 instead of 2000.

Find the least squares line that relates the year to the housing price index (i.e., let year

be the x-axis and index the y-axis).

1. Construct the matrix A and the vector b described by (4.2).

(Hint: np.vstack(), np.column_stack(), and/or np.ones() may be helpful.)

2. Use your function from Problem 1 to �nd the least squares solution.

3. Plot the data points as a scatter plot.

4. Plot the least squares line with the scatter plot.

aSee http://www.fhfa.gov/DataTools/Downloads/Pages/House-Price-Index.aspx.

Note

The least squares problem of �tting a line to a set of points is often called linear regression,

and the resulting line is called the linear regression line. SciPy's specialized tool for linear

regression is scipy.stats.linregress(). This function takes in an array of x-coordinates and

a corresponding array of y-coordinates, and returns the slope and intercept of the regression

line, along with a few other statistical measurements.

For example, the following code produces Figure 4.1.

>>> import numpy as np

>>> from scipy.stats import linregress

# Generate some random data close to the line y = .5x - 3.

>>> x = np.linspace(0, 10, 20)

>>> y = .5*x - 3 + np.random.randn(20)

# Use linregress() to calculate m and b, as well as the correlation

# coefficient, p-value, and standard error. See the documentation for

# details on each of these extra return values.

>>> a, b, rvalue, pvalue, stderr = linregress(x, y)

>>> plt.plot(x, y, 'k*', label="Data Points")

>>> plt.plot(x, a*x + b, label="Least Squares Fit")

>>> plt.legend(loc="upper left")

>>> plt.show()

http://www.fhfa.gov/DataTools/Downloads/Pages/House-Price-Index.aspx
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Fitting a Polynomial

Least squares can also be used to �t a set of data to the best �t polynomial of a speci�ed degree. Let

{(xk, yk)}mk=1 be the set of m data points in question. The general form for a polynomial of degree

n is

pn(x) = cnx
n + cn−1x

n−1 + · · ·+ c2x
2 + c1x+ c0 =

n∑
i=0

cix
i.

Note that the polynomial is uniquely determined by its n + 1 coe�cients {ci}ni=0. Ideally, then, we

seek the set of coe�cients {ci}ni=0 such that

yk = cnx
n
k + cn−1x

n−1
k + · · ·+ c2x

2
k + c1xk + c0

for all values of k. These m linear equations yield the linear system

Ax =


xn1 xn−1

1 · · · x2
1 x1 1

xn2 xn−1
2 · · · x2

2 x2 1

xn3 xn−1
3 · · · x2

3 x3 1
...

...
...

...
...

xnm xn−1
m · · · x2

m xm 1





cn
cn−1

...

c2
c1
c0


=


y1

y2

y3

...

ym

 = b. (4.3)

If m > n+ 1 this system is overdetermined, requiring a least squares solution.

Working with Polynomials in NumPy

The m × (n + 1) matrix A of (4.3) is called a Vandermonde matrix.2 NumPy's np.vander() is a

convenient tool for quickly constructing a Vandermonde matrix, given the values {xk}mk=1 and the

number of desired columns.

>>> print(np.vander([2, 3, 5], 2))

[[2 1] # [[2**1, 2**0]

[3 1] # [3**1, 3**0]

[5 1]] # [5**1, 5**0]]

>>> print(np.vander([2, 3, 5, 4], 3))

[[ 4 2 1] # [[2**2, 2**1, 2**0]

[ 9 3 1] # [3**2, 3**1, 3**0]

[25 5 1] # [5**2, 5**1, 5**0]

[16 4 1]] # [4**2, 4**1, 4**0]

NumPy also has powerful tools for working e�ciently with polynomials. The class np.poly1d

represents a 1-dimensional polynomial. Instances of this class are callable like a function.3 The

constructor accepts the polynomial's coe�cients, from largest degree to smallest.

Table 4.1 lists some attributes and methods of the np.poly1d class.

2Vandermonde matrices have many special properties and are useful for many applications, including polynomial
interpolation and discrete Fourier analysis.

3Class instances can be made callable by implementing the __call__() magic method.
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Attribute Description

coeffs The n+ 1 coe�cients, from greatest degree to least.

order The polynomial degree (n).

roots The n− 1 roots.

Method Returns

deriv() The coe�cients of the polynomial after being di�erentiated.

integ() The coe�cients of the polynomial after being integrated (with c0 = 0).

Table 4.1: Attributes and methods of the np.poly1d class.

# Create a callable object for the polynomial f(x) = (x-1)(x-2) = x^2 - 3x + 2.

>>> f = np.poly1d([1, -3, 2])

>>> print(f)

2

1 x - 3 x + 2

# Evaluate f(x) for several values of x in a single function call.

>>> f([1, 2, 3, 4])

array([0, 0, 2, 6])

Problem 3. The data in housing.npy is nonlinear, and might be better �t by a polynomial

than a line.

Write a function that uses (4.3) to calculate the polynomials of degree 3, 6, 9, and 12 that

best �t the data. Plot the original data points and each least squares polynomial together in

individual subplots.

(Hint: de�ne a separate, re�ned domain with np.linspace() and use this domain to smoothly

plot the polynomials.)

Instead of using Problem 1 to solve the normal equations, you may use SciPy's least

squares routine, scipy.linalg.lstsq().

>>> from scipy import linalg as la

# Define A and b appropriately.

# Solve the normal equations using SciPy's least squares routine.

# The least squares solution is the first of four return values.

>>> x = la.lstsq(A, b)[0]

Compare your results to np.polyfit(). This function receives an array of x values, an

array of y values, and an integer for the polynomial degree, and returns the coe�cients of the

best �t polynomial of that degree.
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Achtung!

Having more parameters in a least squares model is not always better. For a set ofm points, the

best �t polynomial of degree m− 1 interpolates the data set, meaning that p(xk) = yk exactly

for each k. In this case there are enough unknowns that the system is no longer overdetermined.

However, such polynomials are highly subject to numerical errors and are unlikely to accurately

represent true patterns in the data.

Choosing to have too many unknowns in a �tting problem is (�ttingly) called over�tting,

and is an important issue to avoid in any statistical model.

Fitting a Circle

Suppose the set of m points {(xk, yk)}mk=1 are arranged in a nearly circular pattern. The general

equation of a circle with radius r and center (c1, c2) is

(x− c1)2 + (y − c2)2 = r2. (4.4)

The circle is uniquely determined by r, c1, and c2, so these are the parameters that should be

solved for in a least squares formulation of the problem. However, (4.4) is not linear in any of these

variables.

(x− c1)2 + (y − c2)2 = r2

x2 − 2c1x+ c21 + y2 − 2c2y + c22 = r2

x2 + y2 = 2c1x+ 2c2y + r2 − c21 − c22 (4.5)

The quadratic terms x2 and y2 are acceptable because the points {(xk, yk)}mk=1 are given.

To eliminate the nonlinear terms in the unknown parameters r, c1, and c2, de�ne a new variable

c3 = r2 − c21 − c22. Then for each point (xk, yk), (4.5) becomes

2c1xk + 2c2yk + c3 = x2
k + y2

k.

These m equations are linear in c1, c2, and c3, and can be written as the linear system
2x1 2y1 1

2x2 2y2 1
...

...
...

2xm 2ym 1


 c1
c2
c3

 =


x2

1 + y2
1

x2
2 + y2

2
...

x2
m + y2

m

 . (4.6)

After solving for the least squares solution, r can be recovered with the relation r =
√
c21 + c22 + c3.

Finally, plotting a circle is best done with polar coordinates. Using the same variables as before, the

circle can be represented in polar coordinates by setting

x = r cos(θ) + c1, y = r sin(θ) + c2, θ ∈ [0, 2π]. (4.7)

To plot the circle, solve the least squares system for c1, c2, and r, de�ne an array for θ, then use

(4.7) to calculate the coordinates of the points the circle.
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# Load some data and construct the matrix A and the vector b.

>>> xk, yk = np.load("circle.npy").T

>>> A = np.column_stack((2*xk, 2*yk, np.ones_like(xk)))

>>> b = xk**2 + yk**2

# Calculate the least squares solution and solve for the radius.

>>> c1, c2, c3 = la.lstsq(A, b)[0]

>>> r = np.sqrt(c1**2 + c2**2 + c3)

# Plot the circle using polar coordinates.

>>> theta = np.linspace(0, 2*np.pi, 200)

>>> x = r*np.cos(theta) + c1

>>> y = r*np.sin(theta) + c2

>>> plt.plot(x, y) # Plot the circle.

>>> plt.plot(xk, yk, 'k*') # Plot the data points.

>>> plt.axis("equal")

4 2 0 2 4 6 8 10

2

0

2

4

6

Problem 4. The general equation for an ellipse is

ax2 + bx+ cxy + dy + ey2 = 1.

Write a function that calculates the parameters for the ellipse that best �ts the data in the

�le ellipse.npy. Plot the original data points and the ellipse together, using the following

function to plot the ellipse.

def plot_ellipse(a, b, c, d, e):

"""Plot an ellipse of the form ax^2 + bx + cxy + dy + ey^2 = 1."""

theta = np.linspace(0, 2*np.pi, 200)

cos_t, sin_t = np.cos(theta), np.sin(theta)
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A = a*(cos_t**2) + c*cos_t*sin_t + e*(sin_t**2)

B = b*cos_t + d*sin_t

r = (-B + np.sqrt(B**2 + 4*A)) / (2*A)

plt.plot(r*cos_t, r*sin_t, lw=2)

plt.gca().set_aspect("equal", "datalim")

Computing Eigenvalues
The eigenvalues of an n×n matrix A are the roots of its characteristic polynomial det(A−λI). Thus,

�nding the eigenvalues of A amounts to computing the roots of a polynomial of degree n. However,

for n ≥ 5, it is provably impossible to �nd an algebraic closed-form solution to this problem.4 In

addition, numerically computing the roots of a polynomial is a famously ill-conditioned problem,

meaning that small changes in the coe�cients of the polynomial (brought about by small changes

in the entries of A) may yield wildly di�erent results. Instead, eigenvalues must be computed with

iterative methods.

The Power Method

The dominant eigenvalue of the n × n matrix A is the unique eigenvalue of greatest magnitude, if

such an eigenvalue exists. The power method iteratively computes the dominant eigenvalue of A and

its corresponding eigenvector.

Begin by choosing a vector x0 such that ‖x0‖2 = 1, and de�ne

xk+1 =
Axk
‖Axk‖2

.

If A has a dominant eigenvalue λ, and if the projection of x0 onto the subspace spanned by the

eigenvectors corresponding to λ is nonzero, then the sequence of vectors (xk)∞k=0 converges to an

eigenvector x of A corresponding to λ.

Since x is an eigenvector of A, Ax = λx. Left multiplying by xT on each side results in

xTAx = λxTx, and hence λ = xTAx
xTx

. This ratio is called the Rayleigh quotient. However, since each

xk is normalized, xTx = ‖x‖22 = 1, so λ = xTAx.

The entire algorithm is summarized below.

Algorithm 4.1

1: procedure PowerMethod(A)

2: m,n← shape(A) . A is square so m = n.

3: x0 ← random(n) . A random vector of length n

4: x0 ← x0/‖x0‖2 . Normalize x0

5: for k = 0, 1, . . . , N − 1 do

6: xk+1 ← Axk
7: xk+1 ← xk+1/‖xk+1‖2
8: return xT

NAxN , xN

4This result, called Abel's impossibility theorem, was �rst proven by Niels Heinrik Abel in 1824.
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The power method is limited by a few assumptions. First, not all square matrices A have

a dominant eigenvalue. However, the Perron-Frobenius theorem guarantees that if all entries of

A are positive, then A has a dominant eigenvalue. Second, there is no way to choose an x0 that is

guaranteed to have a nonzero projection onto the span of the eigenvectors corresponding to λ, though

a random x0 will almost surely satisfy this condition. Even with these assumptions, a rigorous proof

that the power method converges is most convenient with tools from spectral calculus.

Problem 5. Write a function that accepts an n×n matrix A, a maximum number of iterations

N , and a stopping tolerance tol. Use Algorithm 4.1 to compute the dominant eigenvalue of A

and a corresponding eigenvector. Continue the loop in step 5 until either ‖xk+1 − xk‖2 is less

than the tolerance tol, or until iterating the maximum number of times N .

Test your function on square matrices with all positive entries, verifying that Ax = λx.

Use SciPy's eigenvalue solver, scipy.linalg.eig(), to compute all of the eigenvalues and

corresponding eigenvectors of A and check that λ is the dominant eigenvalue of A.

# Construct a random matrix with positive entries.

>>> A = np.random.random((10,10))

# Compute the eigenvalues and eigenvectors of A via SciPy.

>>> eigs, vecs = la.eig(A)

# Get the dominant eigenvalue and eigenvector of A.

# The eigenvector of the kth eigenvalue is the kth column of 'vecs'.

>>> loc = np.argmax(eigs)

>>> lamb, x = eigs[loc], vecs[:,loc]

# Verify that Ax = lambda x.

>>> np.allclose(A @ x, lamb * x)

True

The QR Algorithm

An obvious shortcoming of the power method is that it only computes one eigenvalue and eigenvector.

The QR algorithm, on the other hand, attempts to �nd all eigenvalues of A.

Let A0 = A, and for arbitrary k let QkRk = Ak be the QR decomposition of Ak. Since A is

square, so are Qk and Rk, so they can be recombined in reverse order:

Ak+1 = RkQk.

This recursive de�nition establishes an important relation between the Ak:

Q−1
k AkQk = Q−1

k (QkRk)Qk = (Q−1
k Qk)(RkQk) = Ak+1.

Thus, Ak is orthonormally similar to Ak+1, and similar matrices have the same eigenvalues. The

series of matrices (Ak)∞k=0 converges to the block matrix
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S =


S1 ∗ · · · ∗

0 S2
. . .

...
...

. . .
. . . ∗

0 · · · 0 Sm

 . For example, S =


s1 ∗ ∗ · · · ∗
0 s2,1 s2,2 · · · ∗

s2,3 s2,4 · · · ∗
. . .

...

sm

 .

Each Si is either a 1×1 or 2×2 matrix.5 In the example above on the right, since the �rst subdiagonal

entry is zero, S1 is the 1× 1 matrix with a single entry, s1. But as s2,3 is not zero, S2 is 2× 2.

Since S is block upper triangular, its eigenvalues are the eigenvalues of its diagonal Si blocks.

Then because A is similar to each Ak, those eigenvalues of S are the eigenvalues of A.

When A has real entries but complex eigenvalues, 2× 2 Si blocks appear in S. Finding eigen-

values of a 2× 2 matrix is equivalent to �nding the roots of a 2nd degree polynomial,

det(Si − λI) =

∣∣∣∣ a− λ b

c d− λ

∣∣∣∣ = (a− λ)(d− λ)− bc = λ2 − (a+ d)λ+ (ad− bc), (4.8)

which has a closed form solution via the quadratic equation. This implies that complex eigenvalues

come in conjugate pairs.

Hessenberg Preconditioning

The QR algorithm works more accurately and e�ciently on matrices that are in upper Hessenberg

form, as upper Hessenberg matrices are already close to triangular. Furthermore, if H = QR is the

QR decomposition of upper HessenbergH then RQ is also upper Hessenberg, so the almost-triangular

form is preserved at each iteration. Putting a matrix in upper Hessenberg form before applying the

QR algorithm is called Hessenberg preconditioning.

With preconditioning in mind, the entire QR algorithm is as follows.

Algorithm 4.2

1: procedure QR_Algorithm(A, N)

2: m,n← shape(A)

3: S ← hessenberg(A) . Put A in upper Hessenberg form.

4: for k = 0, 1, . . . , N − 1 do

5: Q,R← S . Get the QR decomposition of Ak.

6: S ← RQ . Recombine Rk and Qk into Ak+1.

7: eigs ← [] . Initialize an empty list of eigenvalues.

8: i← 0

9: while i < n do

10: if Si is 1× 1 then

11: Append the only entry si of Si to eigs

12: else if Si is 2× 2 then

13: Calculate the eigenvalues of Si
14: Append the eigenvalues of Si to eigs

15: i← i+ 1

16: i← i+ 1 . Move to the next Si.

17: return eigs

5If all of the Si are 1× 1 matrices, then the upper triangular S is called the Schur form of A. If some of the Si are
2× 2 matrices, then S is called the real Schur form of A.
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Problem 6. Write a function that accepts an n × n matrix A, a number of iterations N ,

and a tolerance tol. Use Algorithm 4.2 to implement the QR algorithm with Hessenberg

preconditioning, returning the eigenvalues of A.

Consider the following implementation details.

� Use scipy.linalg.hessenberg() or your own Hessenburg algorithm to reduce A to

upper Hessenberg form in step 3.

� The loop in step 4 should run for N total iterations.

� Use scipy.linalg.qr() or one of your own QR factorization routines to compute the

QR decomposition of S in step 5. Note that since S is in upper Hessenberg form, Givens

rotations are the most e�cient way to produce Q and R.

� Assume that Si is 1× 1 in step 10 if one of two following criteria hold:

� Si is the last diagonal entry of S.

� The absolute value of element below the ith main diagonal entry of S (the lower left

element of the 2× 2 block) is less than tol.

� If Si is 2 × 2, use the quadratic formula and (4.8) to compute its eigenvalues. Use the

function cmath.sqrt() to correctly compute the square root of a negative number.

Test your function on small random symmetric matrices, comparing your results to SciPy's

scipy.linalg.eig(). To construct a random symmetric matrix, note that A + AT is always

symmetric.

Note

Algorithm 4.2 is theoretically sound, but can still be greatly improved. Most modern computer

packages instead use the implicit QR algorithm, an improved version of the QR algorithm, to

compute eigenvalues.

For large matrices, there are other iterative methods besides the power method and the

QR algorithm for e�ciently computing eigenvalues. They include the Arnoldi iteration, the

Jacobi method, the Rayleigh quotient method, and others.



52 Lab 4. Least Squares and Computing Eigenvalues

Additional Material
Variations on the Linear Least Squares Problem
If W is an n× n is symmetric positive-de�nite matrix, then the function ‖ · ‖W 2 : Rn → R given by

‖x‖W 2 = ‖Wx‖2 =
√
xTWTWx

de�nes a norm and is called a weighted 2-norm. Given the overdetermined system Ax = b, the

problem of choosing x̂ to minimize ‖Ax̂ − b‖W 2 is called a weighted least squares (WLS) problem.

This problem has a slightly di�erent set of normal equations,

ATWTWAx̂ = ATWTWb.

However, letting C = WA and z = Wb, this equation reduces to the usual normal equations,

CTCx̂ = CTz,

so a WLS problem can be solved in the same way as an ordinary least squares (OLS) problem.

Weighted least squares is useful when some points in a data set are more important than others.

Typically W is chosen to be a diagonal matrix, and each positive diagonal entry Wi,i indicate how

much weight should be given to the ith data point. For example, Figure 4.2a shows OLS and WLS

�ts of an exponential curve y = aekx to data that gets more sparse as x increases, where the matrix

W is chosen to give more weight to the data with larger x values.

Alternatively, the least squares problem can be formulated with other common vector norms,

but such problems cannot be solved via the normal equations. For example, minimizing ‖Ax−b‖1 or
‖Ax−b‖∞ is usually done by solving an equivalent linear program, a type of constrained optimization

problem. These norms may be better suited to a particular application than the regular 2-norm.

Figure 4.2b illustrates how di�erent norms give slightly di�erent results in the context of Problem 4.
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Figure 4.2: Variations on the ordinary least squares problem.

The Inverse Power Method
The major drawback of the power method is that it only computes a single eigenvector-eigenvalue

pair, and it is always the eigenvalue of largest magnitude. The inverse power method, sometimes

simply called the inverse iteration, is a way of computing an eigenvalue that is closest in magnitude

to an initial guess. They key observation is that if λ is an eigenvalue of A, then 1/(λ − µ) is an

eigenvalue of (A − µI)−1, so applying the power method to (A − µI)−1 yields the eigenvalue of A

that is closest in magnitude to µ.
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The inverse power method is more expensive than the regular power method because at each

iteration, instead of a matrix-vector multiplication (step 6 of Algorithm 4.1), a system of the form

(A− µI)x = b must be solved. To speed this step up, start by taking the LU or QR factorization of

A− µI before the loop, then use the factorization and back substitution to solve the system quickly

within the loop. For instance, if QR = A− µI, then since Q−1 = QT,

b = (A− µI)x = QRx ⇔ Rx = QTb,

which is a triangular system. This version of the algorithm is described below.

Algorithm 4.3

1: procedure InversePowerMethod(A, µ)

2: m,n← shape(A)

3: x0 ← random(n)

4: x0 ← x0/‖x0‖
5: Q,R← A− µI . Factor A− µI with la.qr().

6: for k = 0, 1, 2, . . . , N − 1 do

7: Solve Rxk+1 = QTxk . Use la.solve_triangular().

8: xk+1 ← xk+1/‖xk+1‖
9: return xT

NAxN , xN

It is worth noting that the QR algorithm can be improved with a similar technique: instead of

computing the QR factorization of Ak, factor the shifted matrix Ak − µkI, where µk is a guess for

an eigenvalue of A, and unshift the recombined factorization accordingly. That is, compute

QkRk = Ak − µkI,
Ak+1 = RkQk + µkI.

This technique yields the single-shift QR algorithm. Another variant, the practical QR algorithm, uses

intelligent shifts and recursively operates on smaller blocks ofAk+1 where possible. See [QSS10, TB97]

for further discussion.
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5 Image Segmentation

Lab Objective: Graph theory has a variety of applications. A graph (or network) can be represented

in many ways on a computer. In this lab we study a common matrix representation for graphs and

show how certain properties of the matrix representation correspond to inherent properties of the

original graph. We also introduce tools for working with images in Python, and conclude with an

application of using graphs and linear algebra to segment images.

Graphs as Matrices
A graph is a mathematical structure that represents relationships between objects. Graphs are

de�ned by G = (V,E), where V is a set of vertices (or nodes) and E is a set of edges, each of which

connects one node to another. A graph can be classi�ed in several ways.

� The edges of an undirected graph are bidirectional: if an edge goes from node A to node B,

then that same edge also goes from B to A. For example, the graphs G1 and G2 in Figure 5.1

are both undirected. In a directed graph, edges only go one way, usually indicated by an arrow

pointing from one node to another. In this lab, we focus on undirected graphs.

� The edges of a weighted graph have a weight assigned to them, such as G2. A weighted graph

could represent a collection of cities with roads connecting them: each vertex would represent

a city, and the edges would represent roads between the cities. The length of each road could

be the weight of the corresponding edge. An unweighted graph like G1 does not have weights

assigned to its edges, but any unweighted graph can be thought of as a weighted graph by

assigning a weight of 1 to every edge.
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(a) G1, an unweighted undirected graph.
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(b) G2, a weighted undirected graph.

Figure 5.1
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Adjacency, Degree, and Laplacian Matrices
For computation and analysis, graphs are commonly represented by a few special matrices. For these

de�nitions, let G be a graph with N nodes and let wij be the weight of the edge connecting node i

to node j (if such an edge exists).

1. The adjacency matrix of G is the N ×N matrix A with entries

aij =

{
wij if an edge connects node i and node j

0 otherwise.

The adjacency matrices A1 of G1 and A2 of G2 are

A1 =



0 1 0 0 1 1

1 0 1 0 1 0

0 1 0 1 0 0

0 0 1 0 1 1

1 1 0 1 0 0

1 0 0 1 0 0

 , A2 =



0 3 0 0 0 0

3 0 0 0 0 0

0 0 0 1 0 0

0 0 1 0 2 .5

0 0 0 2 0 1

0 0 0 .5 1 0

 .

Notice that these adjacency matrices are symmetric. This is always the case for undirected

graphs since the edges are bidirectional.

2. The degree matrix of G is the N ×N diagonal matrix D whose ith diagonal entry is

dii =

N∑
j=1

wij . (5.1)

The degree matrices D1 of G1 and D2 of G2 are

D1 =



3 0 0 0 0 0

0 3 0 0 0 0

0 0 2 0 0 0

0 0 0 3 0 0

0 0 0 0 3 0

0 0 0 0 0 2

 , D2 =



3 0 0 0 0 0

0 3 0 0 0 0

0 0 1 0 0 0

0 0 0 3.5 0 0

0 0 0 0 3 0

0 0 0 0 0 1.5

 .

The ith diagonal entry of D is called the degree of node i, the sum of the weights of the edges

leaving node i.

3. The Laplacian matrix of G is the N ×N matrix L de�ned as

L = D −A, (5.2)

where D is the degree matrix of G and A is the adjacency matrix of G. For G1 and G2, the

Laplacian matrices L1 and L2 are

L1 =



3 −1 0 0 −1 −1

−1 3 −1 0 −1 0

0 −1 2 −1 0 0

0 0 −1 3 −1 −1

−1 −1 0 −1 3 0

−1 0 0 −1 0 2

 , L2 =



3 −3 0 0 0 0

−3 3 0 0 0 0

0 0 1 −1 0 0

0 0 −1 3.5 −2 −.5
0 0 0 −2 3 −1

0 0 0 −.5 −1 1.5

 .
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Problem 1. Write a function that accepts the adjacency matrix A of a graph G. Use (5.1)

and (5.2) to compute the Laplacian matrix L of G.

(Hint: The diagonal entries of D can be computed in one line by summing A over an axis.)

Test your function on the graphs G1 and G2 from Figure 5.1 and validate your results

with scipy.sparse.csgraph.laplacian().

Connectivity
A connected graph is a graph where every vertex is connected to every other vertex by at least one

path. For example, G1 is connected, whereas G2 is not because there is no path from node 1 (or

node 2) to node 3 (or nodes 4, 5, or 6). The naïve brute-force algorithm for determining if a graph

is connected is to check that there is a path from each edge to every other edge. While this may

work for very small graphs, most interesting graphs have thousands of vertices, and for such graphs

this approach is prohibitively expensive. Luckily, an interesting result from algebraic graph theory

relates the connectivity of a graph to its Laplacian matrix.

If L is the Laplacian matrix of a graph, then the de�nition of D and the construction L = D−A
guarantees that the rows (and columns) of L must each sum to 0. Therefore L cannot have full rank,

so λ = 0 must be an eigenvalue of L. Furthermore, if L represents a graph that is not connected,

more than one of the eigenvalues of L must be zero. To see this, let J ⊂ {1, 2, . . . , N} such that the

vertices {vj}j∈J form a connected component of the graph, meaning that there is a path between

each pair of vertices in the set. Next, let x be the vector with entries

xk =

{
1, k ∈ J
0, k 6∈ J.

Then x is an eigenvector of L corresponding to the eigenvalue λ = 0.

For example, the example graph G2 has two connected components.

1. J1 = {1, 2} so that x1 = [1, 1, 0, 0, 0, 0]T. Then

L2x1 =



3 −3 0 0 0 0

−3 3 0 0 0 0

0 0 1 −1 0 0

0 0 −1 3.5 −2 −.5
0 0 0 −2 3 −1

0 0 0 −.5 −1 1.5





1

1

0

0

0

0

 =



0

0

0

0

0

0

 = 0.

2. J2 = {3, 4, 5, 6} and hence x2 = [0, 0, 1, 1, 1, 1]T. Then

L2x2 =



3 −3 0 0 0 0

−3 3 0 0 0 0

0 0 1 −1 0 0

0 0 −1 3.5 −2 −.5
0 0 0 −2 3 −1

0 0 0 −.5 −1 1.5





0

0

1

1

1

1

 =



0

0

0

0

0

0

 = 0.

In fact, it can be shown that the number of zero eigenvalues of the Laplacian exactly equals

the number of connected components. This makes calculating how many connected components are

in a graph only as hard as calculating the eigenvalues of its Laplacian.
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A Laplacian matrix L is always a positive semi-de�nite matrix when all weights in the graph

are positive, meaning that its eigenvalues are each nonnegative. The second smallest eigenvalue of

L is called the algebraic connectivity of the graph. It is clearly 0 for non-connected graphs, but

for a connected graph, the algebraic connectivity provides useful information about its sparsity or

�connectedness.� A higher algebraic connectivity indicates that the graph is more strongly connected.

Problem 2. Write a function that accepts the adjacency matrix A of a graph G and a small

tolerance value tol. Compute the number of connected components in G and its algebraic

connectivity. Consider all eigenvalues that are less than the given tol to be zero.

Use scipy.linalg.eig() or scipy.linalg.eigvals() to compute the eigenvalues of

the Laplacian matrix. These functions return complex eigenvalues (with negligible imaginary

parts); use np.real() to extract the real parts.

Images as Matrices
Computer images are stored as arrays of integers that indicate pixel values. Most m × n grayscale

(black and white) images are stored in Python as a m × n NumPy arrays, while most m × n color

images are stored as 3-dimensional m×n×3 arrays. Color image arrays can be thought of as a stack

of three m× n arrays, one each for red, green, and blue values. The datatype for an image array is

np.uint8, unsigned 8-bit integers that range from 0 to 255. A 0 indicates a black pixel while a 255

indicates a white pixel.

Use imageio.imread() to read an image from a �le and imageio.imwrite() to save an image.

Matplotlib's plt.imshow() displays an image array, but it displays arrays of �oats between 0 and 1

more cleanly than arrays of 8-bit integers. Therefore it is customary to scale the array by dividing

each entry by 255 before processing or showing the image. In this case, a 0 still indicates a black

pixel, but now a 1 indicates pure white.

>>> from imageio import imread

>>> from matplotlib import pyplot as plt

>>> image = imread("dream.png") # Read a (very) small image.

>>> print(image.shape) # Since the array is 3-dimensional,

(48, 48, 3) # this is a color image.

# The image is read in as integers from 0 to 255.

>>> print(image.min(), image.max(), image.dtype)

0 254 uint8

# Scale the image to floats between 0 and 1 for Matplotlib.

>>> scaled = image / 255.

>>> print(scaled.min(), scaled.max(), scaled.dtype)

0.0 0.996078431373 float64

# Display the scaled image.

>>> plt.imshow(scaled)

>>> plt.axis("off")
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A color image can be converted to grayscale by averaging the RGB values of each pixel, resulting

in a 2-D array called the brightness of the image. To properly display a grayscale image, specify the

keyword argument cmap="gray" in plt.imshow().

# Average the RGB values of a colored image to obtain a grayscale image.

>>> brightness = scaled.mean(axis=2) # Average over the last axis.

>>> print(brightness.shape) # Note that the array is now 2-D.

(48, 48)

# Display the image in gray.

>>> plt.imshow(brightness, cmap="gray")

>>> plt.axis("off")

Finally, it is often important in applications to �atten an image matrix into a large 1-D array.

Use np.ravel() to convert a m× n array into a 1-D array with mn entries.

>>> import numpy as np

>>> A = np.random.randint(0, 10, (3,4))

>>> print(A)

[[4 4 7 7]

[8 1 2 0]

[7 0 0 9]]

# Unravel the 2-D array (by rows) into a 1-D array.

>>> np.ravel(A)

array([4, 4, 7, 7, 8, 1, 2, 0, 7, 0, 0, 9])

# Unravel a grayscale image into a 1-D array and check its size.

>>> M,N = brightness.shape

>>> flat_brightness = np.ravel(brightness)

>>> M*N == flat_brightness.size

True

>>> print(flat_brightness.shape)

(2304,)

Problem 3. De�ne a class called ImageSegmenter.

1. Write the constructor so that it accepts the name of an image �le. Read the image, scale

it so that it contains �oats between 0 and 1, then store it as an attribute. If the image is

in color, compute its brightness matrix by averaging the RGB values at each pixel (if it is

a grayscale image, the image array itself is the brightness matrix). Flatten the brightness

matrix into a 1-D array and store it as an attribute.

2. Write a method called show_original() that displays the original image. If the original

image is grayscale, remember to use cmap="gray" as part of plt.imshow().
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Achtung!

Matplotlib's plt.imread() also reads image �les. However, this function automatically scales

PNG image entries to �oats between 0 and 1, but it still reads non-PNG image entries as 8-bit

integers. To avoid this inconsistent behavior, always use imageio.imread() to read images

and divide by 255 when scaling is desired.

Graph-based Image Segmentation
Image segmentation is the process of �nding natural boundaries in an image and partitioning the

image along those boundaries (see Figure 5.2). Though humans can easily pick out portions of an

image that �belong together,� it takes quite a bit of work to teach a computer to recognize boundaries

and sections in an image. However, segmenting an image often makes it easier to analyze, so image

segmentation is ongoing area of research in computer vision and image processing.

Figure 5.2: The image dream.png and its segments.

There are many ways to approach image segmentation. The following algorithm, developed by

Jianbo Shi and Jitendra Malik in 2000 [SM00], converts the image to a graph and �cuts� it into two

connected components.

Constructing the Image Graph

Let G be a graph whose vertices are the mn pixels of an m × n image (either grayscale or color).

Each vertex i has a brightness B(i), the grayscale or average RGB value of the pixel, as well as a

coordinate location X(i), the indices of the pixel in the original image array.

De�ne wij , the weight of the edge between pixels i and j, by

wij =

{
exp

(
− |B(i)−B(j)|

σ2
B

− ‖X(i)−X(j)‖
σ2
X

)
if ‖X(i)−X(j)‖ < r

0 otherwise,
(5.3)

where r, σ2
B and σ2

X are constants for tuning the algorithm. In this context, ‖ · ‖ is the standard

euclidean norm, meaning that ‖X(i) − X(j)‖ is the physical distance between vertices i and j,

measured in pixels.
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With this de�nition for wij , pixels that are farther apart than the radius r are not connected at

all in G. Pixels within r of each other are more strongly connected if they are similar in brightness

and close together (the value in the exponential is negative but close to zero). On the other hand,

highly contrasting pixels where |B(i) − B(j)| is large have weaker connections (the value in the

exponential is highly negative).
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Figure 5.3: The grid on the left represents a 4× 4 (m× n) image with 16 pixels. On the right is the

corresponding 16× 16 (mn×mn) adjacency matrix with all nonzero entries shaded. For example, in

row 5, entries 1, 4, 5, 6, and 9 are nonzero because those pixels are within radius r = 1.2 of pixel 5.

Since there are mn total pixels, the adjacency matrix A of G with entries wij is mn×mn. With

a relatively small radius r, A is relatively sparse, and should therefore be constructed and stored as

a sparse matrix. The degree matrix D is diagonal, so it can be stored as a regular 1-dimensional

NumPy array. The procedure for constructing these matrices can be summarized in just a few steps.

1. Initialize A as a sparse mn×mn matrix and D as a vector with mn entries.

2. For each vertex i (i = 0, 1, . . . ,mn− 1),

(a) Find the set of all vertices Ji such that ‖X(i)−X(j)‖ < r for each j ∈ Ji. For example,

in Figure 5.3 i = 5 and Ji = {1, 4, 5, 6, 9}.
(b) Calculate the weights wij for each j ∈ Ji according to (5.3) and store them in A.

(c) Set the ith element of D to be the sum of the weights, di =
∑
j∈Ji wij .

The most di�cult part to implement e�ciently is step 2a, computing the neighborhood Ji of

the current pixel i. However, the computation only requires knowing the current index i, the radius

r, and the height and width m and n of the original image. The following function takes advantage

of this fact and returns (as NumPy arrays) both Ji and the distances ‖X(i)−X(j)‖ for each j ∈ Ji.
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def get_neighbors(index, radius, height, width):

"""Calculate the flattened indices of the pixels that are within the given

distance of a central pixel, and their distances from the central pixel.

Parameters:

index (int): The index of a central pixel in a flattened image array

with original shape (radius, height).

radius (float): Radius of the neighborhood around the central pixel.

height (int): The height of the original image in pixels.

width (int): The width of the original image in pixels.

Returns:

(1-D ndarray): the indices of the pixels that are within the specified

radius of the central pixel, with respect to the flattened image.

(1-D ndarray): the euclidean distances from the neighborhood pixels to

the central pixel.

"""

# Calculate the original 2-D coordinates of the central pixel.

row, col = index // width, index % width

# Get a grid of possible candidates that are close to the central pixel.

r = int(radius)

x = np.arange(max(col - r, 0), min(col + r + 1, width))

y = np.arange(max(row - r, 0), min(row + r + 1, height))

X, Y = np.meshgrid(x, y)

# Determine which candidates are within the given radius of the pixel.

R = np.sqrt(((X - col)**2 + (Y - row)**2))

mask = R < radius

return (X[mask] + Y[mask]*width).astype(np.int), R[mask]

To see how this works, consider Figure 5.3 where the original image is 4× 4 and the goal is to

compute the neighborhood of the pixel i = 5.

# Compute the neighbors and corresponding distances from the figure.

>>> neighbors_1, distances_1 = get_neighbors(5, 1.2, 4, 4)

>>> print(neighbors_1, distances_1, sep='\n')

[1 4 5 6 9]

[ 1. 1. 0. 1. 1.]

# Increasing the radius from 1.2 to 1.5 results in more neighbors.

>>> neighbors_2, distances_2 = get_neighbors(5, 1.5, 4, 4)

>>> print(neighbors_2, distances_2, sep='\n')

[ 0 1 2 4 5 6 8 9 10]

[ 1.41421356 1. 1.41421356 1. 0. 1.

1.41421356 1. 1.41421356]
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Problem 4. Write a method for the ImageSegmenter class that accepts �oats r defaulting to

5, σ2
B defaulting to .02, and σ2

X defaulting to 3. Compute the adjacency matrix A and the

degree matrix D according to the weights speci�ed in (5.3).

Initialize A as a scipy.sparse.lil_matrix, which is optimized for incremental construc-

tion. Fill in the nonzero elements of A one row at a time. Use get_neighbors() at each step

to help compute the weights.

(Hint: Try to compute and store an entire row of weights at a time. What does the command

A[5, np.array([1, 4, 5, 6, 9])] = weights do?)

Finally, convert A to a scipy.sparse.csc_matrix, which is faster for computations.

Then return A and D.

Segmenting the Graph

With an image represented as a graph G, the goal is to now split G into two distinct connected

components by removing edges from the existing graph. This is called cutting G, and the set of edges

that are removed is called the cut. The cut with the least weight will best segment the image.

Let D be the degree matrix and L be the Laplacian matrix of G. Shi and Malik [SM00] proved

that the eigenvector corresponding to the second smallest1 eigenvalue of D−1/2LD−1/2 can be used

to minimize the cut: the indices of its positive entries are the indices of the pixels in the �attened

image which belong to one segment, and the indices of its negative entries are the indices of the pixels

which belong to the other segment. In this context D−1/2 refers to element-wise exponentiation, so

the (i, j)th entry of D−1/2 is 1/
√
dij .

Because A is mn ×mn, the desired eigenvector has mn entries. Reshaping the eigenvector to

be m×n allows it to align with the original image. Use the reshaped eigenvector to create a boolean

mask that indexes one of the segments. That is, construct a m×n array where the entries belonging

to one segment are True and the other entries are False.

>>> x = np.arange(-5,5).reshape((5,2)).T

>>> print(x)

[[-5 -3 -1 1 3]

[-4 -2 0 2 4]]

# Construct a boolean mask of x describing which entries of x are positive.

>>> mask = x > 0

>>> print(mask)

[[False False False True True]

[False False False True True]]

# Use the mask to zero out all of the nonpositive entries of x.

>>> x * mask

array([[0, 0, 0, 1, 3],

[0, 0, 0, 2, 4]])

1Both D and L are symmetric matrices, so all eigenvalues of D−1/2LD−1/2 are real, and therefore �the second
smallest one� is well-de�ned.
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Problem 5. Write a method for the ImageSegmenter class that accepts an adjacency matrix

A as a scipy.sparse.csc_matrix and a degree matrix D as a 1-D NumPy array. Construct

an m× n boolean mask describing the segments of the image.

1. Compute the Laplacian L with scipy.sparse.csgraph.laplacian() or by converting

D to a sparse diagonal matrix and computing L = D−A (do not use your function from

Problem 1 unless it works correctly and e�ciently for sparse matrices).

2. Construct D−1/2 as a sparse diagonal matrix using D and scipy.sparse.diags(), then

compute D−1/2LD−1/2. Use @ or the dot() method of the sparse matrix for the matrix

multiplication, not np.dot().

3. Use scipy.sparse.linalg.eigsh() to compute the eigenvector corresponding to the

second-smallest eigenvalue of D−1/2LD−1/2. Set the keyword arguments which="SM"

and k=2 to compute only the two smallest eigenvalues and their eigenvectors.

4. Reshape the eigenvector as a m× n matrix and use this matrix to construct the desired

boolean mask. Return the mask.

Multiplying the boolean mask component-wise by the original image array produces the positive

segment, a copy of the original image where the entries that aren't in the segment are set to 0.

Computing the negative segment requires inverting the boolean mask, then multiplying the inverted

mask with the original image array. Finally, if the original image is a m × n × 3 color image, the

mask must be stacked into a m× n× 3 array to facilitate entry-wise multiplication.

>>> mask = np.arange(-5,5).reshape((5,2)).T > 0

>>> print(mask)

[[False False False True True]

[False False False True True]]

# The mask can be negated with the tilde operator ~.

>>> print(~mask)

[[ True True True False False]

[ True True True False False]]

# Stack a mask into a 3-D array with np.dstack().

>>> print(mask.shape, np.dstack((mask, mask, mask)).shape)

(2, 5) (2, 5, 3)

Problem 6. Write a method for the ImageSegmenter class that accepts �oats r, σ2
B , and σ

2
X ,

with the same defaults as in Problem 4. Call your methods from Problems 4 and 5 to obtain the

segmentation mask. Plot the original image, the positive segment, and the negative segment

side-by-side in subplots. Your method should work for grayscale or color images.

Use dream.png as a test �le and compare your results to Figure 5.2.



6 The SVD and Image
Compression

Lab Objective: The Singular Value Decomposition (SVD) is an incredibly useful matrix factor-

ization that is widely used in both theoretical and applied mathematics. The SVD is structured in

a way that makes it easy to construct low-rank approximations of matrices, and it is therefore the

basis of several data compression algorithms. In this lab we learn to compute the SVD and use it to

implement a simple image compression routine.

The SVD of a matrix A is a factorization A = UΣV H where U and V have orthonormal columns

and Σ is diagonal. The diagonal entries of Σ are called the singular values of A and are the square

roots of the eigenvalues of AHA. Since AHA is always positive semide�nite, its eigenvalues are all

real and nonnegative, so the singular values are also real and nonnegative. The singular values σi
are usually sorted in decreasing order so that Σ = diag(σ1, σ2, . . . , σn) with σ1 ≥ σ2 ≥ . . . ≥ σn ≥ 0.

The columns ui of U , the columns vi of V , and the singular values of A satisfy Avi = σiui.

Every m× n matrix A of rank r has an SVD with exactly r nonzero singular values. Like the

QR decomposition, the SVD has two main forms.

� Full SVD: Denoted A = UΣV H. U is m×m, V is n×n, and Σ is m×n. The �rst r columns

of U span R(A), and the remaining n− r columns span N (AH). Likewise, the �rst r columns

of V span R(AH), and the last m− r columns span N (A).

� Compact (Reduced) SVD: Denoted A = U1Σ1V
H
1 . U1 is m× r (the �rst r columns of U),

V1 is n× r (the �rst r columns of V ), and Σ1 is r× r (the �rst r× r block of Σ). This smaller

version of the SVD has all of the information needed to construct A and nothing more. The

zero singular values and the correpsonding columns of U and V are neglected.

U1 (m× r) Σ1 (r × r) V H
1 (r × n)


u1 · · · ur ur+1 · · · um





σ1

. . .

σr
0

. . .

0





vH
1
...

vH
r

vH
r+1
...

vH
n


U (m×m) Σ (m× n) V H(n× n)
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Finally, the SVD yields an outer product expansion of A in terms of the singular values and the

columns of U and V ,

A =

r∑
i=1

σiuiv
H
i . (6.1)

Note that only terms from the compact SVD are needed for this expansion.

Computing the Compact SVD
It is di�cult to compute the SVD from scratch because it is an eigenvalue-based decomposition.

However, given an eigenvalue solver such as scipy.linalg.eig(), the algorithm becomes much

simpler. First, obtain the eigenvalues and eigenvectors of AHA, and use these to compute Σ. Since

AHA is normal, it has an orthonormal eigenbasis, so set the columns of V to be the eigenvectors of

AHA. Then, since Avi = σiui, construct U by setting its columns to be ui = 1
σi
Avi.

The key is to sort the singular values and the corresponding eigenvectors in the same manner.

In addition, it is computationally ine�cient to keep track of the entire matrix Σ since it is a matrix

of mostly zeros, so we need only store the singular values as a vector σ. The entire procedure for

computing the compact SVD is given below.

Algorithm 6.1

1: procedure compact_SVD(A)

2: λ, V ← eig(AHA) . Calculate the eigenvalues and eigenvectors of AHA.

3: σ ←
√
λ . Calculate the singular values of A.

4: σ ← sort(σ) . Sort the singular values from greatest to least.

5: V ← sort(V ) . Sort the eigenvectors the same way as in the previous step.

6: r ← count(σ 6= 0) . Count the number of nonzero singular values (the rank of A).

7: σ1 ← σ:r . Keep only the positive singular values.

8: V1 ← V:,:r . Keep only the corresponding eigenvectors.

9: U1 ← AV1/σ1 . Construct U with array broadcasting.

10: return U1,σ1, V
H
1

Problem 1. Write a function that accepts a matrix A and a small error tolerance tol. Use

Algorithm 6.1 to compute the compact SVD of A. In step 6, compute r by counting the number

of singular values that are greater than tol.

Consider the following tips for implementing the algorithm.

� The Hermitian AH can be computed with A.conj().T.

� In step 4, the way that σ is sorted needs to be stored so that the columns of V can be

sorted the same way. Consider using np.argsort() and fancy indexing to do this, but

remember that by default it sorts from least to greatest (not greatest to least).

� Step 9 can be done by looping over the columns of V , but it can be done more easily and

e�ciently with array broadcasting.

Test your function by calculating the compact SVD for random matrices. Verify that U

and V are orthonormal, that UΣV H = A, and that the number of nonzero singular values is

the rank of A. You may also want to compre your results to SciPy's SVD algorithm.
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>>> import numpy as np

>>> from scipy import linalg as la

# Generate a random matrix and get its compact SVD via SciPy.

>>> A = np.random.random((10,5))

>>> U,s,Vh = la.svd(A, full_matrices=False)

>>> print(U.shape, s.shape, Vh.shape)

(10, 5) (5,) (5, 5)

# Verify that U is orthonormal, U Sigma Vh = A, and the rank is correct.

>>> np.allclose(U.T @ U, np.identity(5))

True

>>> np.allclose(U @ np.diag(s) @ Vh, A)

True

>>> np.linalg.matrix_rank(A) == len(s)

True

Visualizing the SVD

An m × n matrix A de�nes a linear transformation that sends points from Rn to Rm. The SVD

decomposes a matrix into two rotations and a scaling, so that any linear transformation can be easily

described geometrically. Speci�cally, V H represents a rotation, Σ a rescaling along the principal axes,

and U another rotation.

Problem 2. Write a function that accepts a 2 × 2 matrix A. Generate a 2 × 200 matrix S

representing a set of 200 points on the unit circle, with x-coordinates on the top row and y-

coordinates on the bottom row (recall the equation for the unit circle in polar coordinates:

x = cos(θ), y = sin(θ), θ ∈ [0, 2π]). Also de�ne the matrix

E =
[
e1 0 e2

]
=

[
1 0 0

0 0 1

]
,

so that plotting the �rst row of S against the second row of S displays the unit circle, and

plotting the �rst row of E against its second row displays the standard basis vectors in R2.

Compute the full SVD A = UΣV H using scipy.linalg.svd(). Plot four subplots to

demonstrate each step of the transformation, plotting S and E, V HS and V HE, ΣV HS and

ΣV HE, then UΣV HS and UΣV HE.

For the matrix

A =

[
3 1

1 3

]
,

your function should produce Figure 6.1.

(Hint: Use plt.axis("equal") to �x the aspect ratio so that the circles don't appear elliptical.)
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Figure 6.1: Each step in transforming the unit circle and two unit vectors using the matrix A.

Using the SVD for Data Compression

Low-Rank Matrix Approximations

If A is a m× n matrix of rank r < min{m,n}, then the compact SVD o�ers a way to store A with

less memory. Instead of storing all mn values of A, storing the matrices U1, Σ1 and V1 only requires

saving a total of mr + r + nr values. For example, if A is 100 × 200 and has rank 20, then A has

20, 000 values, but its compact SVD only has total 6, 020 entries, a signi�cant decrease.

The truncated SVD is an approximation to the compact SVD that allows even greater e�ciency

at the cost of a little accuracy. Instead of keeping all of the nonzero singular values, the truncated

SVD only keeps the �rst s < r singular values, plus the corresponding columns of U and V . In this

case, (6.1) becomes

As =

s∑
i=1

σiuiv
H
i .

More precisely, the truncated SVD of A is As = Û Σ̂V̂ H, where Û is m × s, V̂ is n × s, and Σ̂

is s× s. The resulting matrix As has rank s and is only an approximation to A, since r − s nonzero
singular values are neglected.
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Û (m× s) Σ̂ (s× s) V̂ H (s× n)
u1 · · · us us+1 · · · ur


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The beauty of the SVD is that it makes it easy to select the information that is most important.

Larger singular values correspond to columns of U and V that contain more information, so dropping

the smallest singular values retains as much information as possible. In fact, given a matrix A, its

rank-s truncated SVD approximation As is the best rank s approximation of A with respect to both

the induced 2-norm and the Frobenius norm. This result is called the Schmidt, Mirsky, Eckhart-Young

theorem, a very signi�cant concept that appears in signal processing, statistics, machine learning,

semantic indexing (search engines), and control theory.

Problem 3. Write a function that accepts a matrix A and a positive integer s.

1. Use your function from Problem 1 or scipy.linalg.svd() to compute the compact SVD

of A, then form the truncated SVD by stripping o� the appropriate columns and entries

from U1, Σ1, and V1. Return the best rank s approximation As of A (with respect to the

induced 2-norm and Frobenius norm).

2. Also return the number of entries required to store the truncated form Û Σ̂V̂ H (where Σ̂

is stored as a one-dimensional array, not the full diagonal matrix). The number of entries

stored in NumPy array can be accessed by its size attribute.

>>> A = np.random.random((20, 20))

>>> A.size

400

3. If s is greater than the number of nonzero singular values of A (meaning s > rank(A)),

raise a ValueError.

Use np.linalg.matrix_rank() to verify the rank of your approximation.

Error of Low-Rank Approximations
Another result of the Schmidt, Mirsky, Eckhart-Young theorem is that the exact 2-norm error of the

best rank-s approximation As for the matrix A is the (s+ 1)th singular value of A:

‖A−As‖2 = σs+1. (6.2)

This o�ers a way to approximate A within a desired error tolerance ε: choose s such that σs+1 is the

largest singular value that is less than ε, then compute As. This As throws away as much information

as possible without violating the property ‖A−As‖2 < ε.
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Problem 4. Write a function that accepts a matrix A and an error tolerance ε.

1. Compute the compact SVD of A, then use (6.2) to compute the lowest rank approximation

As of A with 2-norm error less than ε. Avoid calculating the SVD more than once.

(Hint: np.argmax(), np.where(), and/or fancy indexing may be useful.)

2. As in the previous problem, also return the number of entries needed to store the resulting

approximation As via the truncated SVD.

3. If ε is less than or equal to the smallest singular value of A, raise a ValueError; in this

case, A cannot be approximated within the tolerance by a matrix of lesser rank.

This function should be close to identical to the function from Problem 3, but with the extra

step of identifying the appropriate s. Construct test cases to validate that ‖A−As‖2 < ε.

Image Compression

Images are stored on a computer as matrices of pixel values. Sending an image over the internet or

a text message can be expensive, but computing and sending a low-rank SVD approximation of the

image can considerably reduce the amount of data sent while retaining a high level of image detail.

Successive levels of detail can be sent after the inital low-rank approximation by sending additional

singular values and the corresponding columns of V and U.

Examining the singular values of an image gives us an idea of how low-rank the approximation

can be. Figure 6.2 shows the image in hubble_gray.jpg and a log plot of its singular values. The

plot in 6.2b is typical for a photograph�the singular values start out large but drop o� rapidly.

In this rank 1041 image, 913 of the singular values are 100 or more times smaller than the largest

singular value. By discarding these relatively small singular values, we can retain all but the �nest

image details, while storing only a rank 128 image. This is a huge reduction in data size.

(a) NGC 3603 (Hubble Space Telescope).
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(b) Singular values on a log scale.

Figure 6.2

Figure 6.3 shows several low-rank approximations of the image in Figure 6.2a. Even at a low

rank the image is recognizable. By rank 120, the approximation di�ers very little from the original.
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(a) Rank 2 (b) Rank 20 (c) Rank 120

Figure 6.3

Grayscale images are stored on a computer as 2-dimensional arrays, while color images are

stored as 3-dimensional arrays�one layer each for red, green, and blue arrays. To read and display

images, use imageio.imread() and plt.imshow(). Images are read in as integer arrays with entries

between 0 and 255 (dtype=np.uint8), but plt.imshow() works better if the image is an array of

�oats in the interval [0, 1]. Scale the image properly by dividing the array by 255.

>>> from imageio import imread

>>> from matplotlib import pyplot as plt

# Send the RGB values to the interval (0,1).

>>> image_gray = imread("hubble_gray.jpg") / 255.

>>> image_gray.shape # Grayscale images are 2-d arrays.

(1158, 1041)

>>> image_color = imread("hubble.jpg") / 255.

>>> image_color.shape # Color images are 3-d arrays.

(1158, 1041, 3)

# The final axis has 3 layers for red, green, and blue values.

>>> red_layer = image_color[:,:,0]

>>> red_layer.shape

(1158, 1041)

# Display a gray image.

>>> plt.imshow(red_layer, cmap="gray")

>>> plt.axis("off") # Turn off axis ticks and labels.

>>> plt.show()

# Display a color image.

>>> plt.imshow(image_color) # cmap=None by default.

>>> plt.axis("off")

>>> plt.show()
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Problem 5. Write a function that accepts the name of an image �le and an integer s. Use

your function from Problem 3, to compute the best rank-s approximation of the image. Plot

the original image and the approximation in separate subplots. In the �gure title, report the

di�erence in number of entries required to store the original image and the approximation (use

plt.suptitle()).

Your function should be able to handle both grayscale and color images. Read the image

in and check its dimensions to see if it is color or not. Grayscale images can be approximated

directly since they are represented by 2-dimensional arrays. For color images, let R, G, and B

be the matrices for the red, green, and blue layers of the image, respectively. Calculate the low-

rank approximations Rs, Gs, and Bs separately, then put them together in a new 3-dimensional

array of the same shape as the original image.

(Hint: np.dstack() may be useful for putting the color layers back together.)

Finally, it is possible for the low-rank approximations to have values slightly outside the

valid range of RGB values. Set any values outside of the interval [0, 1] to the closer of the two

boundary values.

(Hint: fancy indexing and/or np.clip() may be useful here.)

To check, compressing hubble_gray.jpg with a rank 20 approximation should appear

similar to Figure 6.3b and save 1, 161, 478 matrix entries.
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Additional Material
More on Computing the SVD
For an m× n matrix A of rank r < min{m,n}, the compact SVD of A neglects last m− r columns

of U and the last n − r columns of V . The remaining columns of each matrix can be calculated by

using Gram-Schmidt orthonormalization. If m < r < n or n < r < m, only one of U1 and V1 will

need to be �lled in to construct the full U or V . Computing these extra columns is one way to obtain

a basis for N (AH) or N (A).

Algorithm 6.1 begins with the assumption that we have a way to compute the eigenvalues and

eigenvectors of AHA. Computing eigenvalues is a notoriously di�cult problem, and computing the

SVD from scratch without an eigenvalue solver is much more di�cult than the routine described by

Algorithm 6.1. The procedure involves two phases:

1. Factor A into A = UaBV
H
a where B is bidiagonal (only nonzero on the diagonal and the �rst

superdiagonal) and Ua and Va are orthonormal. This is usually done via Golub-Kahan Bidi-

agonalization, which uses Householder re�ections, or Lawson-Hanson-Chan bidiagonalization,

which relies on the QR decomposition.

2. Factor B into B = UbΣV
H
b by the QR algorithm or a divide-and-conquer algorithm. Then the

SVD of A is given by A = (UaUb)Σ(VaVb)
H.

For more details, see Lecture 31 of [TB97] or Section 5.4 of Applied Numerical Linear Algebra by

James W. Demmel.

Animating Images with Matplotlib
Matplotlib can be used to animate images that change over time. For instance, we can show how

the low-rank approximations of an image change as the rank s increases, showing how the image is

recovered as more ranks are added. Try using the following code to create such an animation.

from matplotlib import pyplot as plt

from matplotlib.animation import FuncAnimation

def animate_images(images):

"""Animate a sequence of images. The input is a list where each

entry is an array that will be one frame of the animation.

"""

fig = plt.figure()

plt.axis("off")

im = plt.imshow(images[0], animated=True)

def update(index):

plt.title("Rank {} Approximation".format(index))

im.set_array(images[index])

return im, # Note the comma!

a = FuncAnimation(fig, update, frames=len(images), blit=True)

plt.show()

See https://matplotlib.org/examples/animation/dynamic_image.html for another example.

https://matplotlib.org/examples/animation/dynamic_image.html
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7 Facial Recognition

Lab Objective: Facial recognition algorithms attempt to match a person's portrait to a database

of many portraits. Facial recognition is becoming increasingly important in security, law enforcement,

arti�cial intelligence, and other areas. Though humans can easily match pictures to people, computers

are beginning to surpass humans at facial recognition. In this lab, we implement a basic facial

recognition system that relies on eigenvectors and the SVD to e�ciently determine the di�erence

between faces.

Preparing an Image Database
The faces94 face image dataset1 contains several photographs of 153 people, organized into folders

by person. To perform facial recognition on this dataset, select one image per person and convert

these images into a database. For this particular facial recognition algorithm, the entire database

can be stored in just a few NumPy arrays.

Digital images are stored on computers as arrays of pixels. Therefore, an m× n image can be

stored in memory as an m × n matrix or, equivalently, as an mn-vector by concatenating the rows

of the matrix. Then a collection of k images can be stored as a single mn× k matrix F , where each

column of F represents a single image. That is, if

F =

 f1 f2 · · · fk

 ,
then each fi is a mn-vector representing a single image.

The following function obtains one image for each person in the faces94 dataset and converts

the collection of images into an mn× k matrix F described above.

import os

import numpy as np

from imageio import imread

def get_faces(path="./faces94"):

# Traverse the directory and get one image per subdirectory.

1See http://cswww.essex.ac.uk/mv/allfaces/faces94.html.
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faces = []

for (dirpath, dirnames, filenames) in os.walk(path):

for fname in filenames:

if fname[-3:]=="jpg": # Only get jpg images.

# Load the image, convert it to grayscale,

# and flatten it into a vector.

faces.append(np.ravel(imread(dirpath+"/"+fname, as_gray=True)))

break

# Put all the face vectors column-wise into a matrix.

return np.transpose(faces)

Problem 1. Write a function that accepts an image as a �attened mn-vector, along with its

original dimensions m and n. Use np.reshape() to convert the �attened image into its original

m× n shape and display the result with plt.imshow().

(Hint: use cmap="gray" in plt.imshow() to display images in grayscale.)

Unzip the faces94.zip archive and use get_faces() to construct F . Each faces94

image is 200× 180, and there are 153 people in the dataset, so F should be 36000× 153. Use

your function to display one of the images stored in F .

The Eigenfaces Method
With the image database F , we could construct a simple facial recognition system with the following

strategy. Let g be an mn-vector representing an unknown face that is not part of the database F .

Then the fi that minimizes ‖g−fi‖2 is the matching face. Unfortunately, computing ‖g−fi‖2 for each
i is very computationally expensive, especially if the images are high-resolution and/or the database

contains a large number of images. The eigenfaces method is a way to reduce the computational cost

of �nding the closest matching face by focusing on only the most important features of each face.

Because the method ignores less signi�cant facial features, it is also usually more accurate than the

naïve method.

The �rst step of the algorithm is to shift the images by the mean face. Shifting a set of data by

the mean exaggerates the distinguishing features of each entry. In the context of facial recognition,

shifting by the mean accentuates the unique features of each face. For the images vectors stored in

F , the mean face µ is the de�ned to be the element-wise average of the fi:

µ =
1

k

k∑
i=1

fi.

Hence, the ith mean-shifted face vector f̄i is given by

f̄i = fi − µ.

Next, de�ne F̄ as the mn× k matrix whose columns are given by the mean-shifted face vectors,

F̄ =

 f̄1 f̄2 · · · f̄k

 .
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(a) The mean face. (b) An original face. (c) A mean-shifted face.

Figure 7.1

Problem 2. Write a class called FacialRec whose constructor accepts a path to a directory

of images. In the constructor, use get_faces() to construct F , then compute the mean face

µ and the shifted faces F̄ . Store each array as an attribute.

(Hint: Both µ and F̄ can be computed in a single line of code by using NumPy functions and/or

array broadcasting.)

Use your function from Problem 1 to visualize the mean face, and compare it to Figure

7.1a. Also display an original face and its corresponding mean-shifted face. Compare your

results with Figures 7.1b and 7.1c.

To increase computational e�ciency and minimize storage, the face vectors can be represented

with fewer values by projecting F̄ onto a lower-dimensional subspace. Let s be a natural number

such that s < r, where r is the rank of F̄ . By projecting F̄ onto an s-dimensional subspace, each

face can be stored with only s values.

Speci�cally, let UΣV H be the compact SVD of F̄ with rank r, which can also be represented by

F̄ =

r∑
i=1

σiuiv
H
i .

The �rst r columns of U form a basis for the range of F̄ . Recall that the Schmidt, Mirsky, Eckart-

Young Theorem states that the matrix

F̄s =

s∑
i=1

σiuiv
H
i

is the best rank-s approximation of F̄ for each s < r. This means that ‖F̄ − F̄s‖ is minimized against

all other ‖F̄ − B‖ where B has rank s. As a consequence of this theorem, the �rst s columns of U

form a basis that provides the �best� s-dimensional subspace for approximating F̄ .

The s basis vectors u1, . . . ,us are are commonly called the eigenfaces because they are eigen-

vectors of F̄ F̄T and because they resemble face images. Each original face image can be e�ciently

represented in terms of these eigenfaces. See Figure 7.2 for visualizations of the some of the eigenfaces

for the facesd94 data set.
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Figure 7.2: The �rst, 50th, and 100th eigenfaces.

In general, the lower eigenfaces provide a more general information of a face and higher-ordered

eigenfaces provide the details necessary to distinguish particular faces [MMH04]. These eigenfaces

will be used to construct the face images in the dataset. The more eigenfaces used, the more detailed

the resulting image will be.

Next, let Us be the matrix with the �rst s eigenfaces as columns. Since the eigenfaces {ui}si=1

form an orthonormal set, Us is an orthonormal matrix (independent of s) and hence UT
s Us = I.

The matrix Ps = UsU
T
s projects vectors in Rmn to the subspace spanned by the orthonormal basis

{ui}si=1, and the change of basis matrix UT
s puts the projection in terms of the basis of eigenfaces.

Thus the projection f̂i of f̄i in terms of the basis of eigenfaces is given by

f̂i = UT
s Psf̄i = UT

s UsU
T
s f̄i = UT

s f̄i. (7.1)

Note carefully that though the shifted image f̄i has mn entries, the projection f̂i has only s entries

since Us is mn× s. Likewise, the matrix F̂ that has the projections f̂i as columns is s× k, and

F̂ = UT
s F. (7.2)

Problem 3. In the constructor of FacialRec, calculate the compact SVD of F̄ and save the

matrix U as an attribute. Compare the computed eigenfaces (the columns of U) to Figure 7.2.

Also write a method that accepts a vector of length mn or an mn × ` matrix, as well as

an integer s < mn. Construct Us by taking the �rst s columns of U , then use (7.1) or (7.2) to

calculate the projection of the input vector or matrix onto the span of the �rst s eigenfaces.

(Hint: this method should be implemented with a single line of code.)

Reducing the mean-shifted face image f̄i to the lower-dimensional projection f̂i drastically re-

duces the computational cost of the facial recognition algorithm, but this e�ciency gain comes at

a price. A projection image only approximates the corresponding original image, but as long as s

isn't too small, the approximation is usually good enough for the algorithm to work well. Before

completing the facial recognition system, we reconstruct some of these projections to visualize the

amount of information lost.

From (7.1), since UT
s projects f̄i and performs a change of basis to get f̂i, its transpose Us puts

f̂i back into the original basis with as little error as possible. That is,

Usf̂i ≈ f̄i = fi − µ,
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so that we have the approximation

f̃i = Usf̂i + µ ≈ fi. (7.3)

This f̃i is called the reconstruction of fi.

(a) A reconstruction with s = 5. (b) A reconstruction with s = 19. (c) A reconstruction with s = 75.

Figure 7.3: An image rebuilt with various numbers of eigenfaces. The image is already recognizable

when it is reconstructed with only 19 eigenfaces, less than an eighth of the 153 eigenfaces correspond-

ing to nonzero eigenvalues or F̄ F̄T. Note the similarities between this method and regular image

compression via the truncated SVD.

Problem 4. Instantiate a FacialRec object that draws from the faces94 dataset. Select one

of the shifted images f̄i. For at least 4 values of s, use your method from Problem 3 to compute

the corresponding s-projection f̂i, then use (7.3) to compute the reconstruction f̃i. Display the

various reconstructions and the original image. Compare your results to Figure 7.3

Matching Faces
Let g be a vector representing an unknown face that is not part of the database. We determine which

image in the database is most like g by comparing ĝ to each of the f̂i. First, shift g by the mean to

obtain ḡ, then project ḡ using a given number of eigenfaces:

ĝ = UT
s ḡ = UT

s (g − µ) (7.4)

Next, determine which f̂i is closest to ĝ. Since the columns of Us are an orthonormal basis,

the computation in this basis yields the same result as computing in the standard Euclidean basis

would. Then setting

j = argmin
i

‖f̂i − ĝ‖2, (7.5)

we have that the jth face image fj is the best match for g. Again, since f̂i and ĝi only have s entries,

the computation in (7.5) is much cheaper than comparing the raw fi to g.
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Problem 5. Write a method for the FacialRec class that accepts an image vector g and an

integer s. Use your method from Problem 3 to compute F̂ and ĝ for the given s, then use (7.5)

to determine the best matching face in the database. Return the index of the matching face.

(Hint: scipy.linalg.norm() and np.argmin() may be useful.)

Note

This facial recognition system works by solving a nearest neighbor search, since the goal is to

�nd the fi that is �nearest� to the input image g. Nearest neighbor searches can be performed

more e�ciently with the use of a k-d tree, a binary search tree for storing vectors. The system

could also be called a k-neighbors classi�er with k = 1.

Problem 6. Write a method for the FacialRec class that accepts an �at image vector g, an

integer s, and the original dimensions of g. Use your method from Problem 5 to �nd the index

j of the best matching face, then display the original face g alongside the best match fj .

The following generator yields random faces from faces94 that can be used as test cases.

def sample_faces(num_faces, path="./faces94"):

# Get the list of possible images.

files = []

for (dirpath, dirnames, filenames) in os.walk(path):

for fname in filenames:

if fname[-3:]=="jpg": # Only get jpg images.

files.append(dirpath+"/"+fname)

# Get a subset of the image names and yield the images one at a time.

test_files = np.random.choice(files, num_faces, replace=False)

for fname in test_files:

yield np.ravel(imread(fname, as_gray=True))

The yield keyword is like a return statement, but the next time the generator is called, it will

resume immediately after the last yield statement.a

Use sample_faces() to get at least 5 random faces from faces94, and match each random

face to the database with s = 38. Iterate through the random faces with the following syntax.

for test_image in sample_faces(5):

# 'test_image' is a now flattened face vector.

aSee the Python Essentials lab on Pro�ling for more on generators.

Although there are other approaches to facial recognition that utilize more complex techniques,

the method of eigenfaces remains a wonderfully simple and e�ective solution.



81

Additional Material
Improvements on the Facial Recognition System with Eigenfaces
The FacialRec class does its job well, but it could be improved in several ways. Here are a few ideas.

� The most computationally intensive part of the algorithm is computing F̂ . Instead of recom-

puting F̂ every time the method from Problem 5 is called, store F̂ and s as attributes the �rst

time the method is called. In subsequent calls, only recompute F̂ if the user speci�es a di�erent

value for s.

� Load a scipy.spatial.KDTree object with F̂ and use its query() method to compute (7.5).

Building a kd-tree is expensive, so be sure to only build a new tree when necessary (i.e., the

user speci�es a new value for s).

� Include an error tolerance ε in the method for Problem 5. If ‖fj − g‖ > ε, print a message or

raise an exception to indicate that there is no suitable match for g in the database. In this

case, add g to the database for future reference.

� Generalize the system by turning it into a k-neighbors classi�er. In the constructor, add several

faces per person to the database (this requires modifying get_faces()). Assign each individual

a unique ID so that the system knows which faces correspond to the same person. Modify the

method from Problem 5 so that it also accepts an integer k, then use scipy.spatial.KDTree

to �nd the k nearest images to g. Choose the ID that belongs to the most nearest neighbors,

then return an index that corresponds to an individual with that ID.

In other words, choose the k faces fi that give the smallest values of ‖fi− ĝ‖2. These faces then
get to vote on which person g belongs to.

� Improve the user interface of the class by modifying the method from Problem 6 so that it

accepts a �le name to read from instead of an array. A few lines of code from get_faces() or

sample_faces() might be helpful for this.

Other Methods for Facial Recognition
The method of facial recognition presented here is more formally called principal component analysis

(PCA) using eigenfaces. Several other machine learning and optimization techniques, such as linear

discriminant analysis (LDA), elastic matching, dynamic link matching, and hidden Markov models

(HMMs) have also been applied to the facial recognition problem. Other techniques focus on getting

better information about the faces in the �rst place, the most prevalent being 3-dimensional recog-

nition and thermal imaging. See https://en.wikipedia.org/wiki/Facial_recognition_system

for a good survey of di�erent approaches to the facial recognition problem.

https://en.wikipedia.org/wiki/Facial_recognition_system
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8 Differentiation

Lab Objective: Derivatives are central in many applications. Depending on the application and

on the available information, the derivative may be calculated symbolically, numerically, or with

di�erentiation software. In this lab we explore these three ways to take a derivative, discuss what

settings they are each appropriate for, and demonstrate their strengths and weaknesses.

Symbolic Differentiation
The derivative of a known mathematical function can be calculated symbolically with SymPy. This

method is the most precise way to take a derivative, but it is computationally expensive and requires

knowing the closed form formula of the function. Use sy.diff() to take a symbolic derivative.

>>> import sympy as sy

>>> x = sy.symbols('x')

>>> sy.diff(x**3 + x, x) # Differentiate x^3 + x with respect to x.

3*x**2 + 1

Problem 1. Write a function that de�nes f(x) = (sin(x) + 1)sin(cos(x)) and takes its symbolic

derivative with respect to x using SymPy. Lambdify the resulting function so that it can accept

NumPy arrays and return the resulting function handle.

To check your function, plot f and its derivative f ′ over the domain [−π, π]. It may be

helpful to move the bottom spine to 0 so you can see where the derivative crosses the x-axis.

>>> from matplotlib import pyplot as plt

>>> ax = plt.gca()

>>> ax.spines["bottom"].set_position("zero")

83



84 Lab 8. Differentiation

Numerical Differentiation
One de�nition for the derivative of a function f : R→ R at a point x0 is

f ′(x0) = lim
h→0

f(x0 + h)− f(x0)

h
.

Since this de�nition relies on h approaching 0, choosing a small, �xed value for h approximates f ′(x0):

f ′(x0) ≈ f(x0 + h)− f(x0)

h
. (8.1)

This approximation is called the �rst order forward di�erence quotient. Using the points x0 and

x0 − h in place of x0 + h and x0, respectively, results in the �rst order backward di�erence quotient,

f ′(x0) ≈ f(x0)− f(x0 − h)

h
. (8.2)

Forward di�erence quotients use values of f at x0 and points greater than x0, while backward

di�erence quotients use the values of f at x0 and points less than x0. A centered di�erence quotient

uses points on either side of x0, and typically results in a better approximation than the one-sided

quotients. Combining (8.1) and (8.2) yields the second order centered di�erence quotient,

f ′(x0) =
1

2
f ′(x0) +

1

2
f ′(x0) ≈ f(x0 + h)− f(x0)

2h
+
f(x0)− f(x0 − h)

2h
=
f(x0 + h)− f(x0 − h)

2h
.

* * * * * * * * * * *

f ′(x̄)

Forward Di�erence

f ′(x̂)

Centered Di�erence

f ′(x̃)

Backward Di�erence

x̄ x̄+ h x̂− h x̂ x̂+ h x̃− h x̃

Figure 8.1

Note

The �nite di�erence quotients in this section all approximate the �rst derivative of a function.

The terms �rst order and second order refers to how quickly the approximation converges on

the actual value of f ′(x0) as h approaches 0, not to how many derivatives are being taken.

There are �nite di�erence quotients for approximating higher order derivatives, such as

f ′′ or f ′′′. For example, the centered di�erence quotient

f ′′(x0) ≈ f(x0 − h)− 2f(x0) + f(x0 + h)

h2

approximates the second derivative. This particular quotient is important for �nite di�erence

methods that approximate numerical solutions to some partial di�erential equations.
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While we do not derive them here, there are other �nite di�erence quotients that use more

points to approximate the derivative, some of which are listed below. Using more points generally

results in better convergence properties.

Type Order Formula

Forward

1
f(x0+h)−f(x0)

h

2
−3f(x0)+4f(x0+h)−f(x0+2h)

2h

Backward

1
f(x0)−f(x0−h)

h

2
3f(x0)−4f(x0−h)+f(x0−2h)

2h

Centered

2
f(x0+h)−f(x0−h)

2h

4
f(x0−2h)−8f(x0−h)+8f(x0+h)−f(x0+2h)

12h

Table 8.1: Common �nite di�erence quotients for approximating f ′(x0).

Problem 2. Write a function for each of the �nite di�erence quotients listed in Table 8.1. Each

function should accept a function handle f , an array of points x, and a �oat h; each should

return an array of the di�erence quotients evaluated at each point in x.

To test your functions, approximate the derivative of f(x) = (sin(x) + 1)sin(cos(x)) at each

point of a domain over [−π, π]. Plot the results and compare them to the results of Problem 1.

Convergence of Finite Difference Quotients
Finite di�erence quotients are typically derived using Taylor's formula. This method also shows how

the accuracy of the approximation increases as h→ 0:

f(x0 + h) = f(x0) + f ′(x0)h+R2(h) =⇒ f(x0 + h)− f(x0)

h
− f ′(x0) =

R2(h)

h
, (8.3)

where R2(h) = h2
∫ 1

0
(1−t)f ′′(x0 +th)dt. Thus the absolute error of the �rst order forward di�erence

quotient is ∣∣∣∣R2(h)

h

∣∣∣∣ = |h|
∣∣∣∣∫ 1

0

(1− t)f ′′(x0 + th) dt

∣∣∣∣ ≤ |h|∫ 1

0

|1− t||f ′′(x0 + th)| dt.
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If f ′′ is continuous, then for any δ > 0, setting M = supx∈(x0−δ,x0+δ) f
′′(x) guarantees that∣∣∣∣R2(h)

h

∣∣∣∣ ≤ |h|∫ 1

0

Mdt = M |h| ∈O(h).

whenever |h| < δ. That is, the error decreases at the same rate as h. If h gets twice as small, the error

does as well. This is what is meant by a �rst order approximation. In a second order approximation,

the absolute error is O(h2), meaning that if h gets twice as small, the error gets four times smaller.

Note

The notation O(f(n)) is commonly used to describe the temporal or spatial complexity of an

algorithm. In that context, a O(n2) algorithm is much worse than a O(n) algorithm. However,

when referring to error, a O(h2) algorithm is better than a O(h) algorithm because it means

that the accuracy improves faster as h decreases.

Problem 3. Write a function that accepts a point x0 at which to compute the derivative of

f(x) = (sin(x) + 1)sin(cos(x)). Use your function from Problem 1 to compute the exact value of

f ′(x0). Then use each your functions from Problem 2 to get an approximate derivative f̃ ′(x0)

for h = 10−8, 10−7, . . . , 10−1, 1. Track the absolute error |f ′(x0) − f̃ ′(x0)| for each trial, then

plot the absolute error against h on a log-log scale (use plt.loglog()).

Instead of using np.linspace() to create an array of h values, use np.logspace(). This

function generates logarithmically spaced values between two powers of 10.

>>> import numpy as np

>>> np.logspace(-3, 0, 4) # Get 4 values from 1e-3 to 1e0.

array([ 0.001, 0.01 , 0.1 , 1. ])

For x0 = 1, your plot should resemble the following �gure.

10 8 10 7 10 6 10 5 10 4 10 3 10 2 10 1 100

h

10 12

10 10

10 8

10 6

10 4

10 2

100

Ab
so

lu
te

 E
rro

r

Order 1 Forward
Order 2 Forward
Order 1 Backward
Order 2 Backward
Order 2 Centered
Order 4 Centered



87

Achtung!

Mathematically, choosing smaller h values results in tighter approximations of f ′(x0). However,

Problem 3 shows that when h gets too small, the error stops decreasing. This numerical error

is due to the denominator in each �nite di�erence quotient becoming very small. The optimal

value of h is usually one that is small, but not too small.

Problem 4. The radar stations A and B, separated by the distance a = 500 m, track a plane

C by recording the angles α and β at one-second intervals. Your goal, back at air tra�c control,

is to determine the speed of the plane.a

Let the position of the plane at time t be given by (x(t), y(t)). The speed at time t is the

magnitude of the velocity vector, ‖ ddt (x(t), y(t))‖ =
√
x′(t)2 + y′(t)2. The closed forms of the

functions x(t) and y(t) are unknown (and may not exist at all), but we can still use numerical

methods to estimate x′(t) and y′(t). For example, at t = 3, the second order centered di�erence

quotient for x′(t) is

x′(3) ≈ x(3 + h)− x(3− h)

2h
=

1

2
(x(4)− x(2)).

In this case h = 1 since data comes in from the radar stations at 1 second intervals.

Successive readings for α and β at integer times t = 7, 8, . . . , 14 are stored in the �le

plane.npy. Each row in the array represents a di�erent reading; the columns are the observation

time t, the angle α (in degrees), and the angle β (also in degrees), in that order. The Cartesian

coordinates of the plane can be calculated from the angles α and β as follows.

x(α, β) = a
tan(β)

tan(β)− tan(α)
y(α, β) = a

tan(β) tan(α)

tan(β)− tan(α)
(8.4)
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Load the data, convert α and β to radians, then compute the coordinates x(t) and y(t) at

each given t using 8.4. Approximate x′(t) and y′(t) using a �rst order forward di�erence

quotient for t = 7, a �rst order backward di�erence quotient for t = 14, and a second order

centered di�erence quotient for t = 8, 9, . . . , 13 (see Figure 8.1). Return the values of the speed√
x′(t)2 + y′(t)2 at each t.

(Hint: np.deg2rad() will be helpful.)

aThis problem is adapted from an exercise in [Kiu13].

Numerical Differentiation in Higher Dimensions

Finite di�erence quotients can also be used to approximate derivatives in higher dimensions. The

Jacobian matrix of a function f : Rn → Rm at a point x0 ∈ Rn is the m× n matrix J whose entries

are given by

Jij =
∂fi
∂xj

(x0).

For example, the Jacobian for a function f : R3 → R2 is de�ned by

J =
[

∂f
∂x1

∂f
∂x2

∂f
∂x3

]
=

 ∂f1
∂x1

∂f1
∂x2

∂f1
∂x3

∂f2
∂x1

∂f2
∂x2

∂f2
∂x3

 , where f(x) =

[
f1(x)

f2(x)

]
, x =

 x1

x2

x3

 .

The di�erence quotients in this case resemble directional derivatives. The �rst order forward

di�erence quotient for approximating a partial derivative is

∂f

∂xj
(x0) ≈ f(x0 + hej)− f(x0)

h
,

where ej is the jth standard basis vector. The second order centered di�erence approximation is

∂f

∂xj
(x0) ≈ f(x0 + hej)− f(x0 − hej)

2h
. (8.5)

Problem 5. Write a function that accepts a function f : Rn → Rm, a point x0 ∈ Rn, and a

�oat h. Approximate the Jacobian matrix of f at x using the second order centered di�erence

quotient in (8.5).

(Hint: the standard basis vector ej is the jth column of the n× n identity matrix I.)

To test your function, de�ne a simple function like f(x, y) = [x2, x3 − y]T where the

Jacobian is easy to �nd analytically, then check the results of your function against SymPy or

your own scratch work.
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Differentiation Software
Many machine learning algorithms and structures, especially neural networks, rely on the gradient of a

cost or objective function. To facilitate their research, several organizations have recently developed

Python packages for numerical di�erentiation. For example, the Harvard Intelligent Probabilistic

Systems Group (HIPS) started developing autograd in 2014 (https://github.com/HIPS/autograd)

and Google released tangent in 2017 (https://github.com/google/tangent). These tools are

incredibly robust: they can di�erentiate functions with NumPy routines,1 if statements, while

loops, and even recursion. We conclude with a brief introduction to Autograd.2

Autograd's grad() accepts a scalar-valued function and returns its gradient as a function that

accepts the same parameters as the original. To support most of the NumPy features, Autograd

comes with its own thinly-wrapped version of Numpy, autograd.numpy. Import this version of

NumPy as anp to avoid confusion.

>>> from autograd import numpy as anp # Use autograd's version of NumPy.

>>> from autograd import grad

>>> g = lambda x: anp.exp(anp.sin(anp.cos(x)))

>>> dg = grad(g) # dg() is a callable function.

>>> dg(1.) # Use floats as input, not ints.

-1.2069777039799139

Functions that grad() produces do not support array broadcasting, meaning they do not accept

arrays as input. Autograd's elementwise_grad() returns functions that can accept arrays, like using

"numpy" as an argument in SymPy's sy.lambdify().

>>> from autograd import elementwise_grad

>>> pts = anp.array([1, 2, 3], dtype=anp.float)

>>> dg = elementwise_grad(g) # Calculate g'(x) with array support.

>>> dg(pts) # Evaluate g'(x) at each of the points.

array([-1.2069777 , -0.55514144, -0.03356146])

SymPy would have no trouble di�erentiating g(x) in these examples. However, Autograd can

also di�erentiate Python functions that look nothing like traditional mathematical functions. For

example, the following code computes the Taylor series of ex with a loop.

>>> from sympy import factorial

>>> def taylor_exp(x, tol=.0001):

... """Compute the Taylor series of e^x with terms greater than tol."""

... result, i, term = 0, 0, x

... while anp.abs(term) > tol:

... term = x**i / int(factorial(i))

... result, i = result + term, i + 1

... return result

...

1See https://github.com/HIPS/autograd/blob/master/docs/tutorial.md for which features Autograd supports.
2Autograd is not included in Anaconda; install it with pip install autograd.

https://github.com/HIPS/autograd
https://github.com/google/tangent
https://github.com/HIPS/autograd/blob/master/docs/tutorial.md
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>>> d_exp = grad(taylor_exp)

>>> print(d_exp(2., .1), d_exp(2., .0001))

7.26666666667 7.38899470899

Problem 6. The Chebyshev Polynomials satisfy the recursive relation

T0(x) = 1, T1(x) = x, Tn(x) = 2xTn−1(x)− Tn−2(x).

Write a function that accepts an array x and an integer n and recursively computes Tn(x). Use

Autograd and your �rst function to create a function for T ′n(x). Use this last function to plot

each T ′n(x) over the domain [−1, 1] for n = 0, 1, 2, 3, 4.

(Hint: Use anp.ones_like(x) to handle the case when n = 0.)

Problem 7. Let f(x) = (sin(x) + 1)sin(cos(x)) as in Problems 1 and 3. Write a function that

accepts an integer N and performs the following experiment N times.

1. Choose a random value x0.

2. Use your function from Problem 1 to calculate the �exact� value of f ′(x0). Time how long

the entire process takes, including calling your function (each iteration).

3. Time how long it takes to get an approximation f̃ ′(x0) of f ′(x0) using the fourth-order

centered di�erence quotient from Problem 3. Record the absolute error |f ′(x0)− f̃ ′(x0)|
of the approximation.

4. Time how long it takes to get an approximation f̄ ′(x0) of f ′(x0) using Autograd (calling

grad() every time). Record the absolute error |f ′(x0)− f̄ ′(x0)| of the approximation.

Plot the computation times versus the absolute errors on a log-log plot with di�erent

colors for SymPy, the di�erence quotient, and Autograd. For SymPy, assume an absolute error

of 1e-18 (since only positive values can be shown on a log plot).

For N = 200, your plot should resemble the following �gure. Note that SymPy has the

least error but the most computation time, and that the di�erence quotient takes the least

amount of time but has the most error. Autograd might be considered a �happy medium,� a

least for this problem.
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Figure 8.2: Solution with N = 200.
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Additional Material
More Autograd
For scalar-valued functions with multiple inputs, the parameter argnum speci�es the variable that

the derivative is computed with respect to. Providing a list for argnum gives several outputs.

>>> f = lambda x,y: 3*x*y + 2*y - x

# Take the derivative of f with respect to the first variable, x.

>>> dfdx = grad(f, argnum=0) # Should be dfdx(x,y) = 3y - 1,

>>> dfdx(5., 1.) # so dfdx(5,1) = 3 - 1 = 2.

2.0

# Take the gradient with respect to the second variable, y.

>>> dfdy = grad(f, argnum=1) # Should be dfdy(x,y) = 3x + 2,

>>> dfdy(5., 1.) # so dfdy(5,1) = 15 + 2 = 17.

17.0

# Get the full gradient.

>>> grad_f = grad(f, argnum=[0,1])

>>> anp.array(grad_f(5., 1.))

array([ 2., 17.])

Finally, Autograd's jacobian() can di�erentiate vector-valued functions.

>>> from autograd import jacobian

>>> f = lambda x: anp.array([x[0]**2, x[0]+x[1]])

>>> f_jac = jacobian(f)

>>> f_jac(anp.array([1., 1.]))

array([[ 2., 0.],

[ 1., 1.]])

Google Tangent
Google's tangent package is similar to Autograd, both in purpose and syntax. However, Tangent

di�erentiates code ahead of time, while Autograd waits until the last second to actually do any

calculations. Tangent also tends to be slightly faster than Autograd.

>>> import tangent # Install with 'pip install tangent'.

>>> def f(x): # Tangent does not support lambda functions,

... return x**2 - x + 3

...

>>> df = tangent.grad(f)

>>> df(10) # ...but the functions do accept integers.

19.0



9 Newton’s Method

Lab Objective: Newton's method, the classical method for �nding the zeros of a function, is

one of the most important algorithms of all time. In this lab we implement Newton's method in

arbitrary dimensions and use it to solve a few interesting problems. We also explore in some detail

the convergence (or lack of convergence) of the method under various circumstances.

Iterative Methods
An iterative method is an algorithm that must be applied repeatedly to obtain a result. The general

idea behind any iterative method is to make an initial guess at the solution to a problem, apply a

few easy computations to better approximate the solution, use that approximation as the new initial

guess, and repeat until done. More precisely, let F be some function used to approximate the solution

to a problem. Starting with an initial guess of x0, compute

xk+1 = F (xk) (9.1)

for successive values of k to generate a sequence (xk)∞k=0 that hopefully converges to the true solution.

If the terms of the sequence are vectors, they are denoted by xk.

In the best case, the iteration converges to the true solution x, written limk→∞ xk = x or

xk → x. In the worst case, the iteration continues forever without approaching the solution. In

practice, iterative methods require carefully chosen stopping criteria to guarantee that the algorithm

terminates at some point. The general approach is to continue iterating until the di�erence between

two consecutive approximations is su�ciently small, and to iterate no more than a speci�c number

of times. That is, choose a very small ε > 0 and an integer N ∈ N, and update the approximation

using (9.1) until either

|xk − xk−1| < ε or k > N. (9.2)

The choices for ε and N are signi�cant: a �large� ε (such as 10−6) produces a less accurate

result than a �small� ε (such 10−16), but demands less computations; a small N (10) also potentially

lowers accuracy, but detects and halts nonconvergent iterations sooner than a large N (10,000). In

code, ε and N are often named tol and maxiter, respectively (or similar).

While there are many ways to structure the code for an iterative method, probably the cleanest

way is to combine a for loop with a break statement. As a very simple example, let F (x) = x
2 . This

method converges to x = 0 independent of starting point.
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>>> F = lambda x: x / 2

>>> x0, tol, maxiter = 10, 1e-9, 8

>>> for k in range(maxiter): # Iterate at most N times.

... print(x0, end=' ')

... x1 = F(x0) # Compute the next iteration.

... if abs(x1 - x0) < tol: # Check for convergence.

... break # Upon convergence, stop iterating.

... x0 = x1 # Otherwise, continue iterating.

...

10 5.0 2.5 1.25 0.625 0.3125 0.15625 0.078125

In this example, the algorithm terminates after N = 8 iterations (the maximum number of

allowed iterations) because the tolerance condition |xk − xk−1| < 10−9 is not met fast enough. If N

had been larger (say 40), the iteration would have quit early due to the tolerance condition.

Newton’s Method in One Dimension
Newton's method is an iterative method for �nding the zeros of a function. That is, if f : R → R,
the method attempts to �nd a x̄ such that f(x̄) = 0. Beginning with an initial guess x0, calculate

successive approximations for x̄ with the recursive sequence

xk+1 = xk −
f(xk)

f ′(xk)
. (9.3)

The sequence converges to the zero x̄ of f if three conditions hold:

1. f and f ′ exist and are continuous,

2. f ′(x̄) 6= 0, and

3. x0 is �su�ciently close� to x̄.

In applications, the �rst two conditions usually hold. If x̄ and x0 are not �su�ciently close,� Newton's

method may converge very slowly, or it may not converge at all. However, when all three conditions

hold, Newton's method converges quadratically, meaning that the maximum error is squared at every

iteration. This is very quick convergence, making Newton's method as powerful as it is simple.

Problem 1. Write a function that accepts a function f , an initial guess x0, the derivative f
′,

a stopping tolerance defaulting to 10−5, and a maximum number of iterations defaulting to 15.

Use Newton's method as described in (9.3) to compute a zero x̄ of f . Terminate the algorithm

when |xk − xk−1| is less than the stopping tolerance or after iterating the maximum number

of allowed times. Return the last computed approximation to x̄, a boolean value indicating

whether or not the algorithm converged, and the number of iterations completed.

Test your function against functions like f(x) = ex − 2 (see Figure 9.1) or f(x) = x4 − 3.

Check that the computed zero x̄ satis�es f(x̄) ≈ 0. Also consider comparing your function to

scipy.optimize.newton(), which accepts similar arguments.
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0.0 0.5 1.0 1.5 2.0

x0

x1

x2x3

f(x) = ex 2

Figure 9.1: Newton's method approximates the zero of a function (blue) by choosing as the next

approximation the x-intercept of the tangent line (red) that goes through the point (xk, f(xk)). In

this example, f(x) = ex−2, which has a zero at x̄ = log(2). Setting x0 = 2 and using (9.3) to iterate,

we have x1 = x0 − f(x0)
f ′(x0) = 2− e2−2

e2 ≈ 1.2707. Similarly, x2 ≈ 0.8320, x3 ≈ .7024, and x4 ≈ 0.6932.

After only a few iterations, the zero log(2) ≈ 0.6931 is already computed to several digits of accuracy.

Note

Newton's method can be used to �nd zeros of functions that are hard to solve for analytically.

For example, the function f(x) = sin(x)
x − x is not continuous on any interval containing 0, but

it can be made continuous by de�ning f(0) = 1. Newton's method can then be used to compute

the zeros of this function.

Problem 2. Suppose that an amount of P1 dollars is put into an account at the beginning of

years 1, 2, ..., N1 and that the account accumulates interest at a fractional rate r (so r = .05

corresponds to 5% interest). In addition, at the beginning of years N1 + 1, N1 + 2, ..., N1 +N2,

an amount of P2 dollars is withdrawn from the account and that the account balance is exactly

zero after the withdrawal at year N1 +N2. Then the variables satisfy

P1[(1 + r)N1 − 1] = P2[1− (1 + r)−N2 ].

Write a function that, given N1, N2, P1, and P2, uses Newton's method to determine r.

For the initial guess, use r0 = 0.1.

(Hint: Construct f(r) such that when f(r) = 0, the equation is satis�ed. Also compute f ′(r).)

To test your function, if N1 = 30, N2 = 20, P1 = 2000, and P2 = 8000, then r ≈ 0.03878.

(From Atkinson, page 118).
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Backtracking
Newton's method may not converge for a variety of reasons. One potential problem occurs when the

step from xk to xk+1 is so large that the zero is stepped over completely. Backtracking is a strategy

that combats the problem of overstepping by moving only a fraction of the full step from xk to xk+1.

This suggests a slight modi�cation to (9.3),

xk+1 = xk − α
f(xk)

f ′(xk)
, α ∈ (0, 1]. (9.4)

Note that setting α = 1 results in the exact same method de�ned in (9.3), but for α ∈ (0, 1), only a

fraction of the step is taken at each iteration.

Problem 3. Modify your function from Problem 1 so that it accepts a parameter α that

defaults to 1. Incorporate (9.4) to allow for backtracking.

To test your modi�ed function, consider f(x) = x1/3. The command x**(1/3.) fails

when x is negative, so the function can be de�ned with NumPy as follows.

import numpy as np

f = lambda x: np.sign(x) * np.power(np.abs(x), 1./3)

With x0 = .01 and α = 1, the iteration should not converge. However, setting α = .4, the

iteration should converge to a zero that is close to 0.

The backtracking constant α is signi�cant, as it can result in faster convergence or convergence

to a di�erent zero (see Figure 9.2). However, it is not immediately obvious how to choose an optimal

value for α.

1 0 1 2 3 4 5

1.00

0.75

0.50

0.25

0.00

0.25

0.50

x0 x

x

no backtracking
backtracking

Figure 9.2: Starting at the same initial value but using di�erent backtracking constants can result

in convergence to two di�erent solutions. The blue line converges to x̃ = (0,−1) with α = 1 in 5

iterations of Newton's method while the orange line converges to x̂ = (3.75, .25) with α = 0.4 in 15

iterations. Note that the points in this example are 2-dimensional, which is discussed in the next

section.
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Problem 4. Write a function that accepts the same arguments as your function from Problem

3 except for α. Use Newton's method to �nd a zero of f using various values of α in the interval

(0, 1]. Plot the values of α against the number of iterations performed by Newton's method.

Return a value for α that results in the lowest number of iterations.

A good test case for this problem is the function f(x) = x1/3 discussed in Problem 3. In

this case, your plot should show that the optimal value for α is actually closer to .3 than to .4.

Newton’s Method in Higher Dimensions
Newton's method can be generalized to work on functions with a multivariate domain and range.

Let f : Rn → Rn be given by f(x) = [f1(x) f2(x) . . . fk(x)]T, with fi : Rn → R for each i. The

derivative Df : Rn → Rn×n is the n× n Jacobian matrix of f .

Df =


∂f1
∂x1

· · · ∂f1
∂xk

...
. . .

...
∂fn
∂x1

· · · ∂fn
∂xk


In this setting, Newton's method seeks a vector x̄ such that f(x̄) = 0, the vector of n zeros.

With backtracking incorporated, (9.4) becomes

xk+1 = xk − αDf(xk)
−1
f(xk). (9.5)

Note that if n = 1, (9.5) is exactly (9.4) because in that case, Df(x)−1 = 1/f ′(x).

This vector version of Newton's method terminates when the maximum number of iterations is

reached or the di�erence between successive approximations is less than a predetermined tolerance ε

with respect to a vector norm, that is, ||xk − xk−1|| < ε.

Problem 5. Modify your function from Problems 1 and 3 so that it can compute a zero of a

function f : Rn → Rn for any n ∈ N. Take the following tips into consideration.

� If n > 1, f should be a function that accepts a 1-D NumPy array with n entries and

returns another NumPy array with n entries. Similarly, Df should be a function that

accepts a 1-D array with n entries and returns a n× n array. In other words, f and Df

are callable functions, but f(x) is a vector and Df(x) is a matrix.

� np.isscalar() may be useful for determining whether or not n > 1.

� Instead of computing Df(xk)−1 directly at each step, solve the system Df(xk)yk = f(xk)

and set xk+1 = xk − αyk. In other words, use la.solve() instead of la.inv().

� The stopping criterion now requires using a norm function instead of abs().

After your modi�cations, carefully verify that your function still works in the case that

n = 1, and that your functions from Problems 2 and 4 also still work correctly. In addition,

your function from Problem 4 should also work for any n ∈ N.
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Problem 6. Bioremediation involves the use of bacteria to consume toxic wastes. At a steady

state, the bacterial density x and the nutrient concentration y satisfy the system of nonlinear

equations

γxy − x(1 + y) = 0

−xy + (δ − y)(1 + y) = 0,

where γ and δ are parameters that depend on various physical features of the system.a

For this problem, assume the typical values γ = 5 and δ = 1, for which the system has

solutions at (x, y) = (0, 1), (0,−1), and (3.75, .25). Write a function that �nds an initial point

x0 = (x0, y0) such that Newton's method converges to either (0, 1) or (0,−1) with α = 1, and

to (3.75, .25) with α = 0.55. As soon as a valid x0 is found, return it (stop searching).

(Hint: search within the rectangle [− 1
4 , 0]× [0, 1

4 ].)

aThis problem is adapted from exercise 5.19 of [Hea02] and the notes of Homer Walker).

Basins of Attraction
When a function f has many zeros, the zero that Newton's method converges to depends on the

initial guess x0. For example, the function f(x) = x2 − 1 has zeros at −1 and 1. If x0 < 0, then

Newton's method converges to −1; if x0 > 0 then it converges to 1 (see Figure 9.3a). The regions

(−∞, 0) and (0,∞) are called the basins of attraction of f . Starting in one basin of attraction leads

to �nding one zero, while starting in another basin yields a di�erent zero.

When f is a polynomial of degree greater than 2, the basins of attraction are much more

interesting. For example, the basis of attraction for f(x) = x3 − x are shown in Figure 9.3b. The

basin for the zero at the origin is connected, but the other two basins are disconnected and share a

kind of symmetry.

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

(a) Basins of attraction for f(x) = x2 − 1.

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

(b) Basins of attraction for f(x) = x3 − x.

Figure 9.3: Basins of attraction with α = 1. Since choosing a di�erent value for α can change which

zero Newton's method converges to, the basins of attraction may change for other values of α.

It can be shown that Newton's method converges in any Banach space with only slightly stronger

hypotheses than those discussed previously. In particular, Newton's method can be performed over

the complex plane C to �nd imaginary zeros of functions. Plotting the basins of attraction over C
yields some interesting results.
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The zeros of f(x) = x3−1 are 1, and − 1
2±
√

3
2 i. To plot the basins of attraction for f(x) = x3−1

on the square complex domain X = {a+bi | a ∈ [− 3
2 ,

3
2 ], b ∈ [− 3

2 ,
3
2 ]}, create an initial grid of complex

points in this domain using np.meshgrid().

>>> x_real = np.linspace(-1.5, 1.5, 500) # Real parts.

>>> x_imag = np.linspace(-1.5, 1.5, 500) # Imaginary parts.

>>> X_real, X_imag = np.meshgrid(x_real, x_imag)

>>> X_0 = X_real + 1j*X_imag # Combine real and imaginary parts.

The grid X0 is a 500×500 array of complex values to use as initial points for Newton's method.

Array broadcasting makes it easy to compute an iteration of Newton's method at every grid point.

>>> f = lambda x: x**3 - 1

>>> Df = lambda x: 3*x**2

>>> X_1 = X_0 - f(X_0)/Df(X_0)

After enough iterations, the (i, j)th element of the grid Xk corresponds to the zero of f that

results from using the (i, j)th element of X0 as the initial point. For example, with f(x) = x3 − 1,

each entry of Xk should be close to 1, − 1
2 +

√
3

2 i, or −
1
2 −

√
3

2 i. Each entry of Xk can then be assigned

a value indicating which zero it corresponds to. Some results of this process are displayed below.

(a) Basins of attraction for f(x) = x3 − 1. (b) Basins of attraction for f(x) = x3 − x.

Figure 9.4

Note

Notice that in some portions of Figure 9.4a, whenever red and blue try to come together, a

patch of green appears in between. This behavior repeats on an in�nitely small scale, producing

a fractal. Because it arises from Newton's method, this kind of fractal is called a Newton fractal.

Newton fractals show that the long-term behavior of Newton's method is extremely

sensitive to the initial guess x0. Changing x0 by a small amount can change the output of

Newton's method in a seemingly random way. This phenomenon is called chaos in mathematics.
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Problem 7. Write a function that accepts a function f : C → C, its derivative f ′ : C → C,
an array zeros of the zeros of f , bounds [rmin, rmax, imin, imax] for the domain of the plot, an

integer res that determines the resolution of the plot, and number of iterations iters to run

the iteration. Compute and plot the basins of attraction of f in the complex plane over the

speci�ed domain in the following steps.

1. Construct a res×res grid X0 over the domain {a+ bi | a ∈ [rmin, rmax], b ∈ [imin, imax]}.

2. Run Newton's method (without backtracking) on X0 iters times, obtaining the res×res
array xk. To avoid the additional computation of checking for convergence at each step,

do not use your function from Problem 5.

3. Xk cannot be directly visualized directly because its values are complex. Solve this issue

by creating another res×res array Y . To compute the (i, j)th entry Yi,j , determine

which zero of f is closest to the (i, j)th entry of Xk. Set Yi,j to the index of this zero in

the array zeros. If there are R distinct zeros, each Yi,j should be one of 0, 1, . . . , R− 1.

(Hint: np.argmin() may be useful.)

4. Use plt.pcolormesh() to visualize the basins. Recall that this function accepts three

array arguments: the x-coordinates (in this case, the real components of the initial grid),

the y-coordinates (the imaginary components of the grid), and an array indicating color

values (Y ). Set cmap="brg" to get the same color scheme as in Figure 9.4.

Test your function using f(x) = x3 − 1 and f(x) = x3 − x. The resulting plots should

resemble Figures 9.4a and 9.4b, respectively (perhaps with the colors permuted).



10 Conditioning and
Stability

Lab Objective: The condition number of a function measures how sensitive that function is to

changes in the input. On the other hand, the stability of an algorithm measures how accurately that

algorithm computes the value of a function from exact input. Both of these concepts are important

for answering the crucial question, �is my computer telling the truth?� In this lab we examine the

conditioning of common linear algebra problems, including computing polynomial roots and matrix

eigenvalues. We also present an example to demonstrate how two di�erent algorithms for the same

problem may not have the same level of stability.

Conditioning
The absolute condition number of a function f : Rm → Rn at a point x ∈ Rm is de�ned by

κ̂(x) = lim
δ→0+

sup
‖h‖<δ

‖f(x + h)− f(x)‖
‖h‖

. (10.1)

In other words, the absolute condition number of f is the limit of the change in output over

the change of input. Similarly, the relative condition number of f is the limit of the relative change

in output over the relative change in input,

κ(x) = lim
δ→0+

sup
‖h‖<δ

(
‖f(x + h)− f(x)‖

‖f(x)‖

/
‖h‖
‖x‖

)
=
‖x‖
‖f(x)‖

κ̂(x). (10.2)

A function with a large condition number is called ill-conditioned. Small changes to the input

of an ill-conditioned function may produce large changes in output. It is important to know if a

function is ill-conditioned because �oating point representation almost always introduces some input

error, and therefore the outputs of ill-conditioned functions cannot be trusted.

The condition number of a matrix A, κ(A) = ‖A‖‖A−1‖, is an upper bound on the condition

number for many of the common problems associated with the matrix, such as solving the system

Ax = b. If A is square but not invertible, then κ(A) =∞ by convention. To compute κ(A), we often

use the matrix 2-norm, which is the largest singular value σmax of A. Recall that if σ is a singular

value of A, 1
σ is a singular value of A−1. Thus, we have that

κ(A) =
σmax

σmin
, (10.3)

which is also a valid equation for non-square matrices.
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Achtung!

Ill-conditioned matrices can wreak havoc in even simple applications. For example, the matrix

A =

[
1 1

1 1.0000000001

]
is extremely ill-conditioned, with κ(A) ≈ 4× 1010. Solving the systems Ax = b1 and Ax = b2

can result in wildly di�erent answers, even when b1 and b2 are extremely close.

>>> import numpy as np

>>> from scipy import linalg as la

>>> A = np.array([[1, 1], [1, 1+1e-10]])

>>> np.linalg.cond(A)

39999991794.058899

# Set up and solve a simple system of equations.

>>> b1 = np.array([2, 2])

>>> x1 = la.solve(A, b1)

>>> print(x1)

[ 2. 0.]

# Solve a system with a very slightly different vector b.

>>> b2 = np.array([2, 2+1e-5])

>>> la.norm(b1 - b2)

>>> x2 = la.solve(A, b2)

>>> print(x2)

[-99997.99172662 99999.99172662] # This solution is hugely different!

If you �nd yourself working with matrices that have large condition numbers, check your

math carefully or try to reformulate the problem entirely.

Note

An orthonormal matrix U has orthonormal columns and satis�es UTU = I and ‖U‖2 = 1. If

U is square, then U−1 = UT and UT is also orthonormal. Therefore κ(U) = ‖U‖2‖U−1‖2 = 1.

Even if U is not square, all of its singular values are equal to 1, and again κ(U) = σmax/σmin = 1.

The condition number of a matrix cannot be less than 1 since σmax ≥ σmin by de�nition.

Thus orthonormal matrices are, in a sense, the best kind of matrices for computations. This is

one of the main reasons why numerical algorithms based on the QR decomposition or the SVD

are so important.
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Problem 1. Write a function that accepts a matrix A and computes its condition number

using (10.3). Use scipy.linalg.svd(), or scipy.linalg.svdvals() to compute the singular

values of A. Avoid computing A−1. If the smallest singular value is 0, return ∞ (np.inf).

Validate your function by comparing it to np.linalg.cond(). Check that orthonormal

matrices have a condition number of 1 (use scipy.linalg.qr() to generate an orthonormal

matrix) and that singular matrices have a condition number of ∞ according to your function.

The Wilkinson Polynomial

Let f : Cn+1 → Cn be the function that maps a collection of n + 1 coe�cients (cn, cn−1, . . . , c0) to

the n roots of the polynomial cnx
n + cn−1x

n−1 + . . .+ c2x
2 + c1x+ c0. Finding polynomial roots is

an extremely ill-conditioned problem in general, so the condition number of f is likely very large. To

see this, consider the Wilkinson polynomial, made famous by James H. Wilkinson in 1963:

w(x) =

20∏
r=1

(x− r) = x20 − 210x19 + 20615x18 − 1256850x17 + · · · .

Let w̃(x) be w(x) where the coe�cient on x19 is very slightly perturbed from −210 to −210.0000001.

The following code computes and compares the roots of w̃(x) and w(x) using NumPy and SymPy.

>>> import sympy as sy

>>> from matplotlib import pyplot as plt

# The roots of w are 1, 2, ..., 20.

>>> w_roots = np.arange(1, 21)

# Get the exact Wilkinson polynomial coefficients using SymPy.

>>> x, i = sy.symbols('x i')

>>> w = sy.poly_from_expr(sy.product(x-i, (i, 1, 20)))[0]

>>> w_coeffs = np.array(w.all_coeffs())

>>> print(w_coeffs[:6])

[1 -210 20615 -1256850 53327946 -1672280820]

# Perturb one of the coefficients very slightly.

>>> h = np.zeros(21)

>>> h[1]=1e-7

>>> new_coeffs = w_coeffs - h

>>> print(new_coeffs[:6])

[1 -210.000000100000 20615 -1256850 53327946 -1672280820]

# Use NumPy to compute the roots of the perturbed polynomial.

>>> new_roots = np.roots(np.poly1d(new_coeffs))

Figure 10.1a plots w(x) and w̃(x) together, and Figure 10.1b and compares their roots in the

complex plane.
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(a) The original and perturbed Wilkinson polynomi-

als. They match for about half of the domain, then

di�er drastically.
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(b) Roots of the original and perturbed Wilkinson

polynomials. About half of the perturbed roots are

complex.

Figure 10.1

Figure 10.1 clearly indicates that a very small change in just a single coe�cient drastically

changes the nature of the polynomial and its roots. To quantify the di�erence, estimate the condition

numbers (this example uses the ∞ norm to compute κ̂ and κ).

# Sort the roots to ensure that they are in the same order.

>>> w_roots = np.sort(w_roots)

>>> new_roots = np.sort(new_roots)

# Estimate the absolute condition number in the infinity norm.

>>> k = la.norm(new_roots - w_roots, np.inf) / la.norm(h, np.inf)

>>> print(k)

28262391.3304

# Estimate the relative condition number in the infinity norm.

>>> k * la.norm(w_coeffs, np.inf) / la.norm(w_roots, np.inf)

1.95063629993970+25 # This is huge!!

There are some caveats to this example.

1. Computing the quotients in (10.1) and (10.2) for a �xed perturbation h only approximates the

condition number. The true condition number is the limit of such quotients. We hope that

when ‖h‖ is small, a random quotient is at least the same order of magnitude as the limit, but

there is no way to be sure.

2. This example assumes that NumPy's root-�nding algorithm, np.roots(), is stable, so that the

di�erence between w_roots and new_roots is due to the di�erence in coe�cients, and not to

problems with np.roots(). We will return to this issue in the next section.

Even with these caveats, it is apparent that root �nding is a di�cult problem to solve correctly.

Always check your math carefully when dealing with polynomial roots.
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Problem 2. Write a function that carries out the following experiment 100 times.

1. Randomly perturb the true coe�cients of the Wilkinson polynomial by replacing each

coe�cient ci with ci ∗ ri, where ri is drawn from a normal distribution centered at 1 with

standard deviation 10−10 (use np.random.normal()).

2. Plot the perturbed roots as small points in the complex plane. That is, plot the real part

of the coe�cients on the x-axis and the imaginary part on the y-axis. Plot on the same

�gure in each experiment.

(Hint: use a pixel marker, marker=',', to avoid overcrowding the �gure.)

3. Compute the absolute and relative condition numbers with the ∞ norm.

Plot the roots of the unperturbed Wilkinson polynomial with the perturbed roots. Your �nal

plot should resemble Figure 10.2. Finally, return the average computed absolute and relative

condition numbers.
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Figure 10.2: This �gure replicates Figure 12.1 on p. 93 of [TB97].

Calculating Eigenvalues
Let f : Mn(C) → Cn be the function that maps an n × n matrix with complex entries to its n

eigenvalues. This problem is well-conditioned for symmetric matrices, but it can be extremely ill-

conditioned for non-symmetric matrices. Let A be an n× n matrix and let λ be the vector of the n

eigenvalues of A. If Ã = A + H is a pertubation of A and λ̃ are its eigenvalues, then the condition

numbers of f can be estimated by

κ̂(A) =
‖λ− λ̃‖
‖H‖

, κ(A) =
‖A‖
‖λ‖

κ̂(A). (10.4)
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Problem 3. Write a function that accepts a matrix A and estimates the condition number of

the eigenvalue problem using (10.4). For the perturbation H, construct a matrix with complex

entries where the real and imaginary parts are drawn from normal distributions centered at 0

with standard deviation σ = 10−10.

reals = np.random.normal(0, 1e-10, A.shape)

imags = np.random.normal(0, 1e-10, A.shape)

H = reals + 1j*imags

Use scipy.linalg.eig() or scipy.linalg.eigvals() to compute the eigenvalues of A and

A + H, and use the 2-norm for both the vector and matrix norms. Return the absolute and

relative condition numbers.

Problem 4. Write a function that accepts bounds [xmin, xmax, ymin, ymax] and an integer res.

Use your function from Problem 3 to compute the relative condition number of the eigenvalue

problem for the 2× 2 matrix [
1 x

y 1

]
at every point of an evenly spaced res×res grid over the domain [xmin, xmax] × [ymin, ymax].

Plot these estimated relative condition numbers using plt.pcolormesh() and the colormap

cmap='gray_r'. With res=200, your plot should look similar to the following �gure.

Problem 4 shows that the conditioning of the eigenvalue problem depends heavily on the matrix,

and that it is di�cult to know a priori how bad the problem will be. Luckily, most real-world problems

requiring eigenvalues are symmetric. In their book on Numerical Linear Algebra, L. Trefethen and

D. Bau III summed up the issue of conditioning and eigenvalues when they stated, �if the answer is

highly sensitive to perturbations, you have probably asked the wrong question.�
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Stability
The stability of an algorithm is measured by the error in its output. Let f : Rm → Rn be a problem

to be solved, as in the previous section, and let f̃ be an actual algorithm for solving the problem.

The forward error of f at x is ||f(x)− f̃(x)||, and the relative forward error of f at x is

||f(x)− f̃(x)||
||f(x)||

.

An algorithm is called stable if its relative forward error is small.1

As an example, consider again NumPy's root-�nding algorithm that we used to investigate the

Wilkinson polynomial. The exact roots of w(x) are clearly 1, 2, . . . , 20. Had we not known this, we

could have tried computing the roots from the coe�cients using np.roots() (without perturbing

the coe�cients at all).

# w_coeffs holds the coefficients and w_roots holds the true roots.

>>> computed_roots = np.sort(np.roots(np.poly1d(w_coeffs)))

>>> print(computed_roots[:6]) # The computed roots are close to integers.

[ 1. 2. 3. 3.99999999 5.00000076 5.99998749]

# Compute the forward error.

>>> forward_error = la.norm(w_roots - computed_roots)

>>> print(forward_error)

0.020612653126379665

# Compute the relative forward error.

>>> forward_error / la.norm(w_roots)

0.00038476268486104599 # The error is nice and small.

This analysis suggests that np.roots() is a stable algorithm, so large condition numbers of

Problem 2 really are due to the poor conditioning of the problem, not the way in which the problem

was solved.

Note

Conditioning is a property of a problem to be solved, such as �nding the roots of a polynomial

or calculating eigenvalues. Stability is a property of an algorithm to solve a problem, such

as np.roots() or scipy.linalg.eig(). If a problem is ill-conditioned, any algorithm used to

solve that problem may result in suspicious solutions, even if that algorithm is stable.

Least Squares
The ordinary least squares (OLS) problem is to �nd the x that minimizes ‖Ax− b‖2 for �xed A and

b. It can be shown that an equivalent problem is �nding the solution of AHAx = AHb, called the

normal equations. A common application of least squares is polynomial approximation. Given a set

of m data points {(xk, yk)}mk=1, the goal is to �nd the set of coe�cients {ci}ni=0 such that

yk ≈ cnxnk + cn−1x
n−1
k + · · ·+ c2x

2
k + c1xk + c0

1See the Additional Material section for alternative (and more rigorous) de�nitions of algorithmic stability.
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for all k, with the smallest possible error. These m linear equations yield the linear system

Ax =


xn1 xn−1

1 · · · x2
1 x1 1

xn2 xn−1
2 · · · x2

2 x2 1

xn3 xn−1
3 · · · x2

3 x3 1
...

...
...

...
...

xnm xn−1
m · · · x2

m xm 1





cn
cn−1

...

c2
c1
c0


=


y1

y2

y3

...

ym

 = b. (10.5)

Problem 5. Write a function that accepts an integer n. Solve for the coe�cients of the poly-

nomial of degree n that best �ts the data found in stability_data.npy. Use two approaches

to get the least squares solution:

1. Use la.inv() to solve the normal equations: x = (ATA)−1ATb. Although this approach

seems intuitive, it is actually highly unstable and can return an answer with a very large

forward error.

2. Use la.qr() with mode='economic' and la.solve_triangular() to solve the system

Rx = QTb, which is equivalent to solving the normal equations. This algorithm has the

advantage of being stable.

Load the data and set up the system (10.5) with the following code.

xk, yk = np.load("stability_data.npy").T

A = np.vander(xk, n+1)

Plot the resulting polynomials together with the raw data points. Return the forward

error ‖Ax− b‖2 of both approximations.

(Hint: The function np.polyval() will be helpful for plotting the resulting polynomials.)

Test your function using various values of n, taking special note of what happens for values

of n near 14 (pictured below).
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Catastrophic Cancellation
When a computer takes the di�erence of two very similar numbers, the result is often stored with

a small number of signi�cant digits and the tiniest bit of information is lost. However, these small

errors can propagate into large errors later down the line. This phenomenon is called catastrophic

cancellation, and is a common cause for numerical instability.

Catastrophic cancellation is a potential problem whenever �oats or large integers that are very

close to one another are subtracted. This problem can be avoided by either rewriting the program

to not use subtraction, or by increasing the number of signi�cant digits that the computer tracks.

For example, consider the simple problem of computing
√
a −
√
b. The computation can be

done directly with subtraction, or by performing the equivalent division

√
a−
√
b = (

√
a−
√
b)

√
a+
√
b

√
a+
√
b

=
a− b
√
a+
√
b
.

>>> from math import sqrt # np.sqrt() fails for very large numbers.

>>> a = 10**20 + 1

>>> b = 10**20

>>> sqrt(a) - sqrt(b) # Do the subtraction directly.

0.0 # a != b, so information has been lost.

>>> (a - b) / (sqrt(a) + sqrt(b)) # Use the alternative formulation.

5e-11 # Much better!

In this example, a and b are distinct enough that the computer can still tell that a− b = 1, but√
a and

√
b are so close to each other that

√
a−
√
b is computed as 0.

Problem 6. Let I(n) =
∫ 1

0
xnex−1dx. It can be shown that for a positive integer n,

I(n) = (−1)n(!n− n!

e
), (10.6)

where !n = n!
∑n
k=0

(−1)k

k! is the subfactorial of n. Write a function to do the following.

1. Use SymPy's sy.integrate() to evaluate the integral form of I(n) for n = 5, 10, . . . , 50.

Convert the symbolic results of each integration to a �oat. Since this is done symbolically,

these values can be accepted as the true values of I(n).

(Hint: be careful that the values of n in the integrand are of type int.)

2. Use (10.6) to compute I(n) for the same values of n. Use sy.subfactorial() to compute

!n and sy.factorial() to compute n!.

(Hint: be careful to only pass Python integers to these functions.)

3. Plot the relative forward error of the results computed in step 2 at each of the given values

of n. Use a log scale on the y-axis. Is (10.6) a stable way to compute I(n)? Why?

The examples presented in this lab are just a few of the ways that a mathematical problem can

turn into a computational train wreck. Always use stable algorithms when possible, and remember

to check if problems are well conditioned or not.
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Additional Material
Other Notions of Stability
The de�nition of stability can be made more rigorous in the following way. Let f be a problem to

solve and f̃ an algorithm to solve it. If for every x in the domain there exists a x̃ such that

‖x̃− x‖
‖x‖

and
‖f̃(x)− f(x̃)‖
‖f(x̃)‖

are small (close to εmachine ≈ 10−16), then f̃ is called stable. In other words, �A stable algorithm

gives nearly the right answer to nearly the right question� (Trefethen, Bao, 104). Note carefully that

the quantity on the right is slightly di�erent from the plain forward error introduced earlier.

Stability is desirable, but plain stability isn't the best possible condition. For example, if for

every input x there exists a x̃ such that ‖x̃−x‖/‖x‖ is small and f̃(x) = f(x̃) exactly, then f̃ is called

backward stable. Thus �A backward stable algorithm gives exactly the right answer to nearly the right

question� (Trefethen, Bao, 104). Backward stable algorithms are generally more trustworthy than

stable algorithms, but they are also less common.

Stabilty of Linear System Solvers
The algorithms presented so far in this manual have di�erent levels of stability. The LU decomposition

(with pivoting) is usually very good, but there are some pathological examples of matrices that

can cause it to break down. Even so, scipy.linalg.solve() uses the LU decomposition. The

QR decomposition (also with pivoting) is generally considered to be a better option than the LU

decomposition and is more stable. However, solving a linear system using the SVD is even more

stable than using the QR decomposition. For this reason, scipy.linalg.lstsq() uses the SVD.



11 Monte Carlo
Integration

Lab Objective: Many important integrals cannot be evaluated symbolically because the integrand

has no antiderivative. Traditional numerical integration techniques like Newton-Cotes formulas and

Gaussian quadrature usually work well for one-dimensional integrals, but rapidly become ine�cient

in higher dimensions. Monte Carlo integration is an integration strategy that has relatively slow

convergence, but that does extremely well in high-dimensional settings compared to other techniques.

In this lab we implement Monte Carlo integration and apply it to a classic problem in statistics.

Volume Estimation
Since the area of a circle of radius r is A = πr2, one way to numerically estimate π is to compute

the area of the unit circle. Empirically, we can estimate the area by randomly choosing points in a

domain that encompasses the unit circle. The percentage of points that land within the unit circle

approximates the percentage of the area of the domain that the unit circle occupies. Multiplying this

percentage by the total area of the sample domain gives an estimate for the area of the circle.

Since the unit circle has radius r = 1, consider the square domain Ω = [−1, 1] × [−1, 1]. The

following code samples 2000 uniformly distributed random points in Ω, determines what percentage

of those points are within the unit circle, then multiplies that percentage by 4 (the area of Ω) to get

an estimate for π.

>>> import numpy as np

>>> from scipy import linalg as la

# Get 2000 random points in the 2-D domain [-1,1]x[-1,1].

>>> points = np.random.uniform(-1, 1, (2,2000))

# Determine how many points are within the circle.

>>> lengths = la.norm(points, axis=0)

>>> num_within = np.count_nonzero(lengths < 1)

# Estimate the circle's area.

>>> 4 * (num_within / 2000)

3.198

111
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The estimate π ≈ 3.198 isn't perfect, but it only di�ers from the true value of π by about

0.0564. On average, increasing the number of sample points decreases the estimate error.
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8000 points; 3.167

Figure 11.1: Estimating the area of the unit circle using random points.

Problem 1. The n-dimensional open unit ball is the set Un = {x ∈ Rn | ‖x‖2 < 1}. Write a

function that accepts an integer n and a keyword argument N defaulting to 104. Estimate the

volume of Un by drawing N points over the n-dimensional domain [−1, 1]×[−1, 1]×· · ·×[−1, 1].

(Hint: the volume of [−1, 1]× [−1, 1]× · · · × [−1, 1] is 2n.)

When n = 2, this is the same experiment outlined above so your function should return

an approximation of π. The volume of the U3 is 4
3π ≈ 4.18879, and the volume of U4 is

π2

2 ≈ 4.9348. Try increasing the number of sample points N to see if your estimates improve.

Integral Estimation
The strategy for estimating π can be formulated as an integral problem. De�ne f : R2 → R by

f(x) =

{
1 if ‖x‖2 < 1 (x is within the unit circle)

0 otherwise,

and let Ω = [−1, 1]× [−1, 1] as before. Then∫ 1

−1

∫ 1

−1

f(x, y) dx dy =

∫
Ω

f(x) dV = π.

To estimate the integral we chose N random points {xi}Ni=1 in Ω. Since f indicates whether or not a

point lies within the unit circle, the total number of random points that lie in the circle is the sum of

the f(xi). Then the average of these values, multiplied by the volume V (Ω), is the desired estimate:

∫
Ω

f(x) dV ≈ V (Ω)
1

N

N∑
i=1

f(xi). (11.1)

This remarkably simple equation can be used to estimate the integral of any integrable function

f : Rn → R over any domain Ω ⊂ Rn and is called the general formula for Monte Carlo integration.
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The intuition behind (11.1) is that 1
N

∑N
i=1 f(xi) approximates the average value of f on Ω,

and multiplying the approximate average value by the volume of Ω yields the approximate integral

of f over Ω. This is a little easier to see in one dimension: for a single-variable function f : R→ R,
the Average Value Theorem states that the average value of f over an interval [a, b] is given by

favg =
1

b− a

∫ b

a

f(x) dx.

Then using the approximation favg ≈ 1
N

∑N
i=1 f(xi), the previous equation becomes

∫ b

a

f(x) dx = (b− a)favg ≈ V (Ω)
1

N

N∑
i=1

f(xi), (11.2)

which is (11.1) in one dimension. In this setting Ω = [a, b] and hence V (Ω) = b− a.

Problem 2. Write a function that accepts a function f : R→ R, bounds of integration a and

b, and an integer N defaulting to 104. Use np.random.uniform() to sample N points over the

interval [a, b], then use (11.2) to estimate the integral∫ b

a

f(x) dx.

Test your function on the following integrals, or on other integrals that you can check by hand.∫ 2

−4

x2 dx = 24

∫ 2π

−2π

sin(x) dx = 0

∫ 10

1

1

x
dx = log(10) ≈ 2.30259

∫ 5

1

∣∣sin(10x) cos(10x) +
√
x sin(3x)

∣∣ dx ≈ 4.502

Achtung!

Be careful not to use Monte Carlo integration to estimate integrals that do not converge. For

example, since 1/x approaches ∞ as x approaches 0 from the right, the integral∫ 1

0

1

x
dx

does not converge. Even so, attempts at Monte Carlo integration still return a �nite value. Use

various numbers of sample points to see whether or not the integral estimate is converging.

>>> for N in [5000, 7500, 10000]:

... print(np.mean(1. / np.random.uniform(0, 1, N)), end='\t')

...

11.8451683722 25.5814419888 7.64364735049 # No convergence.
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Integration in Higher Dimensions

The implementation of (11.1) for a function f : Rn → R with n > 1 introduces a few tricky details,

but the overall procedure is the same for the case when n = 1. We consider only the case where

Ω ⊂ Rn is an n-dimensional box [a1, b1]× [a2, b2]× · · · × [an, bn].

1. If n = 1 then Ω is a line, so V (Ω) = b1 − a1. If n = 2 then Ω is a rectangle, and hence

V (Ω) = (b1−a1)(b2−a2), the product of the side lengths. The volume of a higher-dimensional

box Ω is also the product of the side lengths,

V (Ω) =

n∏
i=1

(bi − ai) (11.3)

2. It is easy to sample uniformly over an interval [a, b] with np.random.uniform(), or even over

the n-dimensional cube [a, b] × [a, b] × · · · × [a, b] (such as in Problem 1). However, if ai 6= aj
or bi 6= bj for any i 6= j, the samples need to be constructed in a slightly di�erent way.

The interval [0, 1] can be transformed to the interval [a, b] by scaling it so that it is the same

length as [a, b], then shifting it to the appropriate location.

[0, 1]
scale by b−a−−−−−−−−→ [0, b− a]

shift by a−−−−−−→ [a, b]

This suggests a strategy for sampling over [a1, b1] × [a2, b2] × · · · × [an, bn]: sample uniformly

from the n-dimensional box [0, 1]× [0, 1]×· · ·× [0, 1], multiply the ith component of each sample

by bi − ai, then add ai to that component.

[0, 1]× · · · × [0, 1]
scale−−−→ [0, b1 − a1]× · · · × [0, bn − an]

shift−−−→ [a1, b1]× · · · × [an, bn] (11.4)

Problem 3. Write a function that accepts a function f : Rn → R, a list of lower bounds

[a1, a2, . . . , an], a list of upper bounds [b1, b2, . . . , bn], and an integer N defaulting to 104. Use

(11.1), (11.3), and (11.4) with N sample points to estimate the integral∫
Ω

f(x) dV,

where Ω = [a1, b1]× [a2, b2]× · · · × [an, bn].

(Hint: use a list comprehension to calculate all of the f(xi) quickly.)

Test your function on the following integrals.∫ 1

0

∫ 1

0

x2 + y2 dx dy =
2

3

∫ 1

−2

∫ 3

1

3x− 4y + y2 dx dy = 54

∫ 4

−4

∫ 3

−3

∫ 2

−2

∫ 1

−1

x+ y − wz2 dx dy dz dw = 0

Note carefully how the order of integration de�nes the domain; in the last example, the x-y-z-w

domain is [−1, 1] × [−2, 2] × [−3, 3] × [−4, 4], so the lower and upper bounds passed to your

function should be [−1,−2,−3,−4] and [1, 2, 3, 4], respectively.
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Convergence

Monte Carlo integration has some obvious pros and cons. On the one hand, it is di�cult to get highly

precise estimates. In fact, the error of the Monte Carlo method is proportional to 1/
√
N , where N

is the number of points used in the estimation. This means that dividing the error by 10 requires

using 100 times more sample points.

On the other hand, the convergence rate is independent of the number of dimensions of the

problem. That is, the error converges at the same rate whether integrating a 2-dimensional function or

a 20-dimensional function. This gives Monte Carlo integration a huge advantage over other methods,

and makes it especially useful for estimating integrals in high dimensions where other methods become

computationally infeasible.

Problem 4. The probability density function of the joint distribution of n independent normal

random variables, each with mean 0 and variance 1, is the function f : Rn → R de�ned by

f(x) =
1

(2π)n/2
e−

xTx
2 .

Though this is a critical distribution in statistics, f does not have a symbolic antiderivative.

Integrate f several times to study the convergence properties of Monte Carlo integration.

1. Let n = 4 and Ω = [− 3
2 ,

3
4 ]× [0, 1]× [0, 1

2 ]× [0, 1] ⊂ R4. De�ne f and Ω so that you can

integrate f over Ω using your function from Problem 3.

2. Use scipy.stats.mvn.mvnun() to get the �exact� value of F =
∫

Ω
f(x) dV . As an

example, the following code computes the integral over [−1, 1]× [−1, 3]× [−2, 1] ⊂ R3.

>>> from scipy import stats

# Define the bounds of integration.

>>> mins = np.array([-1, -1, -2])

>>> maxs = np.array([ 1, 3, 1])

# The distribution has mean 0 and covariance I (the nxn identity).

>>> means, cov = np.zeros(3), np.eye(3)

# Compute the integral with SciPy.

>>> stats.mvn.mvnun(mins, maxs, means, cov)[0]

0.4694277116055261

3. Use np.logspace() to get 20 integer values of N that are roughly logarithmically spaced

from 101 to 105. For each value of N , use your function from Problem 3 to compute an

estimate F̃ (N) of the integral with N samples. Compute the relative error |F−F̃ (N)|
|F | for

each value of N .

4. Plot the relative error against the sample size N on a log-log scale. Also plot the line

1/
√
N for comparison. Your results should be similar to Figure 11.2.
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Figure 11.2: Monte Carlo integration converges at the same rate as 1/
√
N where N is the number of

samples used in the estimate. However, the convergence is independent of dimension, which is why

this strategy is so commonly used for high-dimensional integration.



12 Visualizing
Complex-valued
Functions

Lab Objective: Functions that map from the complex plane into the complex plane are di�cult

to fully visualize because the domain and range are both 2-dimensional. However, such functions

can be visualized at the expense of partial information. In this lab we present methods for analyzing

complex-valued functions visually, including locating their zeros and poles in the complex plane. We

recommend completing the exercises in a Jupyter Notebook.

Representations of Complex Numbers
A complex number z = x+ iy can be written in polar coordinates as z = reiθ where

� r = |z| =
√
x2 + y2 is the magnitude of z, and

� θ = arg(z) = arctan(y/x) is the argument of z, the angle in radians between z and 0.

Conversely, Euler's formula is the relation reiθ = r cos(θ) + ir sin(θ). Then setting reiθ = x+ iy and

equating real and imaginary parts yields the equations x = r cos(θ) and y = r sin(θ).

iy

x

z

θ

r

Figure 12.1: The complex number z can be represented in Cartesian coordinates as z = x + iy and

in polar coordinates as z = reiθ, when θ is in radians.

NumPy makes it easy to work with complex numbers and convert between coordinate systems.

The function np.angle() returns the argument θ of a complex number (between −π and π) and

np.abs() (or np.absolute()) returns the magnitude r. These functions also operate element-wise

on NumPy arrays.
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>>> import numpy as np

>>> z = 2 - 2*1j # 1j is the imaginary unit i = sqrt(-1).

>>> r, theta = np.abs(z), np.angle(z)

>>> print(r, theta) # The angle is between -pi and pi.

2.82842712475 -0.785398163397

# Check that z = r * e^(i*theta)

>>> np.isclose(z, r*np.exp(1j*theta))

True

# These function also work on entire arrays.

>>> np.abs(np.arange(5) + 2j*np.arange(5))

array([ 0. , 2.23606798, 4.47213595, 6.70820393, 8.94427191])

Complex Functions
A function f : C→ C is called a complex-valued function. Visualizing f is di�cult because C has 2

real dimensions, so the graph of f should be 4-dimensional. However, since it is possible to visualize

3-dimensional objects, f can be visualized by ignoring one dimension. There are two main strategies

for doing this: assign a color to each point z ∈ C corresponding to either the argument θ of f(z), or

to the magnitude r of f(z). The graph that uses the argument is called a complex color wheel graph.

Figure 12.2 displays the identity function f(z) = z using these two methods.

Figure 12.2: The identity function f : C → C de�ned by f(z) = z. On the left, the color at each

point z represents the angle θ = arg(f(z)). As θ goes from −π to π, the colors cycle smoothly

counterclockwise from white to blue to red and back to white (this colormap is called "twilight").

On the right, the color represents the magnitude r = |f(z)|. The further a point is from the origin,

the greater its magnitude (the colormap is the default, "viridis").
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The plots in Figure 12.2 use Cartesian coordinates in the domain and polar coordinates in

the codomain. The procedure for plotting in this way is fairly simple. Begin by creating a grid of

complex numbers: create the real and imaginary parts separately, then use np.meshgrid() to turn

them into a single array of complex numbers. Pass this array to the function f , compute the angle

and argument of the resulting array, and plot them using plt.pcolormesh(). The following code

sets up the complex domain grid.

>>> x = np.linspace(-1, 1, 400) # Real domain.

>>> y = np.linspace(-1, 1, 400) # Imaginary domain.

>>> X, Y = np.meshgrid(x, y) # Make grid matrices.

>>> Z = X + 1j*Y # Combine the grids into a complex array.

Visualizing the argument and the magnitude separately provides di�erent perspectives of the

function f . The angle plot is generally more useful for visualizing function behavior, though the

magnitude plot often makes it easy to spot important points such as zeros and poles.

Figure 12.3: Plots of f(z) =
√
z2 + 1 on {x+ iy | x, y ∈ [−3, 3]}. Notice how a discontinuity is clearly

visible in the angle plot on the left, but disappears from the magnitude plot on the right.

Problem 1. Write a function that accepts a function f : C→ C, bounds [rmin, rmax, imin, imax]

for the domain, an integer res that determines the resolution of the plot, and a string to set

the �gure title. Plot arg(f(z)) and |f(z)| on an equally-spaced res×res grid over the domain

{x+ iy | x ∈ [rmin, rmax], y ∈ [imin, imax]} in separate subplots.

1. For arg(f(z)), set the plt.pcolormesh() keyword arguments vmin and vmax to −π and

π, respectively. This forces the color spectrum to work well with np.angle(). Use the

colormap "twilight", which starts and ends white, so that the color is the same for −π
and π.
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2. For |f(z)|, set norm=matplotlib.colors.LogNorm() in plt.pcolormesh() so that the

color scale is logarithmic. Use a sequential colormap like "viridis" or "magma".

3. Set the aspect ratio to "equal" in each plot. Give each subplot a title, and set the overall

�gure title with the given input string.

Use your function to visualize f(z) = z on {x+ iy | x, y ∈ [−1, 1]} and f(z) =
√
z2 + 1 on

{x+ iy | x, y ∈ [−3, 3]}. Compare the resulting plots to Figures 12.2 and 12.3, respectively.

Interpreting Complex Plots
Plots of a complex function can be used to quickly identify important points in the function's domain.

Zeros

A complex number z0 is called a zero of the complex-valued function f if f(z0) = 0. The mutliplicity

or order of z0 is the largest integer n such that f can be written as f(z) = (z − z0)ng(z) where

g(z0) 6= 0. In other words, f has a zero of order n at z0 if the Taylor series of f centered at z0 can

be written as

f(z) =

∞∑
k=n

ak(z − z0)k, an 6= 0.

Angle and magnitude plots make it easy to locate a function's zeros and to determine their

multiplicities.

Problem 2. Use your function from Problem 1 to plot the following functions on the domain

{x+ iy | x, y ∈ [−1, 1]}.

� f(z) = zn for n = 2, 3, 4.

� f(z) = z3 − iz4 − 3z6. Compare the resulting plots to Figure 12.4.

Write a sentence or two about how the zeros of a function appear in angle and magnitude plots.

How can you tell the multiplicity of the zero from the plot?

Problem 2 shows that in an angle plot of f(z) = zn, the colors cycle n times counterclockwise

around 0. This is explained by looking at zn in polar coordinates,

zn = (reiθ)n = rnei(nθ).

Multiplying θ by a number greater than 1 compresses the graph along the �θ-axis� by a factor of n.

In other words, the output angle repeats itself n times in one cycle of θ. This is similar to taking a

scalar-valued function f : R→ R and replacing f(x) with f(nx).

Problem 2 also shows that the plot of f(z) = z3 − iz4 − 3z6 looks very similar to the plot of

f(z) = z3 near the origin. This is because when z is close to the origin, z4 and z6 are much smaller

in magnitude than z3, and so the behavior of z3 dominates the function. In terms of the Taylor series

centered at z0 = 0, the quantity |z − z0|n+k is much smaller than |z − z0|n for z close to z0, and so

the function behaves similar to an(z − z0)n.
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Figure 12.4: The angle plot of f(z) = z3 − iz4 − 3z6 on {x + iy | x, y ∈ [−1, 1]}. The angle plot

shows that f(z) has a zero of order 3 at the origin and 3 distinct zeros of order 1 scattered around

the origin. The magnitude plot makes it easier to pinpoint the location of the zeros.

Poles
A complex number z0 is called a pole of the complex-valued function f if f can be written as

f(z) = g(z)/(z − z0) where g(z0) 6= 0. From this de�nition it is easy to see that limz→z0 |f(z)| =∞,

but knowing that limz→z1 |f(z)| =∞ is not enough information to conclude that z1 is a pole of f .

The order of z0 is the largest integer n such that f can be written as f(z) = g(z)/(z − z0)n

with g(z0) 6= 0. In other words, f has a pole of order n at z0 if its Laurent series on a punctured

neighborhood of z0 can be written as

f(z) =

∞∑
k=−n

ak(z − z0)k , a−n 6= 0.

Problem 3. Plot the following functions on domains that show all of its zeros and/or poles.

� f(z) = z−n for n = 1, 2, 3.

� f(z) = z2 + iz−1 + z−3.

Write a sentence or two about how the poles of a function appear in angle and magnitude plots.

How can you tell the multiplicity of the poles from the plot?

Problem 3 shows that in angle plot of z−1, the colors cycle n times clockwise around 0, as

opposed to the counter-clockwise rotations seen around roots. Again, this can be explained by

looking at the polar representation,

z−n = (reiθ)−n = r−nei(−nθ).
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The minus sign on the θ reverses the direction of the colors, and the n makes them cycle n times.

From Problem 3 it is also clear that f(z) = z2 + iz−1 + z−3 behaves similarly to z−3 for z near

the pole at z0 = 0. Since |z − z0|−n+k is much smaller than |z − z0|−n when |z − z0| is small, near

z0 the function behaves like a−n(z − z0)−n. This is why the order of a pole can be estimated by

counting the number of times the colors circle a point in the clockwise direction.

Counting Zeros and Poles
The Fundamental Theorem of Algebra states that a polynomial f with highest degree n has exactly

n zeros, counting multiplicity. For example, f(z) = z2 + 1 has two zeros, and f(z) = (z − i)3 has

three zeros, all at z0 = i (that is, z0 = i is a zero with multiplicity 3).

The number of poles of function can also be apparent if it can be written as a quotient of

polynomials. For example, f(z) = z/(z+i)(z−i)2 has one zeros and three poles, counting multiplicity.

Problem 4. Plot the following functions and count the number and order of their zeros and

poles. Adjust the bounds of each plot until you have found all zeros and poles.

� f(z) = −4z5 + 2z4 − 2z3 − 4z2 + 4z − 4

� f(z) = z7 + 6z6 − 131z5 − 419z4 + 4906z3 − 131z2 − 420z + 4900

� f(z) = 16z4+32z3+32z2+16z+4
16z4−16z3+5z2

It is usually fairly easy to see how many zeros or poles a polynomial or quotient of polynomials

has. However, it can be much more di�cult to know how many zeros or poles a di�erent function

may or may not have without visualizing it.

Problem 5. Plot the following functions on the domain {x + iy | x, y ∈ [−8, 8]}. Explain

carefully what each graph reveals about the function and why the function behaves that way.

� f(z) = ez

� f(z) = tan(z)

(Hint: use the polar coordinate representation to mathematically examine the magnitude and

angle of each function.)

Essential Poles
A complex-valued function f has an essential pole at z0 if its Laurent series in a punctured neigh-

borhood of z0 requires in�nitely many terms with negative exponents. For example,

e1/z =

∞∑
k=0

1

n!zn
= 1 +

1

z
+

1

2

1

z2
+

1

6

1

z3
+ · · · .

An essential pole can be thought of as a pole of order ∞. Therefore, in an angle plot the colors cycle

in�nitely many times around an essential pole.
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Figure 12.5: Angle plot of f(z) = e1/z on the domain {x + iy | x, y ∈ [−1, 1]}. The colors circle

clockwise around the origin because it is a pole, not a zero. Because the pole is essential, the colors

repeat in�nitely many times.

Achtung!

Often, color plots like the ones presented in this lab can be deceptive because of a bad choice

of domain. Be careful to validate your observations mathematically.

Problem 6. For each of the following functions, plot the function on {x + iy | x, y ∈ [−1, 1]}
and describe what this view of the plot seems to imply about the function. Then plot the

function on a domain that allows you to see the true nature of the roots and poles and describe

how it is di�erent from what the original plot implied.

� f(z) = 100z2 + z

� f(z) = sin
(

1
100z

)
.

(Hint: zoom way in.)
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13 The PageRank
Algorithm

Lab Objective: Many real-world systems�the internet, transportation grids, social media, and

so on�can be represented as graphs (networks). The PageRank algorithm is one way of ranking the

nodes in a graph by importance. Though it is a relatively simple algorithm, the idea gave birth to the

Google search engine in 1998 and has shaped much of the information age since then. In this lab we

implement the PageRank algorithm with a few di�erent approaches, then use it to rank the nodes of

a few di�erent networks.

The PageRank Model
The internet is a collection of webpages, each of which may have a hyperlink to any other page. One

possible model for a set of n webpages is a directed graph, where each node represents a page and

node j points to node i if page j links to page i. The corresponding adjacency matrix A satis�es

Aij = 1 if node j links to node i and Aij = 0 otherwise.

a

b c

d

A =

a b c d


a 0 0 0 0

b 1 0 1 0

c 1 0 0 1

d 1 0 1 0

Figure 13.1: A directed unweighted graph with four nodes, together with its adjacency matrix. Note

that the column for node b is all zeros, indicating that b is a sink�a node that doesn't point to any

other node.

If n users start on random pages in the network and click on a link every 5 minutes, which page

in the network will have the most views after an hour? Which will have the fewest? The goal of the

PageRank algorithm is to solve this problem in general, therefore determining how �important� each

webpage is.
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Before diving into the mathematics, there is a potential problem with the model. What happens

if a webpage doesn't have any outgoing links, like node b in Figure 13.1? Eventually, all of the users

will end up on page b and be stuck there forever. To obtain a more realistic model, modify each sink

in the graph by adding edges from the sink to every node in the graph. This means users on a page

with no links can start over by selecting a random webpage.

a

b c

d

Ã =

a b c d


a 0 1 0 0

b 1 1 1 0

c 1 1 0 1

d 1 1 1 0

Figure 13.2: Here the graph in Figure 13.1 has been modi�ed to guarantee that node b is no longer

a sink (the added links are blue). We denote the modi�ed adjacency matrix by Ã.

Now let pk(t) be the likelihood that a particular internet user is sur�ng webpage k at time t.

Suppose at time t+1, the user clicks on a link to page i. Then pi(t+1) can be computed by counting

the number of links pointing to page i, weighted by the total number of outgoing links for each node.

As an example, consider the graph in Figure 13.2. To get to page a at time t+ 1, the user had

to be on page b at time t. Since there are four outgoing links from page b, assuming links are chosen

with equal likelihood,

pa(t+ 1) =
1

4
pb(t).

Similarly, to get to page b at time t+ 1, the user had to have been on page a, b, or c at time t. Since

a has 3 outgoing edges, b has 4 outgoing edges, and c has 2 outgoing edges,

pb(t+ 1) =
1

3
pa(t) +

1

4
pb(t) +

1

2
pc(t).

The previous equations can be written in a way that hints at a more general linear form:

pa(t+ 1) = 0pa(t) +
1

4
pb(t) + 0pc(t) + 0pd(t),

pb(t+ 1) =
1

3
pa(t) +

1

4
pb(t) +

1

2
pc(t) + 0pd(t).

The coe�cients of the terms on the right hand side are precisely the entries of the ith row of the

modi�ed adjacency matrix Ã, divided by the jth column sum. In general, pi(t+ 1) satis�es

pi(t+ 1) =

n∑
j=1

Ãij
pj(t)∑n
k=1 Ãkj

. (13.1)

Note that the column sum
∑n
k=1 Ãkj in the denominator can never be zero since, after the �x in

Figure 13.2, none of the nodes in the graph are sinks.
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Accounting for Boredom
The model in (13.1) assumes that the user can only click on links from their current page. It is more

realistic to assume that the user sometimes gets bored and randomly picks a new starting page. Let

0 ≤ ε ≤ 1, called the damping factor, be the probability that a user stays interested at step t. Then

the probability that the user gets bored at any time (and then chooses a new random page) is 1− ε,
and (13.1) becomes

pi(t+ 1) = ε

n∑
j=1

(
Ãij

pj(t)∑n
k=1 Ãkj

)
︸ ︷︷ ︸
User stayed interested and

clicked a link on the current page

+
1− ε
n

.︸ ︷︷ ︸
User got bored and
chose a random page

(13.2)

Note that (13.2) can be rewritten as the matrix equation

p(t+ 1) = εÂp(t) +
1− ε
n

1, (13.3)

where p(t) = [p1(t), p2(t), . . . , pn(t)]T, 1 is a vector of n ones, and Â is the n× n matrix with entries

Âij =
Ãij∑
k=1 Ãkj

. (13.4)

In other words, Â is Ã normalized so that the columns each sum to 1. For the graph in Figure 13.2,

the matrix Â is given by

Â =

a b c d


a 0 1/4 0 0

b 1/3 1/4 1/2 0

c 1/3 1/4 0 1

d 1/3 1/4 1/2 0

. (13.5)

Problem 1. Write a class for representing directed graphs via their adjacency matrices. The

constructor should accept an n × n adjacency matrix A and a list of node labels (such as

[a, b, c, d]) defaulting to None. Modify A as in Figure 13.2 so that there are no sinks in

the corresponding graph, then calculate the Â from (13.4). Save Â and the list of labels as

attributes. Use [0, 1, . . . , n− 1] as the labels if none are provided. Finally, raise a ValueError

if the number of labels is not equal to the number of nodes in the graph.

(Hint: use array broadcasting to compute Â e�ciently.)

For the graph in Figure 13.1, check that your Â matches (13.5).

Computing the Rankings
In the model (13.2), de�ne the rank of node i as the limit

pi = lim
t→∞

pi(t).

There are several ways to solve for p = limt→∞ p(t).
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Linear System

If p exists, then taking the limit as t→∞ to both sides of (13.3) gives the following.

lim
t→∞

p(t+ 1) = lim
t→∞

[
εÂp(t) +

1− ε
n

1

]
p = εÂp +

1− ε
n

1(
I − εÂ

)
p =

1− ε
n

1 (13.6)

This linear system is easy to solve as long as the number of nodes in the graph isn't too large.

Eigenvalue Problem

Let E be an n× n matrix of ones. Then Ep(t) = 1 since
∑
i=1 pi(t) = 1. Substituting into (13.3),

p(t+ 1) = εÂp(t) +
1− ε
n

Ep(t) =

(
εÂ+

1− ε
n

E

)
p(t) = Bp(t), (13.7)

where B = εÂ+ 1−ε
n E. Now taking the limit at t→∞ of both sides of (13.7),

Bp = p.

That is, p is an eigenvector of B corresponding to the eigenvalue λ = 1. In fact, since the columns

of B sum to 1, and because the entries of B are strictly positive (because the entries of E are all

positive), Perron's theorem guarantees that λ = 1 is the unique eigenvalue of B of largest magnitude,

and that the corresponding eigenvector p is unique up to scaling. Furthermore, p can be scaled so

that each of its entires are positive, meaning p/‖p‖1 is the desired PageRank vector.

Note

A Markov chain is a weighted directed graph where each node represents a state of a discrete

system. The weight of the edge from node j to node i is the probability of transitioning from

state j to state i, and the adjacency matrix of a Markov chain is called a transition matrix.

Since B from (13.7) contains nonnegative entries and its columns all sum to 1, it can be

viewed as the transition matrix of a Markov chain. In that context, the limit vector p is called

the steady state of the Markov chain.

Iterative Method

Solving (13.6) or (13.7) is feasible for small networks, but they are not e�cient strategies for very

large systems. The remaining option is to use an iterative technique. Starting with an initial guess

p(0), use (13.3) to compute p(1),p(2), . . . until ‖p(t)− p(t− 1)‖ is su�ciently small. From (13.7),

we can see that this is just the power method1 for �nding the eigenvector corresponding to the

dominant eigenvalue of B.

1See the Least Squares and Computing Eigenvalues lab for details on the power method.
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Problem 2. Add the following methods to your class from Problem 1. Each should accept a

damping factor ε (defaulting to 0.85), compute the PageRank vector p, and return a dictionary

mapping label i to its PageRank value pi.

1. linsolve(): solve for p in (13.6).

2. eigensolve(): solve for p using (13.7). Normalize the resulting eigenvector so its entries

sum to 1.

3. itersolve(): in addition to ε, accept an integer maxiter and a �oat tol. Iterate on

(13.3) until ‖p(t) − p(t − 1)‖1 < tol or t > maxiter. Use p(0) = [ 1
n ,

1
n , . . . ,

1
n ]T as the

initial vector (any positive vector that sums to 1 will do, but this assumes equal starting

probabilities).

Check that each method yields the same results. For the graph in Figure 13.1 with ε = 0.85,

you should get the following dictionary mapping labels to PageRank values.

{'a': 0.095758635, 'b': 0.274158285, 'c': 0.355924792, 'd': 0.274158285}

Problem 3. Write a function that accepts a dictionary mapping labels to PageRank values,

like the outputs in Problem 2. Return a list of labels sorted from highest to lowest rank.

(Hint: if d is a dictionary, use list(d.keys()) and list(d.values()) to get the list of keys

and values in the dictionary, respectively.)

For the graph in Figure 13.1 with ε = 0.85, this is the list [c, b, d, a] (or [c, d, b, a], since

b and d have the same PageRank value).

Problem 4. The �le web_stanford.txt contains information on Stanford University web-

pagesa and the hyperlinks between them, gathered in 2002.b Each line of the �le is formatted

as a/b/c/d/e/f..., meaning the webpage with ID a has hyperlinks to webpages with IDs b,

c, d, and so on.

Write a function that accepts a damping factor ε defaulting to 0.85. Read the data and

get a list of the n unique page IDs in the �le (the labels). Construct the n×n adjacency matrix

of the graph where node j points to node i if webpage j has a hyperlink to webpage i. Use your

class from Problem 1 and its itersolve() method from Problem 2 to compute the PageRank

values of the webpages, then rank them with your function from Problem 3. In the case where

two webpages have the same rank, resolve ties by listing the webpage with the larger ID number

�rst. (Hint: Sorting the list of unique webpage IDs before ranking will order the site IDs from

smallest to largest.) Return the ranked list of webpage IDs.

(Hint: after constructing the list of webpage IDs, make a dictionary that maps a webpage ID

to its index in the list. For Figure 13.1, this would be {'a': 0, 'b': 1, 'c': 2, 'd': 3}.

The values are the row/column indices in the adjacency matrix for each label.)



130 Lab 13. The PageRank Algorithm

With ε = 0.85, the top three ranked webpage IDs are 98595, 32791, and 28392.

ahttp://www.stanford.edu/
bSee http://snap.stanford.edu/data/web-Stanford.html for the original (larger) dataset.

PageRank on Weighted Graphs
Nothing in the formulation of the PageRank model (13.3) requires that the edges of the graph are

unweighted. If Aij is the weight of the edge from node j to node i (weight 0 meaning there is no edge

from j to i), then the columns of Â still sum to 1. Thus B = εÂ+ 1−ε
n E is still positive de�nite, so

we can expect a unique PageRank vector p to exist.

Adding weights to the edges can improve the �delity of the model and produce a slightly more

realistic PageRank ordering. On a given webpage, for example, if hyperlinks to page a are clicked on

more frequently hyperlinks to page b, the edge from node a should be given more weight than the

edge to node b.

a

b c

d

2

1

1

1

1

22

2

1

1 A =

a b c d


a 0 0 0 0

b 2 0 1 0

c 1 0 0 2

d 1 0 2 0

Â =

a b c d


a 0 1/4 0 0

b 1/2 1/4 1/3 0

c 1/4 1/4 0 1

d 1/4 1/4 2/3 0

Figure 13.3: A directed weighted graph with four nodes, together with its adjacency matrix and the

corresponding PageRank transition matrix. Edges that are added to �x sinks have weight 1, so the

computation of Ã and Â are exactly the same as in Figure 13.2 and (13.4), respectively.

Problem 5. The �les ncaa2010.csv, ncaa2011.csv, . . ., ncaa2017.csv each contain data for

men's college basketball for a given school year.a Each line (except the very �rst line, which is

a header) represents a di�erent basketball game, formatted winning_team,losing_team.

Write a function that accepts a �lename and a damping factor ε defaulting to 0.85. Read

the speci�ed �le (skipping the �rst line) and get a list of the n unique teams in the �le. Construct

the n× n adjacency matrix of the graph where node j points to node i with weight w if team

j was defeated by team i in w games. That is, edges point from losers to winners. For

instance, the graph in Figure 13.3 would indicate that team c lost to team b once and to team

d twice, team b was undefeated, and team a never won a game. Use your class from Problem

1 and its itersolve() method from Problem 2 to compute the PageRank values of the teams,

then rank them with your function from Problem 3. Return the ranked list of team names.

http://www.stanford.edu/
http://snap.stanford.edu/data/web-Stanford.html
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Using ncaa2010.csv with ε = 0.85, the top three ranked teams (of the 607 total teams)

should be UConn, Kentucky, and Louisville, in that order. That season, UConn won the

championship, Kentucky was a semi�nalist, and Louisville lost in the �rst tournament round

(a surprising upset).

ancaa2010.csv has data for the 2010�2011 season, ncaa2011.csv for the 2011�2012 season, and so on.

Note

In Problem 5, the damping factor ε acts as an �upset� factor: a larger ε puts more emphasis on

win history; a smaller ε allows more randomness in the system, giving underdog teams a higher

probability of defeating a team with a better record.

It is also worth noting that the sink-�xing procedure is still reasonable for this model

because it gives every other team equal likelihood of beating an undefeated team. That is, the

additional edges don't provide an extra advantage to any one team.

PageRank with NetworkX

NetworkX, usually imported as nx, is a third-party package for working with networks. It represents

graphs internally with dictionaries, thus taking full advantage of the sparsity in a graph. The base

class for directed graphs is called nx.DiGraph. Nodes and edges are usually added or removed

incrementally with the following methods.

Method Description

add_node() Add a single node.

add_nodes_from() Add a list of nodes.

add_edge() Add an edge between two nodes, adding the nodes if needed.

add_edges_from() Add multiple edges (and corresponding nodes as needed).

remove_edge() Remove a single edge (no nodes are removed).

remove_edges_from() Remove multiple edges (no nodes are removed).

remove_node() Remove a single node and all adjacent edges.

remove_nodes_from() Remove multiple nodes and all adjacent edges.

Table 13.1: Methods of the nx.DiGraph class for inserting or removing nodes and edges.

For example, the weighted graph in Figure 13.3 can be constructed with the following code.

>>> import networkx as nx

# Initialize an empty directed graph.

>>> DG = nx.DiGraph()

# Add the directed edges (nodes are added automatically).

>>> DG.add_edge('a', 'b', weight=2) # a --> b (adds nodes a and b)

>>> DG.add_edge('a', 'c', weight=1) # a --> c (adds node c)

>>> DG.add_edge('a', 'd', weight=1) # a --> d (adds node d)

https://networkx.github.io/documentation/stable/
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>>> DG.add_edge('c', 'b', weight=1) # c --> b

>>> DG.add_edge('c', 'd', weight=2) # c --> d

>>> DG.add_edge('d', 'c', weight=2) # d --> c

Once constructed, an nx.Digrah object can be queried for information about the nodes and

edges. It also supports dictionary-like indexing to access node and edge attributes, such as the weight

of an edge.

Method Description

has_node(A) Return True if A is a node in the graph.

has_edge(A,B) Return True if there is an edge from A to B.

edges() Iterate through the edges.

nodes() Iterate through the nodes.

number_of_nodes() Return the number of nodes.

number_of_edges() Return the number of edges.

Table 13.2: Methods of the nx.DiGraph class for accessing nodes and edges.

# Check the nodes and edges.

>>> DG.has_node('a')

True

>>> DG.has_edge('b', 'a')

False

>>> list(DG.nodes())

['a', 'b', 'c', 'd']

>>> list(DG.edges())

[('a', 'b'), ('a', 'c'), ('a', 'd'), ('c', 'b'), ('c', 'd'), ('d', 'c')]

# Change the weight of the edge (a, b) to 3.

>>> DG['a']['b']["weight"] += 1

>>> DG['a']['b']["weight"]

3

NetworkX e�ciently implements several graph algorithms. The function nx.pagerank() com-

putes the PageRank values of each node iteratively with sparse matrix operations. This function

returns a dictionary mapping nodes to PageRank values, like the methods in Problem 2.

# Calculate the PageRank values of the graph.

>>> nx.pagerank(DG, alpha=0.85) # alpha is the damping factor (epsilon).

{'a': 0.08767781186947843,

'b': 0.23613138394239835,

'c': 0.3661321209576019,

'd': 0.31005868323052127}
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Achtung!

NetworkX also has a class, nx.Graph, for undirected graphs. The edges in an undirected graph

are bidirectional, so the corresponding adjacency matrix is symmetric.

The PageRank algorithm is not very useful for undirected graphs. In fact, the PageRank

value for node is close to its degree�the number of edges it connects to�divided by the total

number of edges. In Problem 5, that would mean the team who simply played the most games

would be ranked the highest. Always use nx.DiGraph, not nx.Graph, for PageRank and other

algorithms that rely on directed edges.

Problem 6. The �le top250movies.txt contains data from the 250 top-rated movies accord-

ing to IMDb.a Each line in the �le lists a movie title and its cast as title/actor1/actor2/...,

with the actors listed mostly in billing order (stars �rst), though some casts are listed alpha-

betically or in order of appearance.

Create a nx.DiGraph object with a node for each actor in the �le. The weight from actor

a to actor b should be the number of times that actor a and b were in a movie together but actor

b was listed �rst. That is, edges point to higher-billed actors (see Figure 13.4). Compute

the PageRank values of the actors and use your function from Problem 3 to rank them. Return

the list of ranked actors.

(Hint: Consider using itertools.combinations() while constructing the graph. Also, use

encoding="utf-8" as an argument to open() to read the �le, since several actors and actresses

have nonstandard characters in their names such as ø and æ.)

With ε = 0.7, the top three actors should be Leonardo DiCaprio, Robert De Niro, and

Tom Hanks, in that order.

ahttps://www.imdb.com/search/title?groups=top_250&sort=user_rating

https://www.imdb.com/search/title?groups=top_250&sort=user_rating
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Hugh
Jackman

Anne
Hathaway

Scarlett
Johansson

Christian
Bale
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Caine

1

11

2
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Figure 13.4: A portion of the graph from Problem 6. Michael Caine was in four movies with Christian

Bale where Christian Bale was listed �rst in the cast.
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Additional Material
Sparsity
On very large networks, the PageRank algorithm becomes computationally di�cult because of the

size of the adjacency matrix A. Fortunately, most adjacency matrices are highly sparse, meaning

the number of edges is much lower than the number of entries in the matrix. Consider adding

functionality to your class from Problem 1 so that it stores Â as a sparse matrix and performs sparse

linear algebra operations in the methods from Problem 2 (use scipy.sparse.linalg).

PageRank as a Predictive Model
The data �les in Problem 5 include tournament games for their respective seasons, so the resulting

rankings naturally align with the outcome of the championship. However, it is also useful to use

PageRank as a predictive model: given data for all regular season games, can the outcomes of the

tournament games be predicted? Over 40 million Americans �ll out 60�100 million March Madness

brackets each year and bet over $9 billion on the tournament, so being able to predict the outcomes

of the games is a big deal. See http://games.espn.com/tournament-challenge-bracket for more

details.

Given regular season data, PageRank can be used to predict tournament results as in Problem

5. There are some pitfalls though; for example, how should ε be chosen? Using ε = .5 with

ncaa2010.csv minus tournament data (all but the last 63 games in the �le) puts UConn�the actual

winner that year�in seventh place, while ε = .9 puts UConn in fourth. Both values for ε also rank

BYU as number one, but BYU lost in the Sweet Sixteen that year. In practice, Google uses .85 as

the damping factor, but there is no rigorous reasoning behind that particular choice.

Other Centrality Measures
In network theory, the centrality of a node refers to its importance. Since there are lots of ways to

measure importance, there are several di�erent centrality measures.

� Degree centrality uses the degree of a node, meaning the number of edges adjacent to it (inde-

pendent of edge direction), for ranking. An academic paper that has been cited many times

has a high degree and is considered more important than a paper that has only been cited once.

� Eigenvector centrality is an extension of degree centrality. Instead of each neighbor contributing

equally to the centrality, nodes that are important are given a higher weight. Thus a node

connected to lots of unimportant nodes can have the same measure as a node connected to a

few, important nodes. Eigenvector centrality is measured by the eigenvector associated with

the largest eigenvalue of the adjacency matrix of the network.

� Katz centrality is a modi�cation to eigenvalue centrality for directed networks. Outgoing nodes

contribute centrality to their neighbors, so an important node makes its neighbors more im-

portant.

� PageRank adapts Katz centrality by averaging out the centrality that a node can pass to its

neighbors. For example, if Google�a website that should have high centrality�points to a

million websites, then it shouldn't pass on that high centrality to all of million of its neighbors,

so each neighbor gets one millionth of Google's centrality.

For more information on these centralities, as well as other ways to measure node importance,

see [New10].

http://games.espn.com/tournament-challenge-bracket
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14 The Drazin Inverse

Lab Objective: The Drazin inverse of a matrix is a pseudoinverse which preserves certain spectral

properties of the matrix. In this lab we compute the Drazin inverse using the Schur decomposition,

then use it to compute the e�ective resistance of a graph and perform link prediction.

Definition of the Drazin Inverse
The index of an n×n matrix A is the smallest nonnegative integer k for which N (Ak) = N (Ak+1).

The Drazin inverse AD of A is the unique n× n matrix satisfying the following properties.

� AAD = ADA

� Ak+1AD = Ak

� ADAAD = AD

Note that if A is invertible, in which case k = 0, then AD = A−1. On the other hand, if A is nilpotent,

meaning Aj = 0 for some nonnegative integer j, then AD is the zero matrix.

Problem 1. Write a function that accepts an n× n matrix A, the index k of A, and an n× n
matrix AD. Use the criteria described above to determine whether or not AD is the Drazin

inverse of A. Return True if AD satis�es all three conditions; otherwise, return False.

Use the following matrices as test cases for your function.

A =


1 3 0 0

0 1 3 0

0 0 1 3

0 0 0 0

 , AD =


1 −3 9 81

0 1 −3 −18

0 0 1 3

0 0 0 0

 , k = 1

B =

 1 1 3

5 2 6

−2 −1 −3

 , BD =

 0 0 0

0 0 0

0 0 0

 , k = 3

(Hint: np.allclose() and np.linalg.matrix_power() may be useful).
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Computing the Drazin Inverse
The Drazin inverse is often de�ned theoretically in terms of the eigenprojections of a matrix. However,

eigenprojections are often costly or unstable to calculate, so we resort to a di�erent method to

calculate the Drazin inverse.

Every n× n matrix A can be written in the form

A = S−1

[
M 0

0 N

]
S, (14.1)

where S is a change of basis matrix, M is nonsingular, and N is nilpotent. Then the Drazin inverse

can be calculated as

AD = S−1

[
M−1 0

0 0

]
S. (14.2)

To put A into the form in (14.1), we can use the Schur decomposition of A, given by

A = QTQ−1, (14.3)

where Q is orthonormal and T is upper triangular. Since T is similar to A, the eigenvalues of A are

listed along the diagonal of T . If A is singular, at least one diagonal entry of T must be 0.

In general, Schur decompositions are not unique; the eigenvalues along the diagonal of T can

be reordered. To �nd M , N , and S, we compute the Schur decomposition of A twice, ordering the

eigenvalues di�erently in each decomposition.

First, we sort so that the nonzero eigenvalues are listed �rst along the diagonal of T . Then, if

k is the number of nonzero eigenvalues, the upper left k× k block of T forms the nonsingular matrix

M , and the �rst k columns of Q form the �rst k columns of the change of basis matrix S.

Computing the decomposition a second time, we reorder so that the 0 eigenvalues are listed

�rst along the diagonal of T . Then the upper left (n− k)× (n− k) block forms the nilpotent matrix

N , and the �rst n − k columns of Q form the last n − k columns of S. This completes a change of

basis matrix that will put A into the desired block diagonal form. Lastly, we use (14.2) to compute

AD.

SciPy's la.schur() is a routine for computing the Schur decomposition of a matrix, but it

does not automatically sort it by eigenvalue. However, sorting can be accomplished by specifying the

sort keyword argument. Given an eigenvalue, the sorting function should return a boolean indicating

whether to sort that eigenvalue to the top left of the diagonal of T .

>>> from scipy import linalg as la

# The standard Schur decomposition.

>>> A = np.array([[0,0,2],[-3,2,6],[0,0,1]])

>>> T,Z = la.schur(A)

>>> T # The eigenvalues (2, 0, and 1) are not sorted.

array([[ 2., -3., 6.],

[ 0., 0., 2.],

[ 0., 0., 1.]])

# Specify a sorting function to get the desired result.

>>> f = lambda x: abs(x) > 0

>>> T1,Z1,k = la.schur(A, sort=f)

>>> T1
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array([[ 2. , 0. , 6.70820393],

[ 0. , 1. , 2. ],

[ 0. , 0. , 0. ]])

>>> k # k is the number of columns satisfying the sort,

2 # which is the number of nonzero eigenvalues.

The procedure for �nding the Drazin inverse using the Schur decomposition is given in Algo-

rithm 14.1. Due to possible �oating point arithmetic errors, consider all eigenvalues smaller than a

certain tolerance to be 0.

Algorithm 14.1

1: procedure Drazin(A, tol)

2: (n, n)← shape(A)

3: T1, Q1, k1 ← schur(A, |x| > tol) . Sort the Schur decomposition with 0 eigenvalues last.

4: T2, Q2, k2 ← schur(A, |x| ≤ tol) . Sort the Schur decomposition with 0 eigenvalues �rst.

5: U ← [Q1:,:k1
| Q2:,:n−k1

] . Create change of basis matrix.

6: U−1 ← inverse(U)

7: V ← U−1AU . Find block diagonal matrix in (14.1)

8: Z ← 0n×n
9: if k1 6= 0 then

10: M−1 ← inverse(V:k1,:k1)

11: Z:k1,:k1 ←M−1

12: return UZU−1

Problem 2. Write a function that accepts an n × n matrix A and a tolerance for rounding

eigenvalues to zero. Use Algorithm 14.1 to compute the Drazin inverse AD. Use your function

from Problem 1 to verify your implementation.

Achtung!

Because the algorithm for the Drazin inverse requires calculation of the inverse of a matrix, it

is unstable when that matrix has a high condition number. If the algorithm does not �nd the

correct Drazin inverse, check the condition number of V from Algorithm 14.1

Note

The Drazin inverse is called a pseudoinverse because AD = A−1 for invertible A, and for

noninvertible A, AD always exists and acts similarly to an inverse. There are other matrix

pseudoinverses that preserve di�erent qualities of A, including theMoore-Penrose pseudoinverse

A†, which can be thought of as the least squares approximation to A−1.
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Applications of the Drazin Inverse
Effective Resistance
The e�ective resistance between two nodes in a undirected graph is a measure of how connected

those nodes are. The concept originates from the study of circuits to measure the resistance between

two points on the circuit. A resistor is a device in a circuit which limits or regulates the �ow of

electricity. Two points that have more resistors between them have more resistance, while those with

fewer resistors between them have less resistance. The entire circuit can be represented by a graph

where the nodes are the points of interest and the number of edges connecting two nodes indicates

the number of resistors between the corresponding points. See Figure 14.1 for an example.

a c e

b d f

Figure 14.1: A graph with a resistor on each edge.

In electromagnetism, there are rules for manually calculating the e�ective resistance between

two nodes for relatively simple graphs. However, this is infeasible for large or complicated graphs.

Instead, we can use the Drazin inverse to calculate e�ective resistance for any graph.

First, create the adjacency matrix 1 of the graph, the matrix where the (ij)th entry is the

number of connections from node i to node j. Next, calculate the Laplacian L of the adjacency

matrix. Then if Rij is the e�ective resistance from node i to node j,

Rij =

{
(L̃j)Dii if i 6= j

0 if i = j,
(14.4)

where L̃j is the Laplacian with the jth row of the Laplacian replaced by the jth row of the identity

matrix, and (L̃j)D is its Drazin inverse.

Problem 3. Write a function that accepts the n×n adjacency matrix of an undirected graph.

Use (14.4) to compute the e�ective resistance from each node to every other node. Return an

n× n matrix where the (ij)th entry is the e�ective resistance from node i to node j. Keep the

following in mind:

� The resulting matrix should be symmetric.

� The e�ective resistance from a node to itself is 0.

1See Problem 1 of Image Segmentation for a refresher on adjacency matrices and the Laplacian.
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� Consider creating the matrix column by column instead of entry by entry. Every time

you compute the Drazin inverse, the whole diagonal of the matrix can be used.

Test your function using the graphs and values from Figure 14.2.

a b c d

Rac = 2, Rad = 3

a b

Rab = 1

a b

c

Rab = 2
3 , Rac = 2

3 a b Rab = 1
3

a b Rab = 1
2 a b Rab = 1

4

Figure 14.2: The e�ective resistance between two points for several simple graphs. Nodes that are

farther apart have a larger e�ective resistance, while nodes that are nearer or better connected have

a smaller e�ective resistance.

Link Prediction
Link prediction is the problem of predicting the likelihood of a future association between two uncon-

nected nodes in a graph. Link prediction has application in many �elds, but the canonical example

is friend suggestions on Facebook. The Facebook network can be represented by a large graph where

each user is a node, and two nodes have an edge connecting them if they are �friends.� Facebook

aims to predict who you would like to become friends with in the future, based on who you are

friends with now, as well as discover which friends you may have in real life that you have not yet

connected with online. To do this, Facebook must have some way to measure how closely two users

are connected.

We will compute link prediction using e�ective resistance as a metric. E�ective resistance

measures how closely two nodes are connected, and nodes that are closely connected at present are

more likely to be connected in the future. Given an undirected graph, the next link should connect

the two unconnected nodes with the least e�ective resistance between them.

Problem 4. Write a class called LinkPredictor for performing link prediction. Implement

the __init__() method so that it accepts the name of a csv �le containing information about a

social network. Each row of the �le should contain the names of two nodes which are connected

by an (undirected) edge.
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Store each of the names of the nodes of the graph as an ordered list. Next, create the

adjacency matrix for the network where the ith row and column of the matrix correspond to the

ith member of the list of node names. Finally, use your function from Problem 3 to compute

the e�ective resistance matrix. Save the list of names, the adjacency matrix, and the e�ective

resistance matrix as attributes.

Problem 5. Implement the following methods in the LinkPredictor class:

1. predict_link(): Accept a parameter node which is either None or a string representing a

node in the network. If node is None, return a tuple with the names of the nodes between

which the next link should occur. However, if node is a string, return the name of the

node which should be connected to node next out of all other nodes in the network. If

node is not in the network, raise a ValueError. Take the following into consideration:

(a) You want to �nd the two nodes which have the smallest e�ective resistance between

them which are not yet connected. Use information from the adjacency matrix to

zero out all entries of the e�ective resistance matrix that represent connected nodes.

The �*" operator multiplies arrays component-wise, which may be helpful.

(b) Find the next link by �nding the minimum value of the array that is nonzero. Your

array may be the whole matrix or just a column if you are only considering links for

a certain node. This can be accomplished by passing np.min() a masked version of

your matrix to exclude entries that are 0.

(c) NumPy's np.where() is useful for �nding the minimum value in an array:

>>> A = np.random.randint(-9,9,(3,3))

>>> A

array([[ 6, -8, -9],

[-2, 1, -1],

[ 4, 0, -3]])

# Find the minimum value in the array.

>>> minval = np.min(A)

>>> minval

-9

# Find the location of the minimum value.

>>> loc = np.where(A==minval)

>>> loc

(array([0], dtype=int64), array([2], dtype=int64))

2. add_link(): Take as input two names of nodes, and add a link between them. If either

name is not in the network, raise a ValueError. Add the link by updating the adjacency

matrix and the e�ective resistance matrix.
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Figure 14.3 visualizes the data in social_network.csv. Use this graph to verify that

your class is suggesting plausible new links. You should observe the following:

� In the entire network, Emily and Oliver are most likely to become friends next.

� Melanie is predicted to become friends with Carol next.

� Alan is expected to become friends with Sonia, then with Piers, and then with Abigail.

Figure 14.3: The social network contained in social_network.csv. Adapted from data by Wayne.

W Zachary (see https://en.wikipedia.org/wiki/Zachary%27s_karate_club).

1. Piers

2. Abigail

3. Oliver

4. Stephanie

5. Carol

6. Melanie

7. Stephen

8. Sally

9. Penelope

10. Alan

11. Trevor

12. Jake

13. Mary

14. Anna

15. Ruth

16. Evan

17. Connor

18. John

19. Max

20. Eric

21. Theresa

22. Paul

23. Alexander

24. Colin

25. Jake

26. Jane

27. Brandon

28. Thomas

29. Christopher

30. Charles

31. Madeleine

32. Tracey

33. Sonia

34. Emily

https://en.wikipedia.org/wiki/Zachary%27s_karate_club
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15 Iterative Solvers

Lab Objective: Many real-world problems of the form Ax = b have tens of thousands of

parameters. Solving such systems with Gaussian elimination or matrix factorizations could require

trillions of �oating point operations (FLOPs), which is of course infeasible. Solutions of large systems

must therefore be approximated iteratively. In this lab we implement three popular iterative methods

for solving large systems: Jacobi, Gauss-Seidel, and Successive Over-Relaxation.

Iterative methods are often useful to solve large systems of equations. In this lab, let x(k) denote

the kth iteration of the iterative method for solving the problem Ax = b for x. Furthermore, let xi
be the ith component of x so that x

(k)
i is the ith component of x in the kth iteration. Like other

iterative methods, there are two stopping parameters: a very small ε > 0 and an integer N ∈ N.
Iterations continue until either

‖x(k−1) − x(k)‖ < ε or k > N. (15.1)

The Jacobi Method
The Jacobi Method is a simple but powerful method used for solving certain kinds of large linear

systems. The main idea is simple: solve for each variable in terms of the others, then use the previous

values to update each approximation. As a (very small) example, consider the 3× 3

2x1 − x3 = 3,

−x1 + 3x2 + 2x3 = 3,

+ x2 + 3x3 = −1.

Solving the �rst equation for x1, the second for x2, and the third for x3 yields

x1 = 1
2 (3 + x3),

x2 = 1
3 (3 + x1 − 2x3),

x3 = 1
3 (−1− x2).

Now begin with an initial guess x(0) = [x
(0)
1 , x

(0)
2 , x

(0)
3 ]T = [0, 0, 0]T. To compute the �rst

approximation x(1), use the entries of x(0) as the variables on the right side of the previous equations:

x
(1)
1 = 1

2 (3 + x
(0)
3 ) = 1

2 (3 + 0) = 3
2 ,

x
(1)
2 = 1

3 (3 + x
(0)
1 − 2x

(0)
3 ) = 1

3 (3 + 0− 0) = 1,

x
(1)
3 = 1

3 (−1− x(0)
2 ) = 1

3 (−1− 0) = − 1
3 .
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Thus x(1) = [ 3
2 , 1,−

1
3 ]T. Computing x(2) is similar:

x
(2)
1 = 1

2 (3 + x
(1)
3 ) = 1

2 (3− 1
3 ) = 4

3 ,

x
(2)
2 = 1

3 (3 + x
(1)
1 − 2x

(1)
3 ) = 1

3 (3 + 3
2 + 2

3 ) = 31
18 ,

x
(2)
3 = 1

3 (−1− x(1)
2 ) = 1

3 (−1− 1) = − 2
3 .

The process is repeated until at least one of the two stopping criteria in (15.1) is met. For this

particular problem, convergence to 8 decimal places (ε = 10−8) is reached in 29 iterations.

x
(k)
1 x

(k)
2 x

(k)
3

x(0) 0 0 0

x(1) 1.5 1 −0.33333333

x(2) 1.33333333 1.72222222 −0.66666667

x(3) 1.16666667 1.88888889 −0.90740741

x(4) 1.04629630 1.99382716 −0.96296296
...

...
...

...

x(28) 0.99999999 2.00000001 −0.99999999

x(29) 1 2 −1

Matrix Representation
The iterative steps performed above can be expressed in matrix form. First, decompose A into its

diagonal entries, its entries below the diagonal, and its entries above the diagonal, as A = D+L+U .
a11 0 . . . 0

0 a22 . . . 0
...

...
. . .

...

0 0 . . . ann




0 0 . . . 0

a21 0 . . . 0
...

. . .
. . .

...

an1 . . . an,n−1 0




0 a12 . . . a1n

0 0
. . .

...
...

...
. . . an−1,n

0 0 . . . 0


D L U

With this decomposition, x can be expressed in the following way.

Ax = b

(D + L+ U)x = b

Dx = −(L+ U)x + b

x = D−1(−(L+ U)x + b)

Now using x(k) as the variables on the right side of the equation to produce x(k+1) on the left,

and noting that L+ U = A−D, we have the following.

x(k+1) = D−1(−(A−D)x(k) + b)

= D−1(Dx(k) −Ax(k) + b)

= x(k) +D−1(b−Ax(k)) (15.2)

There is a potential problem with (15.2): calculating a matrix inverse is the cardinal sin of

numerical linear algebra, yet the equation contains D−1. However, since D is a diagonal matrix,

D−1 is also diagonal, and is easy to compute.
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D−1 =


1
a11

0 . . . 0

0 1
a22

. . . 0
...

...
. . .

...

0 0 . . . 1
ann



Because of this, the Jacobi method requires that A have nonzero diagonal entries.

The diagonal D can be represented by the 1-dimensional array d of the diagonal entries. Then

the matrix multiplication Dx is equivalent to the component-wise vector multiplication d∗x = x∗d.
Likewise, the matrix multiplication D−1x is equivalent to the component-wise �vector division� x/d.

Problem 1. Write a function that accepts a matrix A, a vector b, a convergence tolerance tol

defaulting to 10−8, and a maximum number of iterations maxiter defaulting to 100. Implement

the Jacobi method using (15.2), returning the approximate solution to the equation Ax = b.

Run the iteration until ‖x(k−1) − x(k)‖∞ < tol, and only iterate at most maxiter times.

Avoid using la.inv() to calculate D−1, but use la.norm() to calculate the vector ∞-norm.

Your function should be robust enough to accept systems of any size. To test your function,

generate a random b with np.random.random() and use the following function to generate an

n×n matrix A for which the Jacobi method is guaranteed to converge. Run the iteration, then

check that Ax(k) and b are close using np.allclose().

def diag_dom(n, num_entries=None):

"""Generate a strictly diagonally dominant (n, n) matrix.

Parameters:

n (int): The dimension of the system.

num_entries (int): The number of nonzero values.

Defaults to n^(3/2)-n.

Returns:

A ((n,n) ndarray): A (n, n) strictly diagonally dominant matrix.

"""

if num_entries is None:

num_entries = int(n**1.5) - n

A = np.zeros((n,n))

rows = np.random.choice(np.arange(0,n), size=num_entries)

cols = np.random.choice(np.arange(0,n), size=num_entries)

data = np.random.randint(-4, 4, size=num_entries)

for i in range(num_entries):

A[rows[i], cols[i]] = data[i]

for i in range(n):

A[i,i] = np.sum(np.abs(A[i])) + 1

return A

Also test your function on random n× n matrices. If the iteration is non-convergent, the

successive approximations will have increasingly large entries.
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Convergence

Most iterative methods only converge under certain conditions. For the Jacobi method, convergence

mostly depends on the nature of the matrix A. If the entries aij of A satisfy the property

|aii| >
∑
j 6=i

|aij | for all i = 1, 2, . . . , n,

then A is called strictly diagonally dominant (diag_dom() in Problem 1 generates a strictly diagonally

dominant n× n matrix). If this is the case,1 then the Jacobi method always converges, regardless of

the initial guess x0. This is a very di�erent convergence result than many other iterative methods

such as Newton's method where convergence is highly sensitive to the initial guess.

There are a few ways to determine whether or not an iterative method is converging. For

example, since the approximation x(k) should satisfy Ax(k) ≈ b, the normed di�erence ‖Ax(k)−b‖∞
should be small. This value is called the absolute error of the approximation. If the iterative method

converges, the absolute error should decrease to ε.

Problem 2. Modify your Jacobi method function in the following ways.

1. Add a keyword argument called plot, defaulting to False.

2. Keep track of the absolute error ‖Ax(k) − b‖∞ of the approximation at each iteration.

3. If plot is True, produce a lin-log plot (use plt.semilogy()) of the error against iteration

count. Remember to still return the approximate solution x.

If the iteration converges, your plot should resemble the following �gure.
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Convergence of Jacobi Method

1Although this seems like a strong requirement, most real-world linear systems can be represented by strictly
diagonally dominant matrices.
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The Gauss-Seidel Method
The Gauss-Seidel method is essentially a slight modi�cation of the Jacobi method. The main di�er-

ence is that in Gauss-Seidel, new information is used immediately. As an example, consider again

the system from the previous section,

2x1 − x3 = 3,

−x1 + 3x2 + 2x3 = 3,

+ x2 + 3x3 = −1.

As with the Jacobi method, solve for x1 in the �rst equation, x2 in the second equation, and

x3 in the third equation:

x1 = 1
2 (3 + x3),

x2 = 1
3 (3 + x1 − 2x3),

x3 = 1
3 (−1− x2).

Using x(0) to compute x
(1)
1 in the �rst equation as before,

x
(1)
1 =

1

2
(3 + x

(0)
3 ) =

1

2
(3 + 0) =

3

2
.

Now, however, use the updated value of x
(1)
1 in the calculation of x

(1)
2 :

x
(1)
2 =

1

3
(3 + x

(1)
1 − 2x

(0)
3 ) =

1

3
(3 +

3

2
− 0) =

3

2
.

Likewise, use the updated values of x
(1)
1 and x

(1)
2 to calculate x

(1)
3 :

x
(1)
3 =

1

3
(−1− x(1)

2 ) =
1

3
(−1− 3

2
) = −5

6
.

This process of using calculated information immediately is called forward substitution, and causes

the algorithm to (generally) converge much faster.

x
(k)
1 x

(k)
2 x

(k)
3

x(0) 0 0 0

x(1) 1.5 1.5 −0.83333333

x(2) 1.08333333 1.91666667 −0.97222222

x(3) 1.01388889 1.98611111 −0.99537037

x(4) 1.00231481 1.99768519 −0.99922840
...

...
...

...

x(11) 1.00000001 1.99999999 −1

x(12) 1 2 −1

Notice that Gauss-Seidel converges in less than half as many iterations as Jacobi does for this system.

Implementation
Because Gauss-Seidel updates only one element of the solution vector at a time, the iteration cannot

be summarized by a single matrix equation. Instead, the process is most generally described by the

equation

x
(k+1)
i =

1

aii

bi −∑
j<i

aijx
(k)
j −

∑
j>i

aijx
(k)
j

 . (15.3)
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Let ai be the ith row of A. The two sums closely resemble the regular vector product of ai
and x(k) without the ith term aiix

(k)
i . This suggests the simpli�cation

x
(k+1)
i =

1

aii

(
bi − aTi x

(k) + aiix
(k)
i

)
= x

(k)
i +

1

aii

(
bi − aTi x

(k)
)
. (15.4)

One sweep through all the entries of x completes one iteration.

Problem 3. Write a function that accepts a matrix A, a vector b, a convergence tolerance

tol defaulting to 10−8, a maximum number of iterations maxiter defaulting to 100, and a

keyword argument plot that defaults to False. Implement the Gauss-Seidel method using

(15.4), returning the approximate solution to the equation Ax = b.

Use the same stopping criterion as in Problem 1. Also keep track of the absolute errors

of the iteration, as in Problem 2. If plot is True, plot the error against iteration count. Use

diag_dom() to generate test cases.

Achtung!

Since the Gauss-Seidel algorithm operates on the approximation vector in place (modifying

it one entry at a time), the previous approximation x(k−1) must be stored at the beginning

of the kth iteration in order to calculate ‖x(k−1) − x(k)‖∞. Additionally, since NumPy

arrays are mutable, the past iteration must be stored as a copy.

>>> x0 = np.random.random(5) # Generate a random vector.

>>> x1 = x0 # Attempt to make a copy.

>>> x1[3] = 1000 # Modify the "copy" in place.

>>> np.allclose(x0, x1) # But x0 was also changed!

True

# Instead, make a copy of x0 when creating x1.

>>> x0 = np.copy(x1) # Make a copy.

>>> x1[3] = -1000

>>> np.allclose(x0, x1)

False

Convergence

Whether or not the Gauss-Seidel method converges depends on the nature of A. If all of the eigenval-

ues of A are positive, A is called positive de�nite. If A is positive de�nite or if it is strictly diagonally

dominant, then the Gauss-Seidel method converges regardless of the initial guess x(0).
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Solving Sparse Systems Iteratively
Iterative solvers are best suited for solving very large sparse systems. However, using the Gauss-Seidel

method on sparse matrices requires translating code from NumPy to scipy.sparse. The algorithm

is the same, but there are some functions that are named di�erently between these two packages.2

Problem 4. Write a new function that accepts a sparse matrix A, a vector b, a convergence

tolerance tol, and a maximum number of iterations maxiter (plotting the convergence is not

required for this problem). Implement the Gauss-Seidel method using (15.4), returning the

approximate solution to the equation Ax = b. Use the usual default stopping criterion.

The Gauss-Seidel method requires extracting the rows Ai from the matrix A and com-

puting AT
i x. There are many ways to do this that cause some fairly serious runtime issues, so

we provide the code for this speci�c portion of the algorithm.

# Get the indices of where the i-th row of A starts and ends if the

# nonzero entries of A were flattened.

rowstart = A.indptr[i]

rowend = A.indptr[i+1]

# Multiply only the nonzero elements of the i-th row of A with the

# corresponding elements of x.

Aix = A.data[rowstart:rowend] @ x[A.indices[rowstart:rowend]]

To test your function, cast the result of diag_dom() as a sparse matrix.

>>> from scipy import sparse

>>> A = sparse.csr_matrix(diag_dom(50000))

>>> b = np.random.random(50000)

Successive Over-Relaxation

There are many systems that meet the requirements for convergence with the Gauss-Seidel method,

but for which convergence is still relatively slow. A slightly altered version of the Gauss-Seidel

method, called Successive Over-Relaxation (SOR), can result in faster convergence. This is achieved

by introducing a relaxation factor ω ≥ 1 and modifying (15.3) as

x
(k+1)
i = (1− ω)x

(k)
i +

ω

aii

bi −∑
j<i

aijx
(k)
j −

∑
j>i

aijx
(k)
j

 .

Simplifying the equation, we have

x
(k+1)
i = x

(k)
i +

ω

aii

(
bi − aTi x

(k)
)
. (15.5)

2See the lab on Linear Systems for a review of scipy.sparse matrices and syntax.
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Note that when ω = 1, SOR reduces to Gauss-Seidel. The relaxation factor ω weights the new

iteration between the current best approximation and the next approximation in a way that can

sometimes dramatically improve convergence.

Problem 5. Write a function that accepts a sparse matrix A, a vector b, a relaxation factor

ω, a convergence tolerance tol, and a maximum number of iterations maxiter. Implement

SOR using (15.5), compute the approximate solution to the equation Ax = b. Use the usual

stopping criterion. Return the approximate solution x as well as a boolean indicating whether

the function converged and the number of iterations computed.

(Hint: this requires changing only one line of code from the sparse Gauss-Seidel function.)

A Finite Difference Method
Laplace's equation is an important partial di�erential equation that arises often in both pure and

applied mathematics. In two dimensions, the equation has the following form.

∂2u

∂x2
+
∂2u

∂y2
= 0 (15.6)

Laplace's equation can be used to model heat �ow. Consider a square metal plate where the

top and bottom borders are �xed at 0◦ Celsius and the left and right sides are �xed at 100◦ Celsius.

Given these boundary conditions, we want to describe how heat di�uses through the rest of the plate.

The solution to Laplace's equation describes the plate when it is in a steady state, meaning that the

heat at a given part of the plate no longer changes with time.

It is possible to solve (15.6) analytically. However, the problem can also be solved numerically

using a �nite di�erence method. To begin, we impose a discrete, square grid on the plate with uniform

spacing. Denote the points on the grid by (xi, yj) and the value of u at these points (the heat) as

u(xi, yj) = Ui,j . Using the centered di�erence quotient for second derivatives to approximate the

partial derivatives,

0 =
∂2u

∂x2
+
∂2u

∂y2

≈ Ui+1,j − 2Ui,j + Ui−1,j

h2
+
Ui,j+1 − 2Ui,j + Ui,j−1

h2

=
1

h2
(−4Ui,j + Ui+1,j + Ui−1,j + Ui,j+1 + Ui,j−1) , (15.7)

where h = xi+1 − xi = yj+1 − yj is the distance between the grid points in either direction. This

problem can be formulated as a linear system. Suppose the grid has exactly (n+ 2)× (n+ 2) entries.

Then the interior of the grid (where u(x, y) is unknown) is n×n, and can be �attened into an n2× 1

vector u. The entire �rst row goes �rst, then the second row, proceeding to the nth row.

u =
[
U1,1 U1,2 · · · U1,n U2,1 U2,2 · · · U2,n · · · Un,n

]T
From (15.7), for an interior point Ui,j , we have

− 4Ui,j + Ui+1,j + Ui−1,j + Ui,j+1 + Ui,j−1 = 0. (15.8)

If any of the neighbors to Ui,j is a boundary point on the grid, its value is already determined by the

boundary conditions. For example, the neighbor U3,0 of the gridpoint for U3,1 is �xed at U3,0 = 100.

In this case, (15.8) becomes

−4U3,1 + U2,1 + U3,2 + U4,1 = −100.
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Figure 15.1: On the left, an example of a 6 × 6 grid (n = 4) where the red dots are hot boundary

zones and the blue dots are cold boundary zones. On the right, the green dots are the neighbors of

the interior black dot that are used to approximate the heat at the black dot.

The constants on the right side of (15.8) become the n2 × 1 vector b. All nonzero entries of b

correspond to interior points that touch the left or right boundaries.
As an example, writing (15.8) for the 16 interior points of the grid in Figure 15.1 results in the

following 16× 16 system Au = b. Note the block structure (empty blocks are all zeros).

−4 1 0 0 1 0 0 0
1 −4 1 0 0 1 0 0
0 1 −4 0 0 0 1 0
0 0 1 −4 0 0 0 1

1 0 0 0 −4 1 0 0 1 0 0 0
0 1 0 0 1 −4 1 0 0 1 0 0
0 0 1 0 0 1 −4 1 0 0 1 0
0 0 0 1 0 0 1 −4 0 0 0 1

1 0 0 0 −4 1 0 0 1 0 0 0
0 1 0 0 1 −4 1 0 0 1 0 0
0 0 1 0 0 1 −4 1 0 0 1 0
0 0 0 1 0 0 1 −4 0 0 0 1

1 0 0 0 −4 1 0 0
0 1 0 0 1 −4 1 0
0 0 1 0 0 1 −4 1
0 0 0 1 0 0 1 −4





U1,1

U1,2

U1,3

U1,4

U2,1

U2,2

U2,3

U2,4

U3,1

U3,2

U3,3

U3,4

U4,1

U4,2

U4,3

U4,4



=



−100
0
0

−100

−100
0
0

−100

−100
0
0

−100

−100
0
0

−100


More concisely, for any positive integer n, the matrix A can be written as

A =



B I

I B I

I
. . .

. . .

. . .
. . . I

I B

 , where B =



−4 1

1 −4 1

1
. . .

. . .

. . .
. . . 1

1 −4

 is n× n.
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Problem 6. Write a function that accepts an integer n, a relaxation factor ω, a convergence

tolerance tol that defaults to 10−8, a maximum number of iterations maxiter that defaults

to 100, and a bool plot that defaults to False. Generate and solve the corresponding system

Au = b using Problem 5. Also return a boolean indicating whether the function converged and

the number of iterations computed.

(Hint: see Problem 5 of the Linear Systems lab for the construction of A. Also, np.tile()

may be useful for constructing b.)

If plot=True, visualize the solution u with a heatmap using plt.pcolormesh() (the

colormap "coolwarm" is a good choice in this case). This shows the distribution of heat over

the hot plate after it has reached its steady state. Note that the u must be reshaped as an

n× n array to properly visualize the result.

Problem 7. To demonstrate how convergence is a�ected by the value of the relaxation factor

ω in SOR, run your function from Problem 6 with ω = 1, 1.05, 1.1, . . . , 1.9, 1.95 and n = 20.

Plot the number of computed iterations as a function of ω. Return the value of ω that results

in the least number of iterations.

Note that the matrix A from Problem 6 is not strictly diagonally dominant. However,

A is positive de�nite, so the algorithm will converge. Unfortunately, convergence for these

kinds of systems usually requires more iterations than for strictly diagonally dominant systems.

Therefore, set tol=1e-2 and maxiter=1000.

Recall that ω = 1 corresponds to the Gauss-Seidel method. Choosing a more optimal

relaxation factor saves a large number of iterations. This could translate to saving days or

weeks of computation time while solving extremely large linear systems on a supercomputer.
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Lab Objective: The Arnoldi Iteration is an e�cient method for �nding the eigenvalues of extremely

large matrices. Instead of using standard methods, the iteration uses Krylov subspaces to approximate

how a linear operator acts on vectors. With this approach, the Arnoldi Iteration facilitates the

computation of eigenvalues for enormous matrices without needing to physically create the matrix

in memory. We will explore this subject by implementing the Arnoldi iteration algorithm, using our

implementation for eigenvalue computation, and then graphically representing the accuracy of our

approximated eigenvalues.

Krylov Subspaces
One of the biggest di�culties in numerical linear algebra is the amount of memory needed to store

a large matrix and the amount of time needed to read its entries. Methods using Krylov subspaces

avoid this di�culty by studying how a matrix acts on vectors, making it unnecessary in many cases

to create the matrix itself.

The Arnoldi Iteration is an algorithm for �nding an orthonormal basis of a Krylov subspace.

One of its strengths is that it can run on any linear operator without knowing the operator's under-

lying matrix representation. The outputs of the Arnoldi algorithm can then be used to approximate

the eigenvalues of the matrix of the linear operator.

The order-n Krylov subspace of A generated by x is

Kn(A,x) = span{x, Ax, A2x, . . . , An−1x}.

If the vectors {x, Ax, A2x, . . . , An−1x} are linearly independent, then they form a basis for Kn(A,x).

However, Anx frequently converges to a dominant eigenvector of A as n gets large, which �lls the

basis with many almost parallel vectors. This yields a basis prone to ill-conditioned computations

and numerical instability.

The Arnoldi Iteration Algorithm
The Arnoldi iteration focuses on e�ciently creating an orthonormal basis for Kn(A,x) by integrating

the creation of {x, Ax, A2x, . . . , An−1x} with the modi�ed Gram-Schmidt algorithm. This process

yields an orthonormal basis for Kn(A,x) that can be used for further computations.

155
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The algorithm begins by initializing a matrix H which will be an upper Hessenberg matrix and

a matrix Q which will be �lled with the basis vectors of our Krylov subspace. It also requires an

initial vector b 6= 0 which is normalized to get q1 = b/ ‖b‖. This represents the basis for the initial
Krylov subspace, K1(A,b).

For the kth iteration, compute the next basis vector qk+1 by using the modi�ed Gram-Schmidt

process to make Aqk orthonormal to qk. This entails making each column of Q orthogonal to qk
before proceeding to the next iteration. The vectors {qi}ki=1 are then a basis for Kk(A,b). If ‖qk+1‖
is below a certain tolerance, stop and return H and Q. Otherwise, normalize the new basis vector

new qk+1 and continue to the next iteration.

Algorithm 16.1 The Arnoldi iteration. This algorithm accepts a square matrix A and a starting

vector b. It iterates k times or until the norm of the next vector in the iteration is less than tol.

The algorithm returns an upper Hessenberg H and an orthonormal Q such that H = QHAQ.

1: procedure Arnoldi(b, A, k, tol)

2: Q← empty(size(b), k + 1) . Some initialization steps

3: H ← zeros(k + 1, k)

4: Q:,0 ← b/ ‖b‖2
5: for j = 0 . . . k − 1 do . Perform the actual iteration.

6: Q:,j+1 ← A(Q:,j)

7: for i = 0 . . . j do . Modi�ed Gram-Schmidt.

8: Hi,j ← QH
:,iQ:,j+1

9: Q:,j+1 ← Q:,j+1 −Hi,jQ:,i

10: Hj+1,j ← ‖Q:,j+1‖2 . Set subdiagonal element of H.

11: if |Hj+1,j | < tol then . Stop if ‖Q:,j+1‖2 is small enough.

12: return H:j+1,:j+1, Q:,:j+1

13: Q:,j+1 ← Q:,j+1/Hj+1,j . Normalize qj+1.

14: return H:−1,:, Q . Return Hk and Q.

Achtung!

If the starting vector x is an eigenvector of A with corresponding eigenvalue λ, then by de�nition

Kk(A,x) = span{x, λx, λ2x, . . . , λkx}, which is equal to the span of x. So, when x is normalized

with q1 = x/‖x‖, q2 = Aq1 = λq1.

The vector q2 is supposed to be the next vector in the orthonormal basis for Kk(A,x),

but it is not linearly independent of q1. In fact, q1 already spans Kk(A,x). Hence, the Gram-

Schmidt process fails and results in a ZeroDivisionError or an extremely early termination

of the algorithm. A similar phenomenon may occur if the starting vector x is contained in a

proper invariant subspace of A.

Arnoldi Iteration on Linear Operators
A major strength of the Arnoldi iteration is that it can run on a linear operator, even without knowing

the matrix representation of the operator. If L is some linear function, then we can modify the

pseudocode above by replacing AQ:,j with Amul(Q:,j). This makes it possible to �nd the eigenvalues

of an arbitrary linear transformation.
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Problem 1. Write a function that accepts a starting vector b for the Arnoldi Iteration, a

function handle L that describes a linear operator, the number of times n to perform the

iteration, and a tolerance tol that defaults to 10−8. Use Algorithm 16.1 to implement the

Arnoldi Iteration with these parameters. Return the upper Hessenberg matrix H and the

orthonormal matrix Q from the iteration.

Consider the following implementation details.

1. Since H and Q will eventually hold complex numbers, initialize them as complex arrays

(e.g., A = np.empty((3,3), dtype=np.complex128)).

2. This function can be tested on a matrix A by passing in A.dot for a linear operator.

3. Remember to use complex inner products. Here is an example of how to evaluate AHA:

b = A.conj() @ B

Test your function by comparing the resulting H with QHAQ.

Finding Eigenvalues Using the Arnoldi Iteration
Let A be an n×n matrix. Let Qk be the matrix whose columns q1, . . . ,qk are the orthonormal basis

for Km(A,x) generated by the Arnoldi algorithm, and let Hk be the k× k upper Hessenburg matrix

de�ned at the kth stage of the algorithm. Then these matrices satisfy

Hk = QH
kAQk. (16.1)

If k < n, then Hk is a low-rank approximation to A and the eigenvalues of Hk may be used as

approximations for the eigenvalues of A. The eigenvalues of Hk are called Ritz Values, and we will

later show that they converge quickly to the largest eigenvalues of A.

Problem 2. Write a function that accepts a function handle L that describes a linear operator,

the dimension of the space dim that the linear operator works on, the number of times k to

perform the Arnoldi Iteration, and the number of Ritz values n to return. Use the previous

implementation of the Arnoldi Iteration and an eigenvalue function such as scipy.linalg.

eigs() to compute the largest Ritz values of the given operator. Return the n largest Ritz

values.

One application of the Arnoldi iteration is to �nd the eigenvalues of linear operators that are

too large to store in memory. For example, if an operator acts on a vector x ∈ C220

, then its matrix

representation contains 240 complex values. Storing such a matrix would require 64 terabytes of

memory!

An example of such an operator is the Fast Fourier Transform, cited by SIAM as one of the

top algorithms of the century [Cip00]. The Fast Fourier Transform is used very commonly in signal

processing.
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Problem 3. The four largest eigenvalues of the Fast Fourier Transform are known to be

{−
√
n,
√
n,−i

√
n, i
√
n} where n is the dimension of the space on which the transform acts.

Use your function from Problem 2 to approximate the eigenvalues of the Fast Fourier

Transform. Set k = 10 and dim = 220. For the argument L, use the scipy.fftpack.fft().

The Arnoldi iteration for �nding eigenvalues is implemented in a Fortran library called ARPACK.

Scipy interfaces with the Arnoldi iteration in this library via the function scipy.sparse.linalg.

eigs(). This function has many more options than the implementation we wrote in Problem 2. In

this example, the keyword argument k=5 speci�es that we want �ve Ritz values. Note that even

though this function comes from the sparse library in Scipy, we can still call it on regular Numpy

arrays.

>>> from scipy.sparse import linalg as spla

>>> B = np.random.random((100,100))

>>> spla.eigs(B, k=5, return_eigenvectors=false)

array([ -1.15577072-2.59438308j, -2.63675878-1.09571889j,

-2.63675878+1.09571889j, -3.00915592+0.j , 50.14472893+0.j ])

Convergence
As more iterations of the Arnoldi method are performed, our approximations are of higher rank.

Consequently, the Ritz values become more accurate approximations to the eigenvalues of the linear

operator.

This technique converges quickly to eigenvalues whose magnitude is distinctly larger than the

rest. For example, matrices with random entries tend to have one eigenvalue of distinctly greatest

magnitude. Convergence of the Ritz values for such a matrix is plotted in Figure 16.1a.

However, Ritz values converge more slowly for matrices with random eigenvalues. Figure 16.1b

plots convergence of the Ritz values for a matrix with eigenvalues uniformly distributed in [0, 1).

Problem 4. Write a function that accepts a linear operator A, the number of Ritz values

to plot n, and the the number of times to perform the Arnoldi iteration iters. Use these

parameters to create a plot of the absolute error between the largest Ritz values of A and the

largest eigenvalues of A.

1. Find n eigenvalues of A of largest magnitude. Store these in order.

2. Create an empty array to store the relative errors for every k = 0, 1, . . . , iters.

(a) Use your Ritz function to �nd the n largest Ritz values of the operator. Note that

for small k, the matrix Hk may not have this many eigenvalues. Due to this, the

graphs of some eigenvalues have to begin after a few iterations.

(b) Store the absolute error between the eigenvalues of A and the Ritz values of H. Make

sure that the errors are stored in the correct order.

3. Iteratively plot the errors for each eigenvalue with the range of the iterations.
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Figure 16.1: These plots show the relative error of the ritz values as approximations to the eigenvalues

of a matrix. The �gure on the left plots the largest 15 Ritz values for a 500×500 matrix with random

entries and demonstrates that the largest eigenvalue (the blue line) converges after 20 iterations.

The �gure at right plots the largest 15 Ritz values for a 500× 500 matrix with uniformly distributed

eigenvalues in [0, 1) and demonstrates that all the eigenvalues take from 150 to 250 iterations to

converge.

Hints: If x̃ is an an approximation to x, then the absolute error in the approximation is ‖x−x̃‖.
Sort your eigenvalues from greatest to least. An example of how to do this is included:

# Evaluate the eigenvalues

eigvalues = la.eig(A)[0]

# Sort them from greatest to least (use np.abs to account for complex ←↩
parts)

eigvalues = eigvalues[np.sort(np.abs(eigvalues))[::-1]]

In addition, remember that certain eigenvalues of H will not appear until we are computing

enough iterations in the Arnoldi algorithm. As a result, we will have to begin the graphs of

several eigenvalues after we are computing su�cient iterations of the algorithm.

Run your function on these examples. The plots should be fairly similar to Figures 16.1b

and 16.1a.

>>> A = np.random.rand(300, 300)

>>> plot_ritz(a, 10, 175)

>>> # A matrix with uniformly distributed eigenvalues

>>> d = np.diag(np.random.rand(300))

>>> B = A @ d @ la.inv(A)

>>> plot_ritz(B, 10, 175)
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Additional Material
The Lanczos Iteration
The Lanczos iteration is a version of the Arnoldi iteration that is optimized to operate on symmetric

matrices. If A is symmetric, then (16.1) shows that Hk is symmetric and hence tridiagonal. This

leads to two simpli�cations of the Arnoldi algorithm.

First, we have 0 = Hk,n = 〈qk, Aqn〉 for k ≤ n − 2; i.e., Aqn is orthogonal to q1, . . . ,qn−2.

Thus, if the goal is only to compute Hk (say to �nd the Ritz values), then we only need to store the

two most recently computed columns of Q. Second, the data of Hk can also be stored in two vectors,

one containing the main diagonal and one containing the �rst subdiagonal of Hk (by symmetry, the

�rst superdiagonal equals the �rst subdiagonal of Hk).

Algorithm 16.2 The Lanczos Iteration. This algorithm operates on a vector b of length n and an

n × n symmetric matrix A. It iterates k times or until the norm of the next vector in the iteration

is less than tol. It returns two vectors x and y that respectively contain the main diagonal and �rst

subdiagonal of the current Hessenberg approximation.

1: procedure Lanczos(b, A, k, tol)

2: q0 ← zeros(size(b)) . Some initialization

3: q1 ← b/ ‖b‖2
4: x← empty(k)

5: y← empty(k)

6: for i = 0 . . . k − 1 do . Perform the iteration.

7: z← Aq1 . z is a temporary vector to store qi+1.

8: x[i]← qT
1 z . q1 is used to store the previous qi.

9: z← z− x[i]q1 + y[i− 1]q0 . q0 is used to store qi−1.

10: y[i] = ‖z‖2 . Initialize y[i].

11: if y[i] < tol then . Stop if ‖qi+1‖2 is too small.

12: return x[: i+ 1], y[: i]

13: z = z/y[i]

14: q0,q1 = q1, z . Store new qi+1 and qi on top of q1 and q0.

15: return x, y[: −1]

As it is described in Algorithm 16.2, the Lanczos iteration is not stable. Roundo� error may

cause the qi to be far from orthogonal. In fact, it is possible for the qi to be so adulterated by

roundo� error that they are no longer linearly independent.

There are modi�ed versions of the Lanczos iteration that are numerically stable. One of these,

the Implicitly Restarted Lanczos Method, is found in SciPy as scipy.sparse.linalg.eigsh().
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Lab Objective: The Generalized Minimal Residuals (GMRES) algorithm is an iterative Krylov

subspace method for e�ciently solving large linear systems. In this lab we implement the basic GM-

RES algorithm, then make an improvement by using restarts. We then discuss the convergence of the

algorithm and its relationship with the eigenvalues of a linear system. Finally, we introduce SciPy's

version of GMRES.

The GMRES Algorithm

GMRES is an iterative method that uses Krylov subspaces to reduce a high-dimensional problem to

a sequence of smaller dimensional problems. Let A be an invertible m ×m matrix and let b be a

vector of length m. Let Kn(A,b) be the order-n Krylov subspace generated by A and b. Instead

of solving the system Ax = b directly, GMRES uses least squares to �nd xn ∈ Kn that minimizes

the residual rn = ‖b − Axn‖2. The algorithm terminates when this residual is smaller than some

predetermined value. In many situations, this happens when n is much smaller than m.

The GMRES algorithm uses the Arnoldi iteration for numerical stability. The Arnoldi iteration

produces Hn, an (n+ 1)×n upper Hessenberg matrix, and Qn, a matrix whose columns make up an

orthonormal basis of Kn(A,b), such that AQn = Qn+1Hn. The GMRES algorithm �nds the vector

xn which minimizes the norm ‖b−Axn‖2, where xn = Qnyn + x0 for some yn ∈ Rn. Since the

columns of Qn are orthonormal, the residual can be equivalently computed as

‖b−Axn‖2 = ‖Qn+1(βe1 −Hnyn)‖2 = ‖Hnyn − βe1‖2. (17.1)

Here e1 is the vector [1, 0, . . . , 0]T of length n + 1 and β = ‖b−Ax0‖2, where x0 is an initial

guess of the solution. Thus, to minimize ‖b−Axn‖2, the right side of (17.1) can be minimized, and

xn can be computed as xn = Qnyn + x0.
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Algorithm 17.1 The GMRES algorithm. This algorithm operates on a vector b and a linear

operator A. It iterates k times or until the residual is less than tol, returning an approximate

solution to Ax = b and the error in this approximation.

1: procedure GMRES(A, b, x0, k, tol)

2: Q← empty(size(b), k + 1) . Initialization.

3: H ← zeros(k + 1, k)

4: r0 ← b−A(x0)

5: Q:,0 = r0/ ‖r0‖2
6: for j = 0 . . . k − 1 do . Perform the Arnoldi iteration.

7: Q:,j+1 ← A(Q:,j)

8: for i = 0 . . . j do

9: Hi,j ← QT
:,iQ:,j+1

10: Q:,j+1 ← Q:,j+1 −Hi,jQ:,i

11: Hj+1,j ← ‖Q:,j+1‖2
12: if |Hj+1,j | > tol then . Avoid dividing by zero.

13: Q:,j+1 ← Q:,j+1/Hj+1,j

14: y← least squares solution to ‖H:j+2,:j+1x− βe1‖2 . β and e1 as in (17.1).

15: res ← ‖H:j+2,:j+1y − βe1‖2
16: if res < tol then

17: return Q:,:j+1y + x0, res

18: return Q:,:j+1y + x0, res

Problem 1. Write a function that accepts a matrix A, a vector b, and an initial guess x0, a

maximum number of iterations k defaulting to 100, and a stopping tolerance tol that defaults to

10−8. Use Algorithm 17.1 to approximate the solution to Ax = b using the GMRES algorithm.

Return the approximate solution and the residual at the approximate solution.

You may assume that A and b only have real entries. Use scipy.linalg.lstsq() to

solve the least squares problem. Be sure to read the documentation so that you understand

what the function returns.

Compare your function to the following code.

>>> A = np.array([[1,0,0],[0,2,0],[0,0,3]])

>>> b = np.array([1, 4, 6])

>>> x0 = np.zeros(b.size)

>>> gmres(A, b, x0, k=100, tol=1e-8)

(array([ 1., 2., 2.]), 7.174555448775421e-16)

Convergence of GMRES
One of the most important characteristics of GMRES is that it will always arrive at an exact solution

(if one exists). At the n-th iteration, GMRES computes the best approximate solution to Ax = b for

xn ∈ Kn. If A is full rank, then Km = Fm, so the mth iteration will always return an exact answer.

Sometimes, the exact solution x ∈ Kn for some n < m, in this case xn is an exact solution. In either

case, the algorithm is convergent after n steps if the nth residual is su�ciently small.
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The rate of convergence of GMRES depends on the eigenvalues of A.

Problem 2. Add a keyword argument plot defaulting to False to your function from Problem

1. If plot=True, keep track of the residuals at each step of the algorithm. At the end of the

iteration, before returning the approximate solution and its residual error, create a �gure with

two subplots.

1. Make a scatter plot of the eigenvalues of A on the complex plane.

2. Plot the residuals versus the iteration counts using a log scale on the y-axis

(use ax.semilogy()).

Problem 3. Use your function from Problem 2 to investigate how the convergence of GMRES

relates to the eigenvalues of a matrix as follows. De�ne an m×m matrix

An = nI + P,

where I is the identity matrix and P is an m ×m matrix with entries taken from a random

normal distribution with mean 0 and standard deviation 1/(2
√
m). Call your function from

Problem 2 on An for n = −4,−2, 0, 2, 4. Use m = 200, let b be an array of all ones, and let

x0 = 0.

Use np.random.normal() to create the matrix P . When analyzing your results, pay

special attention to the clustering of the eigenvalues in relation to the origin. Compare your

results with n = 2, m = 200 to Figure 17.1.

Ideas for this problem were taken from Example 35.1 on p. 271 of [TB97].
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Figure 17.1: On the left, the eigenvalues of the matrix A2 de�ned in Problem 3. On the right,

the rapid convergence of the GMRES algorithm on A2 with starting vector b = (1, 1, . . . , 1).

GMRES with Restarts
The �rst few iterations of GMRES have low spatial and temporal complexity. However, as k increases,

the kth iteration of GMRES becomes more expensive temporally and spatially. In fact, computing

the kth iteration of GMRES for very large k can be prohibitively complex.
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This issue is addressed by using GMRES(k), or GMRES with restarts. When k becomes large,

this algorithm restarts GMRES with an improved initial guess. The new initial guess is taken to

be the vector that was found upon termination of the last GMRES iteration run. The algorithm

GMRES(k) will always have manageable spatial and temporal complexity, but it is less reliable than

GMRES. If the true solution x to Ax = b is nearly orthogonal to the Krylov subspaces Kn(A,b) for

n ≤ k, then GMRES(k) could converge very slowly or not at all.

Problem 4. Write a function that implements GMRES with restarts as follows.

1. Perform the GMRES algorithm for a maximum of k iterations.

2. If the desired tolerance was reached, terminate the algorithm. If not, repeat step 1 using

xk from the previous GMRES algorithm as a new initial guess x0.

3. Repeat step 2 until the desired tolerance has been obtained or until a given maximum

number of restarts has been reached.

Your function should accept all of the same inputs as the function you wrote in Problem 1 with

the exception of k, which will now denote the number of iterations before restart (defaults to 5),

and an additional parameter restarts which denotes the maximum number of restarts before

termination (defaults to 50).

GMRES in SciPy
The GMRES algorithm is implemented in SciPy as the function scipy.sparse.linalg.gmres().

Here we use this function to solve Ax = b where A is a random 300× 300 matrix and b is a random

vector.

>>> import numpy as np

>>> from scipy import sparse

>>> from scipy.sparse import linalg as spla

>>> A = np.random.rand(300, 300)

>>> b = np.random(300)

>>> x, info = spla.gmres(A, b)

>>> print(info)

3000

The function outputs two objects: the approximate solution x and an integer info which gives

information about the convergence of the algorithm. If info=0 then convergence occured; if info

is positive then it equals the number of iterations performed. In the previous case, the function

performed 3000 iterations of GMRES before returning the approximate solution x. The following

code veri�es how close the computed value was to the exact solution.

>>> la.norm((A @ x) - b)

4.744196381683801

A better approximation can be obtained using GMRES with restarts.
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# Restart after 1000 iterations.

>>> x, info = spla.gmres(A, b, restart=1000)

>>> info

0

>>> la.norm((A @ x) - b)

1.0280404494143551e-12

This time, the returned approximation x is about as close to a true solution as can be expected.

Problem 5. Plot the runtimes of your implementations of GMRES from Problems 1 and 4

and scipy.sparse.linalg.gmres() use the default tolerance and restart=1000 with di�erent

matrices. Use them×mmatrix P withm = 25, 50, . . . 200 and with entries taken from a random

normal distribution with mean 0 and standard deviation 1/(2
√
m). Use a vector of ones for b

and a vector of zeros for x0. Use a single �gure for all plots, plot the runtime on the y-axis and

m on the x-axis.
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A Getting Started

The labs in this curriculum aim to introduce computational and mathematical concepts, walk through

implementations of those concepts in Python, and use industrial-grade code to solve interesting,

relevant problems. Lab assignments are usually about 5�10 pages long and include code examples

(yellow boxes), important notes (green boxes), warnings about common errors (red boxes), and

about 3�7 exercises (blue boxes). Get started by downloading the lab manual(s) for your course from

http://foundations-of-applied-mathematics.github.io/.

Submitting Assignments
Labs

Every lab has a corresponding speci�cations �le with some code to get you started and to make your

submission compatible with automated test drivers. Like the lab manuals, these materials are hosted

at http://foundations-of-applied-mathematics.github.io/.

Download the .zip �le for your course, unzip the folder, and move it somewhere where it

won't get lost. This folder has some setup scripts and a collection of folders, one per lab, each of

which contains the speci�cations �le(s) for that lab. See Student-Materials/wiki/Lab-Index for

the complete list of labs, their speci�cations and data �les, and the manual that each lab belongs to.

Achtung!

Do not move or rename the lab folders or the enclosed speci�cations �les; if you do, the test

drivers will not be able to �nd your assignment. Make sure your folder and �le names match

Student-Materials/wiki/Lab-Index.

To submit a lab, modify the provided speci�cations �le and use the �le-sharing program

speci�ed by your instructor (discussed in the next section). The instructor will drop feedback

�les in the lab folder after grading the assignment. For example, the Introduction to Python lab

has the speci�cations �le PythonIntro/python_intro.py. To complete that assignment, modify

PythonIntro/python_intro.py and submit it via your instructor's �le-sharing system. After grad-

ing, the instructor will create a �le called PythonIntro/PythonIntro_feedback.txt with your score

and some feedback.
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Homework
Non-lab coding homework should be placed in the _Homework/ folder and submitted like a lab

assignment. Be careful to name your assignment correctly so the instructor (and test driver) can �nd

it. The instructor may drop speci�cations �les and/or feedback �les in this folder as well.

Setup

Achtung!

We strongly recommend using a Unix-based operating system (Mac or Linux) for the labs.

Unix has a true bash terminal, works well with git and python, and is the preferred platform

for computational and data scientists. It is possible to do this curriculum with Windows, but

expect some road bumps along the way.

There are two ways to submit code to the instructor: with git (http://git-scm.com/), or with

a �le-syncing service like Google Drive. Your instructor will indicate which system to use.

Setup With Git
Git is a program that manages updates between an online code repository and the copies of the

repository, called clones, stored locally on computers. If git is not already installed on your computer,

download it at http://git-scm.com/downloads. If you have never used git, you might want to read

a few of the following resources.

� O�cial git tutorial: https://git-scm.com/docs/gittutorial

� Bitbucket git tutorials: https://www.atlassian.com/git/tutorials

� GitHub git cheat sheet: services.github.com/.../github-git-cheat-sheet.pdf

� GitLab git tutorial: https://docs.gitlab.com/ce/gitlab-basics/start-using-git.html

� Codecademy git lesson: https://www.codecademy.com/learn/learn-git

� Training video series by GitHub: https://www.youtube.com/playlist?list=PLg7.../

There are many websites for hosting online git repositories. Your instructor will indicate which

web service to use, but we only include instructions here for setup with Bitbucket.

1. Sign up. Create a Bitbucket account at https://bitbucket.org. If you use an academic email

address (ending in .edu, etc.), you will get free unlimited public and private repositories.

2. Make a new repository. On the Bitbucket page, click the + button from the menu on the

left and, under CREATE, select Repository. Provide a name for the repository, mark the

repository as private, and make sure the repository type is Git. For Include a README?,

select No (if you accidentally include a README, delete the repository and start over). Un-

der Advanced settings, enter a short description for your repository, select No forks un-

der forking, and select Python as the language. Finally, click the blue Create repository

button. Take note of the URL of the webpage that is created; it should be something like

https://bitbucket.org/<name>/<repo>.

http://git-scm.com/
http://git-scm.com/downloads
https://git-scm.com/docs/gittutorial
https://www.atlassian.com/git/tutorials
https://services.github.com/on-demand/downloads/github-git-cheat-sheet.pdf
https://docs.gitlab.com/ce/gitlab-basics/start-using-git.html
https://www.codecademy.com/learn/learn-git
https://www.youtube.com/playlist?list=PLg7s6cbtAD15G8lNyoaYDuKZSKyJrgwB-
https://bitbucket.org
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3. Give the instructor access to your repository. On your newly created Bitbucket repository

page (https://bitbucket.org/<name>/<repo> or similar), go to Settings in the menu to

the left and select User and group access, the second option from the top. Enter your

instructor's Bitbucket username under Users and click Add. Select the blue Write button so

your instructor can read from and write feedback to your repository.

4. Connect your folder to the new repository. In a shell application (Terminal on Linux or Mac,

or Git Bash (https://gitforwindows.org/) on Windows), enter the following commands.

# Navigate to your folder.

$ cd /path/to/folder # cd means 'change directory'.

# Make sure you are in the right place.

$ pwd # pwd means 'print working directory'.

/path/to/folder

$ ls *.md # ls means 'list files'.

README.md # This means README.md is in the working directory.

# Connect this folder to the online repository.

$ git init

$ git remote add origin https://<name>@bitbucket.org/<name>/<repo>.git

# Record your credentials.

$ git config --local user.name "your name"

$ git config --local user.email "your email"

# Add the contents of this folder to git and update the repository.

$ git add --all

$ git commit -m "initial commit"

$ git push origin master

For example, if your Bitbucket username is greek314, the repository is called acmev1, and the

folder is called Student-Materials/ and is on the desktop, enter the following commands.

# Navigate to the folder.

$ cd ~/Desktop/Student-Materials

# Make sure this is the right place.

$ pwd

/Users/Archimedes/Desktop/Student-Materials

$ ls *.md

README.md

# Connect this folder to the online repository.

$ git init

$ git remote add origin https://greek314@bitbucket.org/greek314/acmev1.git

# Record credentials.

$ git config --local user.name "archimedes"

https://gitforwindows.org/
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$ git config --local user.email "greek314@example.com"

# Add the contents of this folder to git and update the repository.

$ git add --all

$ git commit -m "initial commit"

$ git push origin master

At this point you should be able to see the �les on your repository page from a web browser. If

you enter the repository URL incorrectly in the git remote add origin step, you can reset

it with the following line.

$ git remote set-url origin https://<name>@bitbucket.org/<name>/<repo>.git

5. Download data �les. Many labs have accompanying data �les. To download these �les, navi-

gate to your clone and run the download_data.sh bash script, which downloads the �les and

places them in the correct lab folder for you. You can also �nd individual data �les through

Student-Materials/wiki/Lab-Index.

# Navigate to your folder and run the script.

$ cd /path/to/folder

$ bash download_data.sh

6. Install Python package dependencies. The labs require several third-party Python packages

that don't come bundled with Anaconda. Run the following command to install the necessary

packages.

# Navigate to your folder and run the script.

$ cd /path/to/folder

$ bash install_dependencies.sh

7. (Optional) Clone your repository. If you want your repository on another computer after

completing steps 1�4, use the following commands.

# Navigate to where you want to put the folder.

$ cd ~/Desktop/or/something/

# Clone the folder from the online repository.

$ git clone https://<name>@bitbucket.org/<name>/<repo>.git <foldername>

# Record your credentials in the new folder.

$ cd <foldername>

$ git config --local user.name "your name"

$ git config --local user.email "your email"

# Download data files to the new folder.

$ bash download_data.sh

https://github.com/Foundations-of-Applied-Mathematics/Student-Materials/wiki/Lab-Index
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Setup Without Git

Even if you aren't using git to submit �les, you must install it (http://git-scm.com/downloads)

in order to get the data �les for each lab. Share your folder with your instructor according to their

directions, and follow steps 5 and 6 of the previous section to download the data �les and install

package dependencies.

Using Git
Git manages the history of a �le system through commits, or checkpoints. Use git status to see

the �les that have been changed since the last commit. These changes are then moved to the staging

area, a list of �les to save during the next commit, with git add <filename(s)>. Save the changes

in the staging area with git commit -m "<A brief message describing the changes>".

Staged: the files with changes
to be saved at commit time

Modified: the files with
changes since the last commit

Tracked: the files that have
been added to git, but with no
changes since the last commit

Untracked: the files that have
never been added to git

git log:
a record of all
commit messages

New Commit

Previous Commit

...

Second Commit

First Commit

git add "<filename>"

(stage changes)

git reset HEAD -- "<filename>"

(unstage changes)

git checkout -- "<filename>"

(discard changes)

git commit -m "<message>"

(save changes)

Modify file

Figure A.1: Git commands to stage, unstage, save, or discard changes. Commit messages are recorded

in the log.

All of these commands are done within a clone of the repository, stored somewhere on a com-

puter. This repository must be manually synchronized with the online repository via two other git

commands: git pull origin master, to pull updates from the web to the computer; and git

push origin master, to push updates from the computer to the web.

Online Repository

Computer

git push origin master git pull origin master

Figure A.2: Exchanging git commits between the repository and a local clone.

http://git-scm.com/downloads
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Command Explanation

git status Display the staging area and untracked changes.

git pull origin master Pull changes from the online repository.

git push origin master Push changes to the online repository.

git add <filename(s)> Add a �le or �les to the staging area.

git add -u Add all modi�ed, tracked �les to the staging area.

git commit -m "<message>" Save the changes in the staging area with a given message.

git checkout -- <filename> Revert changes to an unstaged �le since the last commit.

git reset HEAD -- <filename> Remove a �le from the staging area.

git diff <filename> See the changes to an unstaged �le since the last commit.

git diff --cached <filename> See the changes to a staged �le since the last commit.

git config --local <option> Record your credentials (user.name, user.email, etc.).

Table A.1: Common git commands.

Note

When pulling updates with git pull origin master, your terminal may sometimes display

the following message.

Merge branch 'master' of https://bitbucket.org/<name>/<repo> into master

# Please enter a commit message to explain why this merge is necessary,

# especially if it merges an updated upstream into a topic branch.

#

# Lines starting with '#' will be ignored, and an empty message aborts

# the commit.

~

~

This means that someone else (the instructor) has pushed a commit that you do not yet have,

while you have also made one or more commits locally that they do not have. This screen,

displayed in vim (https://en.wikipedia.org/wiki/Vim_(text_editor)), is asking you to

enter a message (or use the default message) to create a merge commit that will reconcile both

changes. To close this screen and create the merge commit, type :wq and press enter.

Example Work Sessions

$ cd ~/Desktop/Student-Materials/

$ git pull origin master # Pull updates.

### Make changes to a file.

$ git add -u # Track changes.

$ git commit -m "Made some changes." # Commit changes.

$ git push origin master # Push updates.

https://en.wikipedia.org/wiki/Vim_(text_editor)
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# Pull any updates from the online repository (such as TA feedback).

$ cd ~/Desktop/Student-Materials/

$ git pull origin master

From https://bitbucket.org/username/repo

* branch master -> FETCH_HEAD

Already up-to-date.

### Work on the labs. For example, modify PythonIntro/python_intro.py.

$ git status

On branch master

Your branch is up-to-date with 'origin/master'.

Changes not staged for commit:

(use "git add <file>..." to update what will be committed)

(use "git checkout -- <file>..." to discard changes in working directory)

PythonIntro/python_intro.py

# Track the changes with git.

$ git add PythonIntro/python_intro.py

$ git status

On branch master

Your branch is up-to-date with 'origin/master'.

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

modified: PythonIntro/python_intro.py

# Commit the changes to the repository with an informative message.

$ git commit -m "Made some changes"

[master fed9b34] Made some changes

1 file changed, 10 insertion(+) 1 deletion(-)

# Push the changes to the online repository.

$ git push origin master

Counting objects: 3, done.

Delta compression using up to 2 threads.

Compressing objects: 100% (2/2), done.

Writing objects: 100% (3/3), 327 bytes | 0 bytes/s, done.

Total 3 (delta 0), reused 0 (delta 0)

To https://username@bitbucket.org/username/repo.git

5742a1b..fed9b34 master -> master

$ git status

On branch master

Your branch is up-to-date with 'origin/master'.

nothing to commit, working directory clean
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B Installing and
Managing Python

Lab Objective: One of the great advantages of Python is its lack of overhead: it is relatively easy

to download, install, start up, and execute. This appendix introduces tools for installing and updating

speci�c packages and gives an overview of possible environments for working e�ciently in Python.

Installing Python via Anaconda
A Python distribution is a single download containing everything needed to install and run Python,

together with some common packages. For this curriculum, we strongly recommend using the

Anaconda distribution to install Python. Anaconda includes IPython, a few other tools for developing

in Python, and a large selection of packages that are common in applied mathematics, numerical

computing, and data science. Anaconda is free and available for Windows, Mac, and Linux.

Follow these steps to install Anaconda.

1. Go to https://www.anaconda.com/download/.

2. Download the Python 3.6 graphical installer speci�c to your machine.

3. Open the downloaded �le and proceed with the default con�gurations.

For help with installation, see https://docs.anaconda.com/anaconda/install/. This page

contains links to detailed step-by-step installation instructions for each operating system, as well as

information for updating and uninstalling Anaconda.

Achtung!

This curriculum uses Python 3.6, not Python 2.7. With the wrong version of Python, some

example code within the labs may not execute as intended or result in an error.

Managing Packages
A Python package manager is a tool for installing or updating Python packages, which involves

downloading the right source code �les, placing those �les in the correct location on the machine,

and linking the �les to the Python interpreter. Never try to install a Python package without using

a package manager (see https://xkcd.com/349/).
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Conda

Many packages are not included in the default Anaconda download but can be installed via Ana-

conda's package manager, conda. See https://docs.anaconda.com/anaconda/packages/pkg-docs

for the complete list of available packages. When you need to update or install a package, always

try using conda �rst.

Command Description

conda install <package-name> Install the speci�ed package.

conda update <package-name> Update the speci�ed package.

conda update conda Update conda itself.

conda update anaconda Update all packages included in Anaconda.

conda --help Display the documentation for conda.

For example, the following terminal commands attempt to install and update matplotlib.

$ conda update conda # Make sure that conda is up to date.

$ conda install matplotlib # Attempt to install matplotlib.

$ conda update matplotlib # Attempt to update matplotlib.

See https://conda.io/docs/user-guide/tasks/manage-pkgs.html for more examples.

Note

The best way to ensure a package has been installed correctly is to try importing it in IPython.

# Start IPython from the command line.

$ ipython

IPython 6.5.0 -- An enhanced Interactive Python. Type '?' for help.

# Try to import matplotlib.

In [1]: from matplotlib import pyplot as plt # Success!

Achtung!

Be careful not to attempt to update a Python package while it is in use. It is safest to update

packages while the Python interpreter is not running.

Pip

The most generic Python package manager is called pip. While it has a larger package list, conda is

the cleaner and safer option. Only use pip to manage packages that are not available through conda.

https://docs.anaconda.com/anaconda/packages/pkg-docs
https://conda.io/docs/user-guide/tasks/manage-pkgs.html
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Command Description

pip install package-name Install the speci�ed package.

pip install --upgrade package-name Update the speci�ed package.

pip freeze Display the version number on all installed packages.

pip --help Display the documentation for pip.

See https://pip.pypa.io/en/stable/user_guide/ for more complete documentation.

Workflows
There are several di�erent ways to write and execute programs in Python. Try a variety of work�ows

to �nd what works best for you.

Text Editor + Terminal
The most basic way of developing in Python is to write code in a text editor, then run it using either

the Python or IPython interpreter in the terminal.

There are many di�erent text editors available for code development. Many text editors are

designed speci�cally for computer programming which contain features such as syntax highlighting

and error detection, and are highly customizable. Try installing and using some of the popular text

editors listed below.

� Atom: https://atom.io/

� Sublime Text: https://www.sublimetext.com/

� Notepad++ (Windows): https://notepad-plus-plus.org/

� Geany: https://www.geany.org/

� Vim: https://www.vim.org/

� Emacs: https://www.gnu.org/software/emacs/

Once Python code has been written in a text editor and saved to a �le, that �le can be executed

in the terminal or command line.

$ ls # List the files in the current directory.

hello_world.py

$ cat hello_world.py # Print the contents of the file to the terminal.

print("hello, world!")

$ python hello_world.py # Execute the file.

hello, world!

# Alternatively, start IPython and run the file.

$ ipython

IPython 6.5.0 -- An enhanced Interactive Python. Type '?' for help.

In [1]: %run hello_world.py

hello, world!

https://pip.pypa.io/en/stable/user_guide/
https://atom.io/
https://www.sublimetext.com/
https://notepad-plus-plus.org/
https://www.geany.org/
https://www.vim.org/
https://www.gnu.org/software/emacs/
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IPython is an enhanced version of Python that is more user-friendly and interactive. It has

many features that cater to productivity such as tab completion and object introspection.

Note

While Mac and Linux computers come with a built-in bash terminal, Windows computers do

not. Windows does come with Powershell, a terminal-like application, but some commands in

Powershell are di�erent than their bash analogs, and some bash commands are missing from

Powershell altogether. There are two good alternatives to the bash terminal for Windows:

� Windows subsystem for linux: docs.microsoft.com/en-us/windows/wsl/.

� Git bash: https://gitforwindows.org/.

Jupyter Notebook
The Jupyter Notebook (previously known as IPython Notebook) is a browser-based interface for

Python that comes included as part of the Anaconda Python Distribution. It has an interface similar

to the IPython interpreter, except that input is stored in cells and can be modi�ed and re-evaluated

as desired. See https://github.com/jupyter/jupyter/wiki/ for some examples.

To begin using Jupyter Notebook, run the command jupyter notebook in the terminal. This

will open your �le system in a web browser in the Jupyter framework. To create a Jupyter Notebook,

click the New drop down menu and choose Python 3 under the Notebooks heading. A new tab

will open with a new Jupyter Notebook.

Jupyter Notebooks di�er from other forms of Python development in that notebook �les contain

not only the raw Python code, but also formatting information. As such, Juptyer Notebook �les

cannot be run in any other development environment. They also have the �le extension .ipynb

rather than the standard Python extension .py.

Jupyter Notebooks also support Markdown�a simple text formatting language�and LATEX,

and can embedded images, sound clips, videos, and more. This makes Jupyter Notebook the ideal

platform for presenting code.

Integrated Development Environments
An integrated development environment (IDEs) is a program that provides a comprehensive environ-

ment with the tools necessary for development, all combined into a single application. Most IDEs

have many tightly integrated tools that are easily accessible, but come with more overhead than a

plain text editor. Consider trying out each of the following IDEs.

� JupyterLab: http://jupyterlab.readthedocs.io/en/stable/

� PyCharm: https://www.jetbrains.com/pycharm/

� Spyder: http://code.google.com/p/spyderlib/

� Eclipse with PyDev: http://www.eclipse.org/, https://www.pydev.org/

See https://realpython.com/python-ides-code-editors-guide/ for a good overview of these

(and other) work�ow tools.

https://docs.microsoft.com/en-us/windows/wsl/install-win10
https://gitforwindows.org/
https://github.com/jupyter/jupyter/wiki/A-gallery-of-interesting-Jupyter-Notebooks
http://jupyterlab.readthedocs.io/en/stable/
https://www.jetbrains.com/pycharm/
http://code.google.com/p/spyderlib/
http://www.eclipse.org/
https://www.pydev.org/
https://realpython.com/python-ides-code-editors-guide/


C NumPy Visual Guide

Lab Objective: NumPy operations can be di�cult to visualize, but the concepts are straightforward.

This appendix provides visual demonstrations of how NumPy arrays are used with slicing syntax,

stacking, broadcasting, and axis-speci�c operations. Though these visualizations are for 1- or 2-

dimensional arrays, the concepts can be extended to n-dimensional arrays.

Data Access
The entries of a 2-D array are the rows of the matrix (as 1-D arrays). To access a single entry, enter

the row index, a comma, and the column index. Remember that indexing begins with 0.

A[0] =


× × × × ×
× × × × ×
× × × × ×
× × × × ×

 A[2,1] =


× × × × ×
× × × × ×
× × × × ×
× × × × ×



Slicing
A lone colon extracts an entire row or column from a 2-D array. The syntax [a:b] can be read as

�the ath entry up to (but not including) the bth entry.� Similarly, [a:] means �the ath entry to the

end� and [:b] means �everything up to (but not including) the bth entry.�

A[1] = A[1,:] =


× × × × ×
× × × × ×
× × × × ×
× × × × ×

 A[:,2] =


× × × × ×
× × × × ×
× × × × ×
× × × × ×



A[1:,:2] =


× × × × ×
× × × × ×
× × × × ×
× × × × ×

 A[1:-1,1:-1] =


× × × × ×
× × × × ×
× × × × ×
× × × × ×


181
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Stacking
np.hstack() stacks sequence of arrays horizontally and np.vstack() stacks a sequence of arrays

vertically.

A =

 × × ×
× × ×
× × ×

 B =

 ∗ ∗ ∗∗ ∗ ∗
∗ ∗ ∗



np.hstack((A,B,A)) =

 × × × ∗ ∗ ∗ × × ×
× × × ∗ ∗ ∗ × × ×
× × × ∗ ∗ ∗ × × ×



np.vstack((A,B,A)) =



× × ×
× × ×
× × ×
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
× × ×
× × ×
× × ×


Because 1-D arrays are �at, np.hstack() concatenates 1-D arrays and np.vstack() stacks them

vertically. To make several 1-D arrays into the columns of a 2-D array, use np.column_stack().

x =
[
× × × ×

]
y =

[
∗ ∗ ∗ ∗

]

np.hstack((x,y,x)) =
[
× × × × ∗ ∗ ∗ ∗ × × × ×

]

np.vstack((x,y,x)) =

 × × × ×
∗ ∗ ∗ ∗
× × × ×

 np.column_stack((x,y,x)) =


× ∗ ×
× ∗ ×
× ∗ ×
× ∗ ×


The functions np.concatenate() and np.stack() are more general versions of np.hstack() and

np.vstack(), and np.row_stack() is an alias for np.vstack().

Broadcasting
NumPy automatically aligns arrays for component-wise operations whenever possible. See http:

//docs.scipy.org/doc/numpy/user/basics.broadcasting.html for more in-depth examples and

broadcasting rules.

http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html
http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html
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A =

 1 2 3

1 2 3

1 2 3

 x =
[

10 20 30
]

A + x =

 1 2 3

1 2 3

1 2 3

+[ ]
10 20 30

=

 11 22 33

11 22 33

11 22 33



A + x.reshape((1,-1)) =

 1 2 3

1 2 3

1 2 3

+

 10

20

30

 =

 11 12 13

21 22 23

31 32 33



Operations along an Axis
Most array methods have an axis argument that allows an operation to be done along a given axis.

To compute the sum of each column, use axis=0; to compute the sum of each row, use axis=1.

A =


1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4



A.sum(axis=0) =


1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

 =
[

4 8 12 16
]

A.sum(axis=1) =


1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

 =
[

10 10 10 10
]
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